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Quantum Geometry of D-Branes

W.L. Vienna Nov. 2004

In stringy geometry, geometrical notions are in 
general ambiguous ... 

One and the same theory may have many different 
dual geometric interpretations.  For example gauge 
theory:

D-brane

i) heterotic                        ii)   type II                            iii)   type I

X

Type IIA String

Type IIB String

SO(32) Heterotic String

E8xE8 Heterotic String

Type I open String

D=11 Supergravity

M

2
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Moduli Space = Space of Vacuum States, VEV’s

Lagrangian description makes sense only in "local 
coordinate patches" covering the parameter space       :

These describe different local approximations of 
the same theory in terms of different weakly coupled 
physical degrees of freedom.

The perturbative physics (local QFT) may look very 
different in the various local patches  (eg, different 
gauge groups, different brane configurations)

M

As a general rule, there is no global description that 
would be valid throughout the whole parameter space; 
no particular theory is more fundamental than the other 
ones.

L1

L2

L3

L4

M
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Classical geometry ("branes wrapping p-cycles") makes 
sense only at weak coupling/large radius:

Example: "quantum volume"

Calabi-Yau
= 6-cycle
is large

Example: "monodromy"

Looping around singularities
returns "different" brane
configuration

A brane-anti brane pair with 
apparent SUSY breaking, turns 
into a SUSY preserving brane-

 ?            
       Quantum corrected geometry:
       (instanton) corrections wipe out
        notion of classical geometry

Quantum Properties of D-Branes

“Gepner point” 
(CFT description)

6-cycle -> zero size 
however: 
“embedded” 2,4 cycles
 have non-zero size !

M

M

M

M

Example: "orientifold plane"

In the quantum theory, 
it splits into a pair of non-
perturbative D-branes;
no CFT description !
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Moduli (parameter) space                          

gauge fields weakly coupled;
         

1-loop                    instanton corr

gauge fields strongly coupled;
massless monopoles weakly 
coupled, look like electrons:

monopoles strongly coupled

SU(2) gauge theory with
instanton corrections

1-loop                    non-pert corr

U(1) gauge theory with
extra electrons

Resummation of non-perturbative corrections

N=2 SUSY Gauge Theory

Seiberg-Witten: Effective gauge coupling gets 
renormalized, and depends on the Higgs VEV:

MSU(2)

τ eff(φ ) =
1

2π
θ eff(φ ) + 2π i

1

g2
eff(φ )

geff(φ ) → 0 gD
eff(φ ) → 0

u ∼ < Trφ 2 >M = M(u)

φ ...complex adjoint Higgs field

τ (φ ) =
i

π
log

[ φ 2

Λ 2

]
− i

π

∞∑
$=1

c$

( Λ

φ

) 4$

τ D(φ D) =
−1

2π
log

[ φ 2
D

Λ 2

]
− 1

π

∞∑
$=1

cD
$

( φ D

Λ

) 2$

〈 φ 〉 → ∞ 〈 φ D〉 → 0
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There is a proliferation of physical degrees of 
freedom, obtained from wrapping strings (p=1), 
membranes (p=2),  general p-branes around non-
contractible p-cycles of X.

At a given singularity in the parameter space             ,  
a compactification manifold X becomes singular in that 
some p-dimensional "vanishing cycle   " shrinks to zero 
size:

X

M

S&W: Interpretation of SYM parameter space as 
           moduli space of an elliptic curve      :

Quantum Curves and Calabi-Yau Manifolds

The loci where massless 
non-perturbative states appear 
correspond to singular curves.

What is their meaning ?

This has a natural interpretation in string theory 
compactified on some Calabi-Yau manifold X 
(suitable field theory limit reproduces     ).

Σ

Σ

M(X)

M(X)

Σ

Σ

Σ

γ → 0

γ

How do we know that we 
get massless states?
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Central charges have a topological character:

Central Charges and Period Integrals

Eg., in SU(2) N=2 SUSY gauge theory,  the mass 
of a BPS state is governed by

electric                 magnetic  

γ ≡ N γ α + M γ β

Z(u) = N 〈 φ 〉(u) + M 〈 φ D 〉(u)

... el, mag U(1) RR  charges of D-brane 

... period integrals, “quantum volumes” 

u ... modulus of CY,  massless scalar VEV

γ α γ β

{
Qα , Qβ

}
= γ µ

αβ pµ + δ αβ Z

Supersymmetric (“BPS”) configurations saturate the
BPS bound:

Z(u) = NA Π A(u)

NA

wrapped string

Σ

Π A(u) =

∫
γ A

ω (u)

... if the volume of this cycle vanishes,
we get an extra massless state in the theory

=

∫
γ

ω Σ (u)

m2 ≥ |Z|2



Eg, brane configurations D in Type II string theories:

X

D

world volume
3+1d  N=1 SUSY “brane world”

p-branes wrapping p-cycles 
appear as particle excitations in 
N=2 eff theory

Central charge (tension) of A-type brane:

D

Consider here only internal, wrapped piece of D-brane

There are two kinds of supersymmetric (BPS) branes:

“A-type” branes:  wrap special lagrangian cycles 

“B-type” branes:  wrap holomorphic cycles 

γ
(p)
A

γ
(p=3)
A

γ
(p=0,2,4,6)
A

Z(A) =

∫
γ

(3)
A

Ω (3,0)

holomorphic 3-form

This is an exact result !

X

Fortunately, there is mirror symmetry:

Instanton corrections from world-sheets wrapping 2-cycles !

Central charge (tension) of B-type brane

Q = tr eF

√
Â(R)∫

γ (2i)
Q =

{
tr1 ≡ N6, trF = c1(V ) ≡ N4, N2, N0

}
       
gauge bundle data V encoded in RR charge vector:

Z(B)(t) =

∫
X

eJ Q + . . .

= N0 + N2

∫
γ (2)

J + N4

∫
γ (4)

J ∧ J + N6

∫
γ (6)

J ∧ J ∧ J + . . .

non-linear Sigma 

A-type Model  

non-linear Sigma 

A-type Model  

B-branes wrapped over
holom. (0,2,4,6) cycles
of Calabi-Yau

A-branes wrapped over
special lagrangian 3-
cycles of mirror CYX X̂

We can thus equate central charges:

Z
(B)
X;D(t) = Z

(A)

X̂;D̂
(u(t))

= N0 + N2t + N4t
2 + N6t

3 + O(e−t)

exp(−Sinst) = exp(−
∫

P 1
J) ≡ exp(−t)

and quantitatively study the implications of the 
instanton corrections
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From mirror symmetry, we have for the BPS tension

Monodromy of  RR Charges

M

NA

∫
γ

(3)
A

Ω (3,0)(u(t)) = N0 + N2t + N4∂ tF(t) + N6F0(t)

Periods                             are multi-valued sections

Non-trivial loops in the moduli space 
will thus induce monodromy

Π A = (Xa, Fb)

Z(u(t)) = NAΠ A =

NA −→ NA · R−1

Π A −→ R · Π A, R ∈ Sp(2h2,1 + 2, Z)

which for generic paths will completely mix up the 
RR-charges = brane wrapping numbers        !

The notion of a p-dimensional cycle, perhaps with a gauge 
bundle configuration V on top of it, looses its geometric 
meaning away from the semi-classical large radius limit !

NA
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Flow of  Gradings

A related phenomenon is tied to the phase of the
central charge, the grading:

For a single brane D it plays no role, but for two branes,
it determines the mass and charge of an open string
stretched between the branes:

DA DB

These quantities depend continuously on the Kahler 
moduli, and it is important to follow them over the full 
moduli space.

Note that the open string can become tachyonic,
signalling bound state formation

mAB
2 =

1

2
(qAB − 1)qAB = φ (DA) − φ (DB)

φ (D)(u) =
1

π
Im ln(Z(D)(u))

In general, there won’t be a globally valid notion of what a 
brane and an anti-brane is!



11

Stability and SUSY Breaking

In the open string sector, SUSY is typically broken

Open string is a tachyon 
which implies an unstable vacuum

eff Potential V

D-brane

Anti-D-brane

DA

D̄B

Problem of SUSY vacuum structure is equivalent to 
bound state problem for wrapped branes

Global flow of gradings:

TAB

m2
AB ∼ Im ln[ZA/ZB]

ZA

ZB

ZC

mC < mA + mB

ZA
ZC

ZB

mC = mA + mB

M

SUSY broken
TAB

SUSY restored

Line of marginal 
stability:
bound state decays

TAB
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The Derived Category

Have seen: geometrical notions such as the 
dimension of a p-cycle, bundle configurations, RR 
charges become blurred once we leave the large 
radius/weak coupling limit.

... need to develop formalism capable of describing 
the physics of general D-brane configurations 
(here:  topological B-type D-branes)

L1

L2 L3

Ψ
(a )
21

Φ
(a )
12

Ψ
(a )
32

Φ
(a )
23

Ψ
(a )
13

Φ
(a )
31

Ω1

Ω2

Ω3

derived category (of coherent sheaves on CY)

Quiver diagram

“objects”: D-branes

“morphisms”: 
open strings

more general than K-theory (RR U(1)charges)

keeps track of brane locations

treats branes and anti-branes on equal footing

easily describes bound state formation/tachyon 
condensation:

DA DB

DC
If       
is tachyonic, A and B will 
form a bound state C 
(analogous for A,C and B,C)

φ [q]

φ [q] ∈ Extq(DA, DB)
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Boundary Landau-Ginzburg Theory

The caterogy-theoretical framework seems very 
abstract, and one may ask for what it is good for in 
practice ?

It turns out that a certain open string topological 
field theory, namely boundary LG theory, provides a 
very concrete physical realization of it.

Action:

S =

∫
D

d2zd2θ WLG(x) +

∫
∂ D

dτ dθ Λ J(x)

Q =

(
0 J

E 0

)
BRST operator/
supercharge:

B-type BPS branes are characterized by

WLG =
1

2
Q2 = J E

that is, by all polynomial matrix factorizations of 
the LG superpotential!

DΛ = E(x)

fermionic 
boundary 
superfield
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Minimal models

...may be viewed as building blocks of more 
complicated TFT’s, like ones describing Calabi-Yau’s.

Bulk (closed string) sector is described by 
superpotential (”level k”):

WLG(x) =
xk+2

k + 2

B-type D0-branes        are described by the 
factorizations:

J(x) = x!+1 , E(x) =
xk−!+1

k + 2
, ! = −1, 0, . . . ,

[
k

2

]
It turns out that this LG model realizes precisely a 
certain Z2 graded category defined by Kontsevich

Objects = D0 branes  

Morphisms = boundary 
BRST cohomology

M!

Kontsevich’s triangulated category CW

The Landau-Ginzburg model provides a concrete phys-
ical realization of Kontsevich’s proposal for a certain
Z2 graded derived category (worked out by Orlov, Ka-
pustin, BHLS)

...the objects correspond to our branes M! :

M!
∼=

(
P (!)

1

J (!)
!!

P (!)
0

E(!)
""

)
(graded modules P0, P1 ∼ C[x])

...the morphisms correspond precisely to the boundary
LG fields introduced above:

M!1

##

∼=

(
P (!1)

1

φ
!1 ,!2
α

##

ψ
!1,!2
α

$$

J (!1)
!!

P (!1)
0

)

φ
!1 ,!2
α

##

ψ
!1,!2
α

%%

E(!1)
""

M!2

(
P (!2)

1

J (!2)
!!

P (!2)
0

)
E(!2)
""

All maps J, E, φ , ψ have an explicit realization in terms
of Landau-Ginzburg quantities (boundary potential, per-
turbations)
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Deforming the theory

infinitesimal perturbations:

δ WLG(x) = −

k∑
i=0

tk+2−ix
i

δ J(x) = −

!∑
a=0

u!+1−ax
a

δ E(x) = −xk−2!

(
!∑

a=0

u!+1−ax
a

)

Effects:

• The supersymmetry is generically broken, since
WLG #= JE. It can be restored on submanifolds of
the t, u parameters space.

• The spectrum of topological boundary fields is gener-
ically truncated, since
deg(gcd(J, E)) < deg(J).

• Branes M! can decay/bind to other ones.
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One can study explicitly and exactly all details of
bound state formation (cone construction), and
determine the effective action (in terms of deformation 
parameters s,t):

Weff(s, t) =

∮
WLG(x, t) log det J(x, s)
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D-branes on the Elliptic Curve

Simplest Calabi-Yau: the cubic torus

T2 : WLG ≡ x1
3 + x2

3 + x3
3 + a x1x2x3 = 0

B-type D-branes:  

..are mirror to A-type D1-branes with wrapping 
numbers 

(
N2, N0

)
=

(
rank(V ), c1(V )

)
(
p, q

)
=

(
N2, N0

)
L1 ! (2, 1)

L2 ! (−1, 1)

L3 ! (−1,−2)

S1 ! (1, 0)

S2 ! (0, 1)

S3 ! (−1,−1)

Simplest are matrix factorizations             
corresponding to branes       with (p,q)=(-1,1),(2,1),(-1,1)

Ji =

 α
(i)
1 x1α

(i)
2 x3α

(i)
3 x2

α
(i)
3 x3α

(i)
1 x2α

(i)
2 x1

α
(i)
2 x2α

(i)
3 x1α

(i)
1 x3



Ei =


1

α
(i)
1

x1
2 − α

(i)
1

α
(i)
2 α

(i)
3

x2x3
1

α
(i)
3

x3
2 − α

(i)
3

α
(i)
1 α

(i)
2

x1x2
1

α
(i)
2

x2
2 − α

(i)
2

α
(i)
1 α

(i)
3

x1x3

1

α
(i)
2

x3
2 − α

(i)
2

α
(i)
1 α

(i)
3

x1x2
1

α
(i)
1

x2
2 − α

(i)
1

α
(i)
2 α

(i)
3

x1x3
1

α
(i)
3

x1
2 − α

(i)
3

α
(i)
1 α

(i)
2

x2x3

1

α
(i)
3

x2
2 − α

(i)
3

α
(i)
1 α

(i)
2

x1x3
1

α
(i)
2

x1
2 − α

(i)
2

α
(i)
1 α

(i)
3

x2x3
1

α
(i)
1

x3
2 − α

(i)
1

α
(i)
2 α

(i)
3

x1x2



JiEi = WLG

α
(i)
" ∼ Θ

[ 1 − "

3
− 1

2
−1

2

∣∣∣ 3ui, 3τ
]

u... brane locations, 
Wilson lines

Li
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Solving the BRST cohomology
yields the open string spectrum:

L1

L2 L3

Ψ
(a)
21

Φ
(a)
12

Ψ
(a)
32

Φ
(a)
23

Ψ
(a)
13

Φ
(a)
31

Ω1

Ω2

Ω3

Explicit matrix representation
of the morphisms, eg for the
fermionic open strings:

G
(1)
21 = −


ζ 1

α
(1)
1 α

(2)
1

x1
ζ 3

α
(1)
1 α

(2)
2

x2
ζ 2

α
(1)
1 α

(2)
3

x3

ζ 2

α
(2)
1 α

(1)
3

x2
ζ 1

α
(2)
2 α

(1)
3

x3
ζ 3

α
(1)
3 α

(2)
3

x1

ζ 3

α
(2)
1 α

(1)
2

x3
ζ 2

α
(1)
2 α

(2)
2

x1
ζ 1

α
(1)
2 α

(2)
3

x2



Ψ
(i)
21 =

(
0 F

(i)
21

G
(i)
21 0

)
, i = 1, 2, 3.

F
(1)
21 =

 ζ 1 0 0

0 0 ζ 2

0 ζ 3 0

with

ζ " ∼ Θ
[ 1 − "

3
− 1

2
−1

2

∣∣∣ 3u2 − 3u1, 3τ
]
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compute disk correlation functions: 
= Yukawa couplings on intersecting branes

Cijk = 〈 Ψ (i)
13 Ψ

(j)
32 Ψ

(k)
21 〉

=
1

2π i

∮
Str

[ ∂ 1Q ∧ ∂ 2Q ∧ ∂ 3Q

∂ 1W ∂ 2W ∂ 3W
Ψ

(i)
13 Ψ

(j)
32 Ψ

(k)
21

]
Result:

C111(τ , ξ ) = e6π iξ 1ξ 2q3ξ 2
2/2

∑
m

q3m2/2e6π imξ

C123(τ , ξ ) = e6π iξ 1ξ 2q3ξ 2
2/2

∑
m

q3(m+1/3)2/2e6π i(m+1/3)ξ

C132(τ , ξ ) = e6π iξ 1ξ 2q3ξ 2
2/2

∑
m

q3(m−1/3)2/2e6π i(m−1/3)ξ

Interpretation:

In A model mirror language, these are contributions from 
disk instantons whose world-sheets are bounded by the 
three D-branes. 

L1

L1

L2 L3

L3

∆111

L2

∆222

∆333

∆123

∆132
Ψ

(2)
31

Works 
analogously 
for Calabi-Yau
threefolds!

(ξ ≡ u1 + u2 + u3)

q ∼ exp(−Sinst) ∼ exp(−Area)


