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It was observed in [1] that there is a Landau-Ginzburg theory correspond-
ing to each N =2 superconformal coset model [2] based on a hermitian sym-
metric space, G/H, where G is simply laced and has Kac-Moody level equal

to one. Such N =2 coset models will henceforth be referred to as SLOHSS

models. Explicitly, these cosets are G/H = SU(nfgéng%)xU(l), 5331()”;[]2()1) (n

50(2n) Eg
» SU(n)xU(1)’ SO(10)xU

such SLOHSS theory based on some coset GG/ H could be related to a confor-

mally invariant H-Toda theory (tensored with a free boson). In addition it

even) @ O 5[}(1) " . In [3] it was described how any

was shown that the perturbation by (the F-component of) the most relevant,
chiral primary field yields a quantum integrable, N =2 supersymmetric, mas-
sive field theory which, in turn, is related to an affine (G-Toda theory. Since
any SLOHSS model possesses a Landau-Ginzburg description, it follows that
the massive theory obtained by perturbation can be given a Landau-Ginzburg
description. In particular, under the perturbation, the multiply degenerate
Ramond ground states of the conformal Landau-Ginzburg model resolve into

distinct vacua.

It is our purpose to determine in this paper the structure of these ground
states and of the various solitons linking them® . These soliton sectors give
rise to a new class of exactly solvable scattering theories, whose S-matrices
are closely related to those of Toda theories. We will work in the spirit of
Zamolodchikov [4], but will utilize specific properties of the N =2 structure of
the foregoing models. We will show that the solitons are related to the edges
of certain higher dimensional polytopes, and we will apply the techniques of
[5] to determine the exact soliton masses. From this and the bootstrap equa-

tions the entire soliton spectrum is completely determined, along with the

* Note that % describes the N =2 minimal series (with type A,41 modular

invariant), and %

also that there exists no SLOHSS model based on Ej.
1 Some preliminary results have been mentioned in [3].

(n even) gives the minimal series of type D,42. Note
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eigenvalues of the integrals of motion evaluated on each soliton. The various
quantum numbers of the solitons are just given by particular projections of
the polytopes onto two dimensional planes. This gives a geometrical solution
of the bootstrap equations. The projections also contain the elements of the

Toda perturbation expansion in the form of dual diagrams [6].

In section 2, we will review the structure of the SLOHSS models, giving
some more details of our previous work [1]n , and in section 3 we will discuss
the Landau-Ginzburg structure. The vacua and solitons of the perturbed
SLOHSS models will then be discussed in section 4, and the results of [5]
will be extended to Landau-Ginzburg potentials in more than one variable.
We will discuss the soliton charges of the higher spin integrals of motion in
section 5. In section 6, we give some comments on the relation of our results

to Toda theories.

2. SLHOSS Models

The N =2 supersymmetric coset models were introduced in [2] and are

obtained by the GKO construction applied to %2_@’ where d = dim .G/ H,
rank(G) = rank(H), H = Hy x U(1), and the U(1) factor defines a Kahler
structure on G/H. The group H acts on the tangent space of G/H, and thus
has the obvious embedding into SO(2d). By way of notation, let £ be the rank
of G, ¢ and h the dual Coxeter numbers® of G and H, respectively. Let also
W(G) and W(H) denote the Weyl groups of G and H. The Lie algebras of
G and H will be denoted by G and H, respectively, the simple roots of G will
be denoted by a;,2=1,... ¢ and the highest root by 8 = Zle q;; for some
positive integers ¢;. The roots of G and A will be denoted by «, 3, ... and
o', 3, ... while those roots of G that are not roots of H will be denoted by

b Some related and subsequent work may also be found in [7].
o If H is the product of simple and U(1) factors, then A is to be thought of as a vector

in the obvious manner. The dual Coxeter number of a U(1) factor is defined to be

ZEero.
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@,f3,.... The sets A(G)+, A(H)+ will denote the positive (negative) roots
of G and H, while t1 = A(G)£\A(H)x. The currents of G in the Cartan-
Weyl basis will be denoted by H(z) and J%(z). To describe the SO(2d)
factor it is convenient to introduce free complex fermions A% which satisfy
/\a(z)/\ﬁ(w) ~0if @+ F#0and A% (2)ATT(w) ~ Z_lw, @ € ty. The Cartan

subalgebra of currents of H will be denoted by h'(z), and one finds [2]

Wi(z) = Hi(z)+ Y @ : AT (2) (2.1)
aEt+
Considered as a current algebra, if G has level k&, then A has has level k+g—h.

Restricting to hermitian, symmetric spaces, the N = 2 superconformal

generators have the form

TEt, (2.2)
J(2) = jr(2) = g (%)
where
Jr(z) = Z ATV (2)
e (2.3)
(=) = Y@ h(z) = ()@ H(z) +gis(2) -

The energy momentum tensor is given by the well-known combination of

Sugawara tensors. For each model, (2.2) generates an N =2 algebra with

3d
g+1-°

central charge ¢ =

The coset model Hilbert spaces, "HQ’[\, are obtained by the usual de-
composition method, and the labels A, A and X are highest weight labels of
G, 50(2d) and H at levels k,1 and k + g — h, respectively. The Ramond and
Neveu-Schwarz sectors of the coset model correspond to the R and NS sectors
of the SO(2d) factor. As discussed in [1], spectral flow in the Kac-Moody al-

gebras will yield identifications amongst the "HQ’A spaces. For simply laced G



—4—

at level one (k = 1) there are no fixed point problems; moreover, the spectral
flow identifications mean that to get exactly one representative of each equiv-
alence class of the "HQ’[\, one only needs to consider the spaces with A = 0,
i.e., the singlet representation of the Kac-Moody algebra of G. Henceforth,
we will restrict to SLOHSS models.

The fields of interest in the Landau-Ginzburg description are the chiral,
primary fields, and those satisfy
Gt @ =0, G, = 0. (2.4)

/ 1/2

By spectral flow in the N =2 algebra, they are related in a one-to-one fash-
ion to the ground states of the Ramond-sector. To construct these fields
explicitly, it is actually more convenient to construct first the correspond-
ing Ramond ground states. Knowing the structure of the Ramond ground
states will also prove useful when we come to discuss the ground states of the

perturbed models.

Representations of the Ramond ground states of a SLOHSS model can
be obtained by first restricting ones attention to the Ramond ground states
of SO(2d) (see [1] for a proof that this is sufficient). Thus one considers the
decomposition of an SO(2d) spinor ground state, with highest weight label
A, into H represenations. In [1] it was shown that for A = 0, the coset model
Ramond ground states thereby obtained have an highest weight labels; A, of
H of the form:

Aw) =wlpe) = pu (2.5)

where w € W((G) is chosen so that w(pg) is a highest weight of H (it then
automatically follows that A(w) is also a highest weight of H). The chirality,
or eigenvalue of (—1)", of this ground state is equal to the sign of the deter-
minant of w in (2.5). There is also a one-to-one correspondence between the
Ramond ground states and the elements of the coset %, so that, in partic-

ular, the total number of Ramond ground states is y = %%)Lll An equivalent
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characterization of the Weyl group elements w € W, employed in (2.5) is that
all have the property, that for every a € Ay (H) one has w™l(a) € AL (G).
We will refer to such a w € W(({) as being H-positive, and note that each

coset of %% has an unique H-positive coset representative.

While the foregoing implicitly defines the Ramond ground states, it is

very useful to obtain a more explicit representation in the coset model.

For every element w € W((G), let Ay (w) be such that o € Ay (w) if and
only if w™(a) € AL(G). Observe that Ay (w) and A_(w) are disjoint and
their union is the whole of A(G). Therefore

Z o,

€A (G)

w(pa) =

N | —

where the sign is dictated by o € Ay (w). The number of elements in A_ (w)
is called the length* of w, and is usually denoted by £(w). Let vg, & € {4,
denote the components of a weight vector of the spinor representation of
SO(2d). The highest weight vector has vz = 1 for all @. Let w be an H-
positive element of W (), and define ug = :I:% for @ € Ag(w). Tt follows
that ug 1s a spinor weight, and the corresponding weight in the torus defined
by (2.1) is nothing other than A = w(pg) — pr. We have thus identified the
fermionic state from which the corresponding coset Ramond ground state is
made. One should also observe that the SO(2d) fermion charge of the ground
state is %d— {(w), and thus from (2.2) and (2.3), the N =2 U(1) charge of
this ground state is Jo(A(w)) = m(d — 2{(w)). A simpler formula for
the length £(w) of an H-positive Weyl element w is obtained by noting that
(pc — pu)-a = tig for a € tx and (pg — pu) - =0 for a € A(H)4, and

hence £(w) = % — %(pg —pm)-w(pg). Consequently, we have

W) = = (6 = pir) - wlp) - (2.6

* The length of w may also be defined as the minimum value of M such that w =

74y ---Tiy, and the r; are the fundamental Weyl reflections generated by the simple

M
roots a;.
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By spectral flow, we can use the foregoing construction to generate rep-
resentations of the chiral, primary fields (2.4). Indeed, for any H-positive w,

consider the operator
e (z) = J[ (), (2.7)
acA_(w)

where the ordering of the product is a matter of irrelevant choice. The
N =2 U(1) charge and conformal weight of this state are %—I%l and %%,
respectively. This field is thus the product of a chiral, primary field, and

some H-primary field "

It was shown in [1] that the ring R of the chiral, primary fields has

Poincaré polynomial

0 —
P(t) = ';z[ (g+1) Jo H ( tm +1) , (2.8)

where m; and m"7

we take m) = 0). The degrees of the algebraically independent Casimirs of

are the exponents of G and H (for the U(1) factor in H

G are simply m; + 1 (and similarly for H).

It was also shown in [1] that R has a close relationship to a particular
fundamental representation, =, of G. The highest weight of = is defined by the
fundamental weight of GG corresponding to the node of the G-Dynkin diagram
that defines the embedding of the U(1) factor, that is, the highest weight is
given by %(pg —pm). For a SLOHSS model, the possible choices of the U(1)
factor correspond to the Dynkin nodes which have Kac weight equal to one,
1.e., the allowed representations = are the level one representations of affine-G'.
Specifically, for G = SU(n), E can be any fundamental, antisymmetric tensor

representation. It turns out that the Poincaré series (2.8) can be written as a

t The H-state of corresponding to this operator is simply the lowest weight state in
the H-ground state representation with highest H-weight: A = w(pa) — py.
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certain U(1)-character valued trace over Z. This implies, in particular, that

the number of primary, chiral fields is given by

I Ttel]
= EmR =) (2.9)

= dimZ

3. Chiral Rings and Landau-Ginzburg
potentials of SLOHSS Models

From a case by case analysis, based on the explicit form of (2.8), it was
argued in [1] that all of these rings R of chiral, primary fields correspond
to local rings of quasihomogenous, isolated singularities [8], and hence, to
Landau-Ginzburg superpotentials Wy [9]. Consequently, all SLOHSS models
have also a description in terms of N =2 supersymmetric Landau-Ginzburg

models,
L = /d29+d29— K(@A,@)Jr(/d?e— Wo(®a) + h.c.) (3.1)

for some Kahler potential K. The generic form of these superpotentials was
explicitly given for the Grassmannian models [1]* . Another result that was
noticed in [1] is that the chiral, primary fields are in one-to-one correspon-
dence with the Lie-algebra cohomology, and in particular the primary chiral
ring R of a given model based on G/H was shown to be isomorphici to
the Dolbeault cohomology ring of G/H. More precisely, 1f T+ denotes the
N=2U(1) charge of a chiral, primary field, then ®, can be thought of as an
element of H94(G/H,IR).

* Grassmannian potentials and chiral rings have also been considered by [7].
1 It was argued in [1] that these rings were isomorphic at least up to some deformation

in the moduli. It is however possible to show, by using explicit representations of

the chiral, primary fields, that these rings are completely isomorphic.
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An extremely convenient characterization of these cohomology rings is
provided by the Chern classes of vector bundles over G/H. Indeed, given a
representation V of H, one can define a vector bundle over G/H by defining
E = {(g,v) : ¢ € G,v € V} and taking the total space of the bundle to be

E= E/ ~, where ~ is the equivalence relation
(g,v) ~ (gh,hv) forallhe H .

The Chern classes of all such vector bundles then generate the cohomology
ring of G/H (for an exposition, see for example [10,11]). Note however that
if V can be extended to a representation of G, then one can globally trivialize
the bundle by using the ¢ action on V. One finds that the cohomology ring,
H**(G/H,R), is the free polynomial algebra in the Chern classes of the
bundles defined by H-representations, but with vanishing relations generated
by all the Chern classes of H representations that can be combined into G-

representations.

In practice, the foregoing observation gives rise to the following charac-
terization of the chiral, primary ring and the corresponding Landau-Ginzburg
superpotential. Introduce variables £, which may be viewed as coordinates
on the Cartan subalgebra of GG (or H). The independent Casimirs of G (H,
respectively), when restricted to the Cartan subalgebra, give rise to homoge-
nous polynomials py,,+1(€) (respectively p;l9+1(€)), i,7=1,...,¢ of degrees
m; + 1 (respectively, m} + 1) and which are invariant under W(G) (respec-
tively, W(H)). Conversely, such homogenous, Weyl invariant polynomials
completely characterize the corresponding Casimir invariants. (As a paren-
thetic comment, these polynomials generate the Chern classes by replacing
the £ by the 2-form Cartan subalgebra eigenvalues of the curvature tensors).
Note that the exponent corresponding to the U(1) factor of H is mj = 0,
and that the corresponding linear combination of variables ¢ that defines the
U(1) is given by p1’(€). The corresponding generator in the cohomology is
the first Chern class of the line bundle defined by non-trivial one dimensional

representations of this U(1).

—9_

We can introduce new variables z; = p;l9+1(€), and observe that because
Pm,+1(€) is invariant under W (&), it is invariant under W(H). Hence each
Pm,+1 can be written as a polynomial in the z;. The chiral, primary ring is

then

R = Clay,..., 20 /T , (3.2)

where 7 is the ideal generated by pm,+1(£§) = pm,+1(2;). Thus we have the

vanishing relations

Pmi+1(&) = Pmuga(z;) = 0. (3.3)

These vanishing relation fall into two categories. If pp,,41(€) has the same
degree as some p;n;+1(€)’ then it yields a “trivial” vanishing relation in that
it gives an identity which enables one to eliminate z; in favour of z;'s of
lower degree. If pp,+1(£) does not have the same degree as some p;n;+1(€)’
then it represents a “non-trivial” vanishing relation (that we are going to
relate to the vanishing relations VIV = 0 of the Landau-Ginzburg theory).
Suppose that one eliminates all the x;'s that can be eliminated by trivial

vanishing relations. Relabel the remaining ;'s as ® 4; these will be associated
m14+1
g+l
The remarkable empirical observation i1s that for the SLOHSS models in

with the independent Landau-Ginzburg fields with U(1) charges wy =

question, for every variable ® 4 of degree m/, + 1* thereisa vanishing relation
Pg—m, (&) = Pg—m, (Pp) = 0 of degree (g —m’y). Moreover, one can integrate
(certain combinations of) the vanishing relations so as to obtain a Landau-
Ginzburg potential, Wy (®4), of degree g + 1. As usual, these Landau-Ginz-

burg potentials are quasihomogenous functions
Wo(A4®4) = AWo(P4), A€C, (3.4)

with an isolated singularity at the origin (with multiplicity 4 given in (2.9)).

* Henceforth, the degree of an element of the ring will the degree as a polynomial
in the variables ¢£. This degree is equal to (g 4+ 1) times the U(1) charge of the
corresponding Landau-Ginzburg field.
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Cle.]
VvW=0>

The associated local rings, R = are isomorphic to the foregoing coho-
mology and chiral rings. One immediate consequence of the quasihomogene-
ity is obtained by differentiating with respect to A and then setting A = 1:

B Wy
= ZA:WA@A 35, (3.5)

Here, the set of derivatives, 2% ig algebraically equivalent to the set of

8
) B
vanishing relations py_ (®5).

At this point we think it appropriate to give an explicit example, and we
and {m/ + 1} = {1,2,4,5,6,8}. We Wlll first compute the Chern classes of

the non-trivial bundles, and to keep track of the degrees of the forms, we

will consider the coset model

introduce a dummy variable ¢ and define the total graded Chern form for

any I = SO(10) x U(1) representation v as

dim v

Ch(v) = det,(141Q) Z tp(€) . (3.6)

(Here, © denotes the curvature 2-form with values only in the Cartan sub-
algebra.) We consider in particular the H-representations that occur in the

decomposition of the 27 of Eg, 27 — 10_5 ® 167 B 14:

Ch(10_5) = J] 1+t — 26]) (1 = 16 + 260))

16 (3.7)
Ch(161) = JJ(1+1[£46 £ 36 .. £ L&+ &))

Ch(1,) = 144t

(with an even number of “—” signs in C'h(161)). We now expand
Ch(27) = Ch(10_3) Ch(16;) Ch(14) Ztkpk , (3.8)

and express the p; in terms of the independent Casimirs of H, Tmlg1 =

— 11 —

p;n;+1 (g)
5

r; = Z(&) , §=2,4,6,8,

ot

—~
o
©

~—

ry —

n
&n
n=1
r1 = &
For the independent Fg Casimirs one obtains:

pz(l‘j) = —361‘12—31‘2

ps(z;) = 1442,° — 2421325 + 321227 — 62124 + 1225

p6(l‘]) = —46801‘16 — 1062l‘14l‘2 — 17771‘12l‘22 — %1‘23 — 151‘121‘4 + %l‘zl‘;}
— 60l‘1l‘5 — Tg
ps(z;) = 258302,% + 70982,%x, + Mr e+ %xlzxz + gé 44 5%1‘143

+@l‘12l‘21‘4— égl‘zzl‘zl— 21‘4 —|—17401‘1 l‘5+75l‘1l‘21‘5—6l‘12l‘6

1
— 5T2%6 + gl‘s

po(z;) = 28560z1" — 100821 x5 + 4221 ° 22" + 3521°2:° + L2z 20" — 92421 %2

—701‘1 rolg — %l‘ll‘z l‘4—|— l‘ll‘4 —|—840l‘1 l‘5+420l‘1 rals

+ 32—51‘22l‘5 - 71‘4l‘5 - 112l‘1 Te + 28l‘1l‘2l‘6 - 21l‘1l‘8
plz(l‘j) = 177660l‘112 + 979021‘110l‘2 + Mx18x22 + 164ﬁl‘16l‘23 + @l‘14l‘2
ggrlzxzs _ 1552,41,2 n 157051, 24+ &87%61,21,4 _ 7?2996149622964
+ 1;#9612962 T4+ %%1‘241‘4 + Ml‘flmz %96‘1296‘296‘42 - %l‘zzﬂ
+ mm + 941041‘1 rs + 130501‘1 roks + 152ix13x22x5 — %—91‘11‘233

3 2., 2 2 6
—|—219l‘1 l‘4l‘5+%l‘1l‘21‘4l‘5+6l‘1 rys — 12—9l‘21‘5 —948l‘1 e

+ 10411‘141‘21‘6 - iﬁl‘lzl‘zzl@ - iél‘23$6 - %l‘121‘4l‘6 —|— l‘zl‘4l‘6

— 50z w506 + %x z_ %571‘ trs 4 561x12x g+ 3 l‘zzl‘g — ggmxg
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Demanding Ch(27) = 1 defines the vanishing relations p,,, = 0, the trivial

ones of which determine

Ty = —12124°

r5 = %xl (—1441‘14—1—1‘4)

xe = 17 (460821* — 60x4)

vs = 15(39398421% — 201621 0y + Tas?) .

The remaining relations, pg = 0 and py2 = 0, give the equations of motions
of the Landau-Ginzburg theory, up to quasihomogenous combinations. More

precisely, putting ®; = z; and ®3 = x4 and eliminating the z; above, we have

d
a?Wo(q)l,q)s) = po(Py,P3)
63 (3.10)
55 Wo(®1,®3) = p1o®y, @5) — 180 ®1%py (®y, ®3) .
1

Only this particular combination can be integrated to give the superpotential.
By reparametrization, it can be represented by a normal form that has the
lowest number of terms:

Wolsortirm| = B+ e B radies®,  a=—(F)? (1D
The corresponding local ring has dimension p = 27 = dimZ, the dimension

of the fundamental representation of Eg.

With a similar, but more extensive calculation, we can also obtain the

Landau-Ginzburg superpotential for the Esfi[}(l) theory:

WO |:E6 5[}(1)} = @119 + q)32q)6 + @1@62 + a<I>114<I>3 —|— b(I)lloq)6

(3.12)
a=37(H£3)%*, b= —21(5£5)"?  (n=56) .

Note that the modular parameters, a and b, are fixed to very specific values.

13 —
4. Ground States, Solitons and Polytopes

We now wish to consider the models obtained by perturbing the SLOHSS
models with the (F-component of the) most relevant chiral, primary field.

The corresponding Landau-Ginzburg superpotentials are
W(®a) = Wo(Pa)— A0y, (4.1)

where Wy is the quasihomogenous potential of the given conformal theory, A
is the perturbation parameter and ®; the lowest dimensional, chiral primary
field (with h = m) The field ®; corresponds to the first Chern class of
the U(1) line bundle over the hermitian, symmetric space, G/H. In terms
of the Cartan subalgebra variables, £, ®1(£) is simply the projection of £ on

the U(1) factor, which is given explicitly by (pg — pmr) - €.

As the bosonic potential of (3.1) is given by V = VW (K")"IVW, the
vacuum states of the theory are given by expectation values of ® 4 that satisfy
the “equations of motion”

6, (@) = 0. (4.2)

We will show below that under the perturbation (4.1), the y-fold multi-critical
points of Wy resolve into p quadratic critical points of W, so that we have p
distinct vacuum states ®% ;, i=1,,...,u, and all small oscillations are thus

massive.

Note that the equations (4.2) are equivalent to %Wg =0,A#1, plus
(%IWO = A. To solve these equations it is actually far simpler to revert to the
Cartan subalgebra variables, £. Indeed the foregoing equations are equivalent

to solving
Pm41(&) =0 i=1,...,0-1
pm4+1(€) = /\,

where the pp,,4+1(€) are the Casimirs of G and pr,,11(€) = pg(&) is the Casimir
of highest degree. Observe if { = £y is a solution of (4.3) and w € W(G),

(4.3)



— 14 —

then w(€(1)) is also a solution of (4.3). Conversely, it was established by
Kostant [12] that if py,,+1(€) = pml+1(€), 1=1,...,¢ then £ = w(é) for some
w € W(G). Thus, W(G) acts simply transitively on all solutions of (4.3), and

thus plays the role of a (subgroup of the) Galois group for these equations.

It actually turns out that equations (4.3) have already been solved in
[12]. The solutions are related to the “cyclic elements” that are naturally
associated with the principal three dimensional subalgebra (which itself is
related to the exponents of (). Tt is however possible to characterize the
solutions to (4.3) on a more mundane level, and for this we need some simple

facts about Weyl groups.

Let 7 : A= A= %ai be the fundamental Weyl reflections correspond-

ing to the simple roots «;. The product of the reflections:
S = rra---re

defines the Coxeter element of W((G). One could take the product of the
r;'s in any order, or choose a different system of simple roots, and the result
is still called a Coxeter element. It turns out that all Coxeter elements are
conjugate to each other, and have all the same order, which is g, the dual
Coxeter number. When acting on the Cartan subalgebra, the Coxeter element

acts as a rotation whose diagonal form is:

eZﬂ'iml/g

627Tim2/g
eZﬂ'im[/g
where m; are the exponents of (G. Note that the ith eigenspace is the com-

plex conjugate of the (£ + 1 —¢)th eigenspace. Now recall that m; = 1 and
suppose that {1y lies in this eigenspace. As the polynomials p,,,41(§) are of

— 15 —
homogenous degree m; + 1, it follows

6271'2'(m,+1)/gp

pm,+1(62m/gf(1)) = m,+1(€(1))

However, these polynomials are Weyl invariant, whence

eZﬂ'i(mrl-l)/gpml_I_l (5(1)) =Pm;+1 (6(1))

and therefore (some appropriate multiple of) &) must satisfy (4.3). The
complete set of solutions is thus the complete orbit of {(;) under the Weyl
group. It turns out that £(1) is always a regular element of the Cartan sub-

algebra, and so there is no element of W(() that leaves £y invariant. That

is, all the ground states occur at distinct values of &(1.

In practice it is very simple to construct {(1). Take any root, «, of G and

let = e2™/9  then
g—1
§ay = kY W s (a) (4.5)
j=0

where £ 1s some constant. In order to obtain the soliton masses we will need
to evaluate the superpotential, W, on all Weyl images of §1). However, from
the quasihomogenity of the unperturbed superpotential, Wy, it follows that

if é(l) is some Weyl group image of (1), we have

W(@aE) = A1 (En) + D wnbamWa @)

d (4.6)

= /\(w1 — 1) <I>1(€(1)) )

where we have used %WO(@A(&D)) =0(B#1)aswellas %WO(@A(E’“)))

A. The weight wy = gﬁ is the N =2 U(1) charge of the most relevant chi-

ral primary field. The consequence that will be important for us later is

that the value of W(®4(&1))) is a simple (uniform) multiple of ®;(&(1)) =

(PG —pr) &)
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As a simple example, consider G = SU(n+ 1) and H = SU(n) x U(1)
(corresponding to the minimal series Apy1). Let e1,...,e,41 be the usual
orthonormal basis for the Cartan subalgebra of U(n + 1) (see, for example,
[13]). Taking a; = e; —e;11,j = 1,...,n as the simple roots of G, the
Coxeter element S € W((G) is the cyclic permutation S :e; = e = ... —
€n —> eny1 —> €1. The vector 5’(1) is given by

n

£y = > e, (4.7)
7=0

where 1 = 2™/ (»+1) and the vector that defines the U(1) factor of H is given
by (pg — pu) = (E?Il ;) — nepyq. As will be explained momentarily, the
physically distinct solutions to (4.3) are obtained by taking one representative
w € W(G) of each class in the quotient I‘%%%, and using é(l) = w(&))-
It is elementary to see that there are n + 1 possible such choices for w,
corresponding to the possible coefficients of e,41 in (4.6). Let w; be such
that w; (1)) - enp1 = n. Tt then follows that w; €w) - (pg —pr) = —(n+
1)’ . Consequently, we have shown that there are g=n 4 1 distinct ground
states, and that the value of the superpotential at these ground states is xn/
,7=1,...,n, where & is some irrelevant constant. Of course, for this simple

example one would have arrived at the same result more easily by directly

solving (4.3) for W(®,) = O, "2 _\D,.

In general the Landau-Ginzburg fields are represented not by & but rather
by ®4 which are given by polynomials p;n,A_I_l(E’) that are invariant under
W(H). Applying the above-mentioned theorem of Kostant to H we see that
all the Landau-Ginzburg fields will have the same expectation values for &
and € if and only if £ = w’(é) for some w’ € W(H). Thus the Landau-Ginz-
burg vacua are enumerated by the W (H) equivalence classes of solutions of

(4.3) and are given by

{@ai} = {pl 11 (w(E), weW(G)/W(H)} . (4.8)

The number of such classes is consistent with the vacuum state degeneracy
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at the conformal point, given in (2.9). Thus, W is a fully resolved super-
potential; that is, we have always u = I‘%%%| distinct solutions ® 4 ; to the

equations of motion (4.2), and the superpotential evaluated on these is
W(@A,i) = /\(w1 - 1) <I>172' . (49)

This result, which will be important for us later, is independent from the

particular choice of quasihomogenous coordinates ® 4.

In order to get at the soliton structure of these theories it 1s convenient
to change our perspective. We have seen that the ground states of both the

unperturbed and the perturbed theories are characterized by cosets of %

In the former instance, the Ramond states are characterized by branching

functions with labels A and A where A = w(A+pg) — pg with w chosen from
a specific set of coset representatives of %

simply considers the coset representatives acting on &(1). In making the per-

, while in the latter instance one

turbation, we know that the Ramond ground states of the conformal theory
must smoothly deform to ground states of the off-critical theory. Because the
Weyl action on ground states off criticality is directly induced via the Weyl
action on chiral, primary fields on criticality, it follows that if two off-critical
ground states are related by some coset representative w € %, then the
corresponding Ramond ground states in the conformal theory must be related
to each other by the same Weyl transformation, w. Consequently, it is the

Weyl cosets that are the more fundamental characterization of the ground

states. This has two important consequences.

The first consequence is that we can label the ground states in a different
manner. Observe that w(pg — prr) = pe — pm if and only if w e W(H), thus
there is a one-to-one correspondence between the Weyl images of pg — pu

and the cosets of %, and hence with the vacuum states of the perturbed

H
theory. The vector 2(pg — pm)/g is a fundamental, miniscule” weight of G,

* A miniscule representation is one for which all the weights of the representation have

the same length, and thus are Weyl images of the highest weight.
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and indeed equal to the highest weight of the representation = introduced
in section 2. Therefore, its Weyl images are the complete set of weights of
the representation E (dimZE = ||II//VV(§)||). Thus the correspondence between
the weights of = and the ground states is preserved off criticality. We can
therefore use the weight diagram of Z to represent graphically the ground

states of the theory.Jr

Every pair of ground states must be linked by a minimum energy, ‘soli-
tonic’ configuration. However, some of these configurations will be combina-
tions of two or more fundamental solitons. More precisely, if o is a spatial
coordinate in two dimensional Minkowski space, and we impose boundary
conditions that at ¢ = —oo0 and ¢ = 400 the Landau-Ginzburg fields ap-
proach there expectation values in ground state A and ground state B re-
spectively, then it is possible that the minimum energy configuration will be
a multi-soliton state running from ground state A to ground state B via other
intermediate ground states. The problem now is to determine the fundamen-

tal solitons and which pairs of vacua they connect.

This leads us to the second consequence of our earlier discussion. Con-
sider the Ramond vacuum state sy that is labelled by A = pg — pg or by the
SO(2d) highest weight vz = +1,@ € t;.. The Ramond vacuum state w(sy),
corresponding to a Weyl element w, can be obtained from sg by acting on it
with the operator @, in (2.7) (indeed it is only the fermionic zero-modes in
®,, that are needed to obtain w(sp)). Imagine slowly turning on the pertur-
bation: the foregoing Ramond vacua go to ground states §y and w(§g) that
are still Weyl images of each other. Thus, the operator ®,, must deform to
the soliton operator linking the two perturbed ground states. This implies
that the soliton operators are linked to products of free fermions in the coset
model. This is consistent with ones experience with sine-Gordon theory. It

also suggests that the soliton configurations that are the products of several

t We believe that there is always some particular choice of (partly redundant) variables
in terms of which the set of vacuum states is directly given by the weight diagram

of Z. We will however make no use of this conjecture in the following.
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fermions are multi-soliton states, whereas those that are associated with a
single fermion operator should be viewed as fundamental. Putting this an-
other way, all the fundamental solitons leaving sy should be associated with
single Weyl reflections rgz, @ € {1. More generally, there should be a funda-
mental soliton between § and §' if and only if there is a root o € A4 (G) such
that the single Weyl reflection r,, takes 5 to 5. Hence, to every fundamental
soliton there is an associated root of G, and in our graphical representation of
the set of ground states by the weight diagram of =, the fundamental soliton

will be represented by this root connecting the appropriate weights.

We will call the figure generated in the foregoing manner the soliton
polytope of the theory. As we will see, it gives a complete characterization
of the soliton structure of the theory. It turns out that, with the exception
of the general grassmannian models, the polytopes in question are described
in detail in the mathematical literature [14]; for a quick reference, see Table
1. The vertices are given by the weights of =, and the 1-simplices, i.e., the
one dimensional edges lying on the surface of these figures, are given by the
roots of G. Moreover, the figures are symmetric under the action of the Weyl
group of G. Some elements of W () may act trivially, but it is interesting
to note that while W(H) fixes an individual vacuum state, some elements of

W (H) can act non-trivially by permuting other vacua.

The foregoing conclusion about fundamental solitons is based upon some
suppositions about the relationship between the conformal model and its
perturbation. Therefore, we will adopt our conclusion more as a working
hypothesis, but in the remainder of this paper we will amass a compelling

amount of evidence for it.

To this end, we will first give a different, more geometric picture of the
role of the fundamental solitons. Consider the Nicolai map [15] applied to the

Landau-Ginzburg form of the perturbed theory and introduce new variables

— 8ba _ (gn—ly _ W
Ua = 75, (K"7) 3 -

this change of variables, the path integral becomes a trivial Gaussian. One

. After integrating out the fermions and making
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of the useful properties of this map is that the Gaussian theory has a single
ground state, and so the ground state degeneracy of the original Landau-

Ginzburg theory is given by the number of times the variables ® 4 cover the

AP 4
oz

term in the change of variables, and thus by computing the winding number

configuration space of the uy. This can be computed by ignoring the

of the map &4 — % at large values of ®,4 [16]. A single vacuum sector
of the theory is covered by using % ~ pg_m/A(E’) as coordinates. Thus, by
making the Nicolai map, we are now using essentially the Casimirs of G to
parametrize a single vacuum sector of the theory. In terms of the & variables,
this means that a single vacuum sector coincides with the fundamental Weyl
chamber of . Tt is thus natural to expect that the fundamental solitons will
be ones that connect immediately neighbouring chambers, or equivalently
connect adjacent sheets in the multiple covering of the Nicolai variables.
Neighbouring Weyl chambers are precisely those that are mapped onto each
other by a single Weyl reflection, and their common wall is the hyperplane
orthogonal to the root in question. While this argument is not by any means
rigorous, we feel that there may be a way to make it so by relating the
existence of fundamental solitons to intersection matrices of homology cycles
associated with the resolved Landau-Ginzburg potential, and then relating

these intersection forms to the structure of the roots that connect weights in

—_
—
[l
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5. Projections and Soliton Quantum Numbers

It was shown in [3] that the perturbed SLOHSS models based on G/H
are integrable, massive field theories having conserved charges* Zs, with
spins s equal, modulo g, to the exponents m; of G. Note that Z; is the
energy operator, P. The eigenvalues ¢(*) of the integrals of motion Z, on all

excitations of the theory are highly constrained by the bootstrap equations
[4],

ql(s)e—is(ﬂ'—t?fk)_i_q;b‘)eis(ﬂ'—&; W) — q;(?S) (5.1)

(here, i,j,k label the excitations and 6 denote the fusion angles). Tt is of
obvious interest to determine the Z; quantum numbers of the Landau-Ginz-

burg solitons.

Tt is relatively easy to obtain the masses (spin-1 quantum numbers) of the
solitons, by employing [17][5] the central charge T of N =2 supersymmmetry

algebra. The non-zero anti-commutators of this algebra are

[\]

{Qv,@Q-} = 2P {Q..Q_1 =

_ _ (5.2)
{Q+. Q= 2T {Q-,Q_} =

[N}
S

By conformal perturbation theory, we can evaluate the topological charge T'
on the solitons explicitly. That is, in the perturbed theory, the conservation

laws of the supercharges become:

0-G*(2,7) = M1—w1)0:(G_,,P1)(=,7)

(5.3)
= /\(1 - wl) 8;((;:1/2(1)1)(2,7)

(similarly for G7). Here, ®; is the chiral superfield having U(1) charge

* We will consider in the following only Z; with spins 1 < s < g — 1, the eigenval-
ues of the higher integrals of motion on the soliton spectrum being only periodic

repetitions.
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w1 and whose top superpartner constitutes the perturbation. Thus

_ 1
T+l
Qs = /G+dz_/A(1_w1)6:1/2q>1dz, (5.4)

is a conserved charge (similar for the other supercharges). Therefore,

o = {Q1,Q,} = /\(w1—1)/(dz82+d26;)<1>1(z,2)
= 2\(w; — 1)[® (00) — B (—o0)] (5.5)
2[W(®a(00)) — W(Ra(—x))] = 2AW

where the last line follows from (4.9) and reproduces a well-known result [17].
From {Q, Q'} >0, where Q =Q, — %@_ one obtains:
1
W qEZ»Bj) > |W(<I)?4z) - W(<I>?47j)| ; (5.6)

where m; ;) is the mass of a soliton linking the ith with the jth vacuum.
Equality in this equation corresponds to the Bogomolnyi bound, and it is
saturated if and only if the supercharges Q and Q annihilate the soliton. We
will make the highly plausible assumption that the fundamental solitons do

indeed saturate this bound, as it is expected in an elastic scattering theory.

As we observed in the preceeding section, the value of the superpotential

W at the solution ®4({(1)) to (4.2) is given by

AMwr = 1)®1(€ny) = Mwi —1) (pe — pr) -€qy -

Also recall that é(l) = w(§(1)) for some w € %%, where &(1) is the e2milg
eigenspace of the Coxeter element (4.4). Observing that (pg — pr)-§1) =
&) -w™Y(pa — pr), we can conclude that the values of the superpotential at
the ground states can be thought of as projection of the soliton polytope onto
the eigenspace defined by £(1). Consequently, the masses of the fundamental

solitons are simply given by the lengths of the projections of the one-simplices,
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or roots of G. We will call this projection on the e2™1/9 Coxeter eigenspace
the “mass” or “spin-1 projection” of the soliton polytope, as it refers to the

masses, or spin-1 integrals of motion (s =m; = 1).

It is elementary to generalize the arguments of [5] to more than one Lan-
dau-Ginzburg variable and to therefore conclude that solitons that saturate
the Bogolmolny bound have semi-classical trajectories, ®4(c), that project
to straight lines in the W-plane, i.e., W(®4(0)) is a straight line in the
complex W-plane. This does not imply that the soliton trajectories ®4(o)
are straight lines in IRM | though it might be so for a particular choice of

(partly redundant) coordinates.

From the foregoing observations, it is now elementary to determine the
fundamental soliton masses for a general SLOHSS model. Up to an overall
scale factor, the mass of a soliton corresponding to a root a is simply |a-&(1)[.
It 1s simple to compute this dot product in any example, but we will defer
this and go into some more of the theory of roots and Coxeter elements so
as to determine not only the soliton masses in general, but also their charges

with respect to all other integrals of motion, Z;.

First we need to fix a particular Coxeter element and the corresponding
vector §1). A natural choice was introduced by Carter [18,19]* . Given
any system of simple roots ay,¢ = 1,...,¢, the «; can be decomposed into
two disjoint sets; which we will denote by {«; : 7 € I} and {a; : i € I}
with I; UI, = {1,...,¢}, such that «; - a; =0 for 4,j € [ or 4,j € I,. (This
decomposition is equivalent to making a bicoloration of the Dynkin diagram.)
Dual to this set of simple roots, introduce fundamental weights A; such that

Ai o =3;5. Let O35 = oy - a5 be the Cartan matrix of G. The eigenvalues of

* We are grateful to E. Corrigan and P. Dorey for poining this out to us.
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the Cartan matrix can be parametrized in terms of the exponents of G,

SCdl = pegl” . where
7

(5.7)
ﬂs:4sin2[5;—g], se{my,...ome}t, j=1,...,¢.
Define vectors
al?) = Z q;s)Aj , v=12. (5.8)

Jjel,

Finally, introduce two Weyl elements w; and ws defined by w, = HiEIV Ty, V :I

1,2. The order of the reflections r,, in these products does not matter be-
cause of the mutual orthogonality of the a;; within each of the disjoint subsets.

The Coxeter element that we will use is given by
S = w1 Wy .

Observe that w} = w3 = 1, and hence S™! = wyw;. The following facts may

then be proven [18][19]:

(i) The Coxeter element, S, acts as a rotation by 2T

g
(s) (s)

by the two vectors a;"" and a;’. That is, these vectors define a nat-

on the space spanned

ural, although non-orthogonal Coxeter eigenbasis (4.4) of the Cartan
subalgebra.

(s) (s)

(#4) For each exponent s the two vectors a;”’ and a. ’ have the same length.

(s) (s) o sm

(#4i) The angle between o}’ and a5’ is L.

g
(1) (1)

The vectors a;” and a,’ are thus real linear combinations of ;) and its
complex conjugate E(1)~ Hence a(ll) =z&() +EE(1) for some complex number z.
From (ii) and (iii) it follows that we can chose {(1) so that a(zl) = ze‘”i/gﬁ(l)-l-
ze”/gé( )- Inverting this we therefore have (1) = [z(e~Ti/9 — e”i/g)]_l(a(zl) -

e”/ga(ll)). However the overall choice of scale in &1 is arbitrary so we can
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fn=ab —wal, w=emlo. (5.9)
Now observe that for any simple root a;, we either have o ~al(,s) = q;s) or 0

(1)
J
are all positive (as it is the Perron-Frobenius eigenvector of Cj;). It follows

that

depending on whether j € I, or not. Also note that the components of ¢

|ov; '5(1)| = q;'l) .

Therefore the the fundamental solitons corresponding to the simple roots have

masses that are simply the components of the Perron-Frobenius eigenvector

of C”

To get the masses of the other solitons, we recall a theorem of Kostant
[12]: a Coxeter element decomposes the entire system of roots into £ orbits
of length g. There are also precisely ¢ roots, f;, such that §; i1s positive
but S(5;) is negative, and these roots §; all lie on distinct Coxeter orbits,
and hence generate the Coxeter orbits [12]. Observe that for our choice of
S = wy wa, S(«y) is negative for i € Iy. Moreover, since S~ = wywy, one
similarly finds that S™!(a;) is negative for i € I;. The latter implies that for
i€, 3 =—5S"1(a;) is positive but S(3;) = —a; is negative. It is easily seen
that all the elements of {o; : i € Ir} and {—S~! () : i € 1} are distinct,
and therefore one can generate all the Coxeter orbits from {v;} = {a; : 7 €

Iz}U{—O[Z' 11 E 11}

Any root « has the form S™(y;) for some of the roots v;, and so

§uy o =&y S" () = ST (Ey) i = e T IE L - (Fai)

— L (1£1)/2 —2min/g ‘Jz(l)

. (5.10)

where we have used (5.9) and the + sign depends upon whether ¢ € I; or
t € I;. Hence the mass of the soliton corresponding to any root o depends
only upon the Coxeter orbit to which it belongs, and therefore again the mass

is a component of the Perron-Frobenius eigenvector of the Cartan matrix, Cj;.
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The foregoing explains the observation made in [3] that the lengths of lines
in the W-plane diagram, corresponding to a perturbed SLOHSS model, relate
to each other precisely as the masses of an affine-G Toda theory; indeed, 1t is
() of the Perron-

J
Frobenius eigenvector. For instance, the soliton polytope of the %%(%

well-known that these masses are given by the components ¢

theory is the n-simplex, and when it is projected into the {)-plane the n-

simplex is simply an (n 4+ 1)-gon with all the edges and diagonals drawn.
(1
J

sin(jm/n+1) [5]. More complicated examples, corresponding to the perturbed

Ee
SO(10)xU

The lengths reproduce the affine-SU(n 4 1) Toda particle masses, ¢

M and Vo 5[7](1) models, are displayed in Fig.1 and Fig.2.

It 1s of course well-known that the components of the Perron-Frobenius
eigenvector satify the bootstrap equations, (5.1), [20-24]. This can be also
seen as follows™ : consider three fundamental solitons whose endpoints form
a triangle, and for which the corresponding roots are ay, as and as. Suppose
that we direct the solitons so that ag = oy + 3. This means (and is born out
by the results of [5]) that if we scatter soliton ay off soliton ay there should
be a resonance pole corresponding to soliton «s. Suppose that we project
this triangle into the &(1) (spin-1) eigenspace, then the resulting triangle has
side lengths equal to the masses of the solitons, and hence the angles of the
triangle represent the imaginary rapidities at which the various resonances
occur. We now take the dot product of both sides of a3 = a1 + as with
&(1), and use the fact that for some choice of ¢, j, k,n1,n5 and n3, we have

a1 =857 (y;), ag = 572 (v;) and az = S (y) and obtain

eI (E i) eI ) = eI (G ). (5.10)
If 4,5,k € I1, this equation becomes:

ql(l)eZﬂ'i(ng,—nl)/g+q;1)62ﬂ'i(n3—n2)/g _ q;(?l) ’

and this is precisely the bootstrap equation (5.1) for spin s = 1 and 9? g3 =

* We are aware that P. Dorey [25] has recently, independently of us, given a similar

proof of the bootstrap equations.
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2m(ns —ny), 9; 5 = 2m(n2 —ng). The other choices of i, j, k can be dealt with

In a similar manner.

From the foregoing it is only a small step to evaluate the charges of the
other integrals of motion acting on soliton states. The point is that in the
proof above, it was just the closure of the soliton triangle in weight space that
guaranteed the solution of the bootstrap equation. The bootstrap equation
(5.1) for general spin, s € {my,...,my}, is very easily obtained from (5.11)
by simply changing the projection vector (5.9) to

€y = @i —wal) (5.12)

However, this is just the e2™#/9 eigenvector of the Coxeter element (4.4).
Consequently, the projection of the roots a1, as, g onto this eigenspace yields
precisely equation (5.1) for arbitrary s (with fusion angles defined by the
mass projection onto the &) eigenspace). Thus, consistency requires that
the charges to be associated with a soliton labelled by a = S* (7;) are precisely
q;s). One of our main conclusions in this paper is, in other words, that the

quantum numbers of all solitons are just given by the projections of the soliton

polytope on the various Coxeter eigenspaces.

We note that the bootstrap equations (5.1) impose a vast number of non-
trivial consistency conditions on the soliton charges. The fact that they are
satisfied provides yet more support for our working hypothesis that associates
solitons with roots. One can easily check that sums of roots that are not

themselves roots do not appear to be consistent with (5.1).

That the components of the Cartan matrix eigenvectors solve the boot-
strap equations was known empirically for some time in the Toda literature
[20][21][22], but there was so far no geometric understanding of this fact

It should also be noted that our Landau-Ginzburg soliton theory differs

markedly from the usual Toda particle theory in that there are only £ Toda

t See however [25].
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particles whereas there are many more solitons than this in the Landau-Ginz-

burg model.

As an example, consider the perturbed W theory with Landau-
Ginzburg superpotential (3.11). The eigenvalues that satisfy the bootstrap

equations are given by [25]:

{4y =

{sin[s %

12

T

],sin[2s {5

12 12

(5.13)
In Fig.1, we have displayed the spin-1 projection of the soliton polytope,
which gives the soliton masses. In Fig.3, we show the spin-4 projection which
gives the 7, quantum numbers. These are simply given, in appropriate units,
by {0,£1}. Note that the diagram is highly degenerate and has only a
rotational Z3 symmetry, and not a Zg = /5 symmetry. Such a reduction
in symmetry happens always if s is not coprime to the Coxeter number, g,
in which case Zg gets reduced to Zg/(gys). In Fig.4, the spin-5 projection is
shown; according to what we said above, it is fully Z ;- symmetric and looks, a
priori, the same as the spin-1 projection. However, the solitons are permuted
so that the spin-1 and spin-5 quantum numbers are really independent. To
make this more clear, we used the thickness of the lines in the figures to
characterize the soliton masses, and the reader is invited to compare Fig.5
with Fig.1 in more detail. The diagrams corresponding to the remaining
integrals of motion, Z7,Zs and Z;;, are the complex conjugates (reflections)

of Figs.4,3 and 1.

It would be, of course, much more satisfying if we could directly compute
these higher spin quantum numbers in a manner similar to our computation
of soliton masses, instead of obtaining the higher spin quantum numbers
from consistency considerations. Unfortunately, have not succeeded, as yet,

in generalizing the computation below (5.2) to higher spins.

We note, however, that it is possible to give an empirical generalization

of (5.6) to all spins that is valid only for the perturbed, minimal A- and

],sin[3s75], sin[10s 7], sin[11s 5], sin[8s 5] — sin[2s {5] } .
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D-series (based on cosets ngl()n;[}()l) and ng()njUZ()l)):

Al = W @% ) - W @h )]

This formula holds up to signs.

6. Final Comments, and the Relation to Toda Theory

As mentioned above, we expect from the results in [3] that a perturbed
SLOHSS model (based on some G/H) should be quantum equivalent to an
affine-G Toda theory,

Ly gromgr - A3 faid_ A -6
L= 50,0°0"0 —@Ze -5 , (6.1)
i=1

with coupling constant

s g
— = = 2
4 g+1 (6.2)
and with non-canonical energy momentum tensor
1 1
T(z) = —5(96())" + (B+ 5) pr 076 . (6.3)

For the foregoing value of coupling constant and for this choice of energy-
momentum tensor, an N =2 supersymmetry appears at the quantum level [3]
[26] (though this is not manifest in (6.1)). Tt would certainly be interesting to
understand the precise relationship between the Toda and Landau-Ginzburg
descriptions. However, as the quantization of models (6.1) with imaginary
coupling constants is not yet well understood, we will present in this section

only some observations and speculations on this relationship.
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An interesting observation is that the spin-1 projections, which give the
masses of the solitons, contain building blocks of the Toda particle pertur-
bation expansion in the form of dual diagrams. Therefore, by exploiting the
soliton polytope, these dual diagrams can be related to each other by the
Weyl group, W (). In particular, soliton triangles give just the three-point
couplings in the Toda theory. This makes contact with the observations
[22][24] [27] that the non-vanishing, three-point couplings are characterized
by triangles whose side lengths are proportional to the corresponding parti-
cle masses. Remembering that soliton lines are just projections of roots, one
easily finds that the Toda coupling triangles are just given by triples of roots
that add up to zero™ . More generally, n-point couplings correspond to n-
gons, and the higher order poles in the S-matrix arising from loop corrections
can be described [6] by all possible tilings of polygons in terms of fundamen-
tal coupling triangles (for an example, see Fig.5). In terms of solitons, a
tree-level n-point amplitude would correspond to some skew n-gon on the
polytope, and the quantum corrections to higher polytopes whose boundary
is this n-gon. Poles in the S-matrix occur if the internal lines are on-shell,
that is, if the spin-1 projection of the higher polytope lies completely within
the projection of the skew n-gon. Note however that because of the finite
extent of the soliton diagram, there is only a limited number of independent
higher point couplings in the soliton theory. Note also that the dual diagrams
do not, in general, correspond to physical, but rather to off-shell amplitudes
in the Toda theory. In general, only a subset of all polygons can directly

describe physical elastic scattering processes.

Actually, there does not seem to exist a very close relationship between
Landau-Ginzburg solitons and Toda particle excitations. The S-matrices of
both theories are different, though they must be composed out of the same
building blocks (as any theory whose integrals of motion are related to the

exponenents of some Lie algebra); this is required by the bootstrap equations.

* This observation was also made in [25].
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The main difference 1s the multiplicity of Landau-Ginzburg soliton states with
the same quantum numbers. Consequently, as the sets of in- an out-going
states need not coincide, the soliton S-matrices (associated to certain graphs
or p-simplices on the polytope) must correspond to non-trivial solutions of the
Yang-Baxter equation. There is also an added complication to the Landau-
Ginzburg models. For the perturbed, minimal A-series it was shown [5] that
the fundamental solitons indeed form a closed scattering theory. However, for
more general coset theories, it is easy to see that on cannot always obtain a
purely solitonic out-state. Therefore, in order to close the Landau-Ginzburg
scattering matrix one has to include other particle, breather-like excitations

as well.

It seems more likely that the Landau-Ginzburg solitons are closely related
to Toda solitons. These exist only for imaginary coupling constants. It is
well-known that the classical Toda vacua lie on weight lattices. In the full
quantum theory, one expects a truncation of the allowed soliton sectors for
rational coupling constants, % € Q_. For instance, it is known [28] that
for the affine SU(2)-Toda theory with imaginary coupling, the sine-Gordon
model, the soliton sectors that are allowed in the quantum theory correspond
just to the weight diagram of some SU(2) representation (which depends on
the particular value of the coupling constant), and not to the whole weight
space. Roughly speaking, the classical, infinite-well sine-Gordon potential

gets effectively reduced to a potential with a finite number of wells [28].

It appears that our Landau-Ginzburg soliton models provide a very con-
crete, unitary realization of quantum affine-G' Toda soliton theories, with
truncation to weights of level one representations = of affine-G. (Remember
that for given G in our coset models, there are in general several different
choices for H, and thus, Z. This corresponds to making different truncations
of an affine-G Toda theory.) From the viewpoint of truncation, the Landau-

Ginzburg models behave like Toda theories with quantum group* symmetry

* Note that in usual Toda theories, where py in (6.3) is replaced by p, the relevant
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Uy(G), ¢ = —e~im/(g+1)  Though this quantum equivalence is valid only for
the particular value of coupling (6.2), we believe that our Landau-Ginzburg
description captures the relevant features of quantum Toda soliton theory.
For other couplings, N =2 supersymmetry and the consequent very simple,

well-defined Landau-Ginzburg description is lost.

For the integrable models considered here (and probably for all integrable
models based on Lie algebras), it appears that it is most natural to describe
the ground states and soliton structure in terms of weight spaces, Weyl groups
and Cartan subalgebra variables. From any member of a hierachy of inte-
grable systems, one can obtain the entire hierarchy by interpreting any inte-
gral of motion as a new Hamiltonian. We have seen that for SLOHSS models
and Toda theories the integrals of motion are naturally associated with differ-
ent projections of weight space. It is therefore tempting to suggest that the
polytopes and their tesselations by p-simplices are more fundamental objects
in the complete solution space of the entire hierarchy. Particular Hamil-
tonians would just amount to choosing projections onto particular Coxeter

eigenspaces.
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Table 1: Polytopes and solitons for various coset models. The notation is in

accordance with ref. [14].

Polytope Vertices Edges Triangles Order of Perturbed
(# of Vacua) | (Solitons) | (Couplings) |aut. Group | Coset c.f.t.
an n+1 L(n41) | oozl g 4y Sl
Pn 2n 2n(n—1)| = n_:ls = 2'n! So(zsno—zz)nqu)
hyn gn—1 n2"=% |[2n=tn(n—1) 27 n! Mg(%, n>4
21 27 216 720 648 FOTSTT
391 56 756 4032 RO
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Figure Captions

W-plane diagram of the perturbed Fg/SO(10) x U(1) theory, as derived
from the superpotential (3.11). The lengths of the soliton lines give
precisely the affine-Fg Toda masses (we use also the thickness of the
lines to distinguish the masses). The diagram is the spin-1 projection of
the “Hesse polytope” 291 [14], which is the same as the weight diagram
of 2 =27 of Es. The dot in the center is three-fold degenerate, and all
lines starting at the center are doubly degenerate. Note that there are
no direct lines linking adjacent dots on the inner circle. The apparent
connection is merely an artefact of the projection (similarly also for the

other figures).

W-plane diagram of the perturbed E7/FEgxU(1) theory, as derived from
the superpotential (3.12). The lengths of the soliton lines give precisely
the affine- F7 Toda masses. The diagram is the spin-1 projection of the
polytope 321 [14], which is the same as the weight diagram of Z =56 of
E7. The dot in the center i1s doubly degenerate.

Spin-4 projection (Coxeter eigenspace ma = 4) of the weight diagram of
the 27 of Fs. The lengths of the lines (including zero) give, up to signs,
the eigenvalues of Z, on the solitons of the perturbed Eg/SO(10) xU(1)
theory.

Spin-5 projection (Coxeter eigenspace ms = 5) of the weight diagram of
the 27 of Fs. The lengths of the lines give, up to signs, the eigenvalues
of Zs on the solitons of the perturbed Eg/SO(10) x U(1) theory. The
thickness of the lines corresponds to Fig.1, that is, to the masses of the

solitons.

Spin-1 projection of a soliton scattering process in the perturbed Fg/SO(10) x|}

U(1) theory, together with the corresponding dual diagram in Toda
particle theory. The higher order poles in the S-matrix correspond to

tilings of a polygon in terms of fundamental coupling triangles [6], as
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all lines are on-shell. The dots are projections of the vacuum states,
and some of them misleadingly appear to lie on soliton lines; this is an

artefact of the projection.



