1

[Openlclosed string mirror symmetry J

Part 3 W.Lerche, Trieste Spring School 2003

@ Recap: reduce SUSY from N=2 to N=1in
Type Il compactifications on CY threefolds, by

@ Switching on fluxes O
W(t) = / QO ANH = ) NATI4(2(t))
A AN
flux numbers, periods
f'yi Qz) = (1,t,,0F, FO)(t)

...superpotential depends only on “bulk” geometry

@ Putting in extra D-branes

new ingredient: brane moduli £, 2
parametrizing open string ("boundary”) geometry

@ How do these ingredients fit together ?

Seek: uniform description of open/closed string
backgrounds labeled by

{X,N* M4}

closed ; open string sector

and make use of mirror symmetry:

(X, N4 MA)(t,8) = {X, N4 M) (z,2)
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{i A-type branes in Type IIA compactification J

@ relevant moduli: Kahler deformations

i=1,..., h"(X)

closed sector: t; = / JOY
o size of P!

open sector: ¢, = / JED =1, ..,k (2,)
42

position of brane in
) ) homology class ~
. ~ P~ size of disk

Disk with boundary on
SL 3-cycle %

These volume integrals give contributions of the
world-sheet instantons to the disk amplitude F, n = Fo_1;
(which coincides with the superpotential):

fo,l(t,f) = W(t,i) =

= 0 ° t£ + Z an...nr;ml...msLiZ(Q1n1"'q7'nr; ‘j?l'-'qgs)

Ny .eNp;
ml...ms /

math theorem: o _
classically, deformations of superpotenha! 1S entiely_ .
SL cycles are unobstructed non-perturbative (g = e™)

(7i, m) labels a “relative” homology

class in (Hy(X), H1(XZ4))
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{i B-type branes in Type |IB compactification J

@ relevant moduli: complex structure deformations

9(3,0)(z) volumes of

closed sector: II4(z) = / 3-cycles in X

Yi
open sector: (?)

@ Consider holom. Chern-Simons action
(describing open strings for D6-brane on X ):

Scs = /AQ(3’°) ATr[ANDA+:ANANA]
X

We will be interested only in (complex) one
dimensional cycles: X5 ~ ~2 ;

Dimensionally reducing A — ¢ vyields
W = / Q318 ¢ dzdz
B
Rewriting locally using €2;;. = 0.w;; gives:

[W(z,s) = I = / ﬂ<3’°)(z)} __
A3(2)

where the integral is over the > @

3-chain 94° : 954 = X3
B-type cycle D

whose boundary is the holomorphic

So the relevant 3-volumes are that
of 3-chains ending on D5-branes
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[i Mirror symmetry for D-brane configurations :]J

@ Recall N=2 decoupling property (similar for IIB):
Mura(X) =2 MU (x) x MEL(X)

Open string sector:
M(X,D6) ajra = MHX) x MES(X)

Reflected in decoupling theorems:

holom. potentials

W(z,2), 7(z,2)
B- { ’2), ’
branes FI D-term potential

D(t,t*, t,t*)

A-branes { W (t,t), T(t,1)
D(z,z*, 2,2%)

holom. potentials
FI D-term potential

@ Invoke mirror symmetry:

[WA/IIA(t,f) = MMI;, = WB/IIB(Z(t)aﬁ(tai))J

A-branes in Type IIA/X B-branes in Type IB/X

ﬂL(t’ tA) - 1QIL(Za z) = [ ) Q(?”[])(z)
V(2
t
. A ... exact result !
Z Nn,mLZZ(q q )

...corrections by sphere and disk instantons



[ Unifying flux and D-brane potentials J [ The Geometry of W J

@ Aim: obtain an uniform description of generic superpotentials _ _
@ Just like for the N=2 prepotential F , the N=1

Recall fluxes: Wie = NATI4 superpotential W (given by periods and semi-periods)

Recall D-branes: Whi—srane = MATI, can be interpreted from three inter-related viewpoints:

Write general potential: _ . .
A) Space-time effective action:

W = MMI, = MA/ 0 (3:0) holom. superpotential
where I (note: superpot has special features as compared
5 s .3 _ to generic supergravity superpotentials, eg integral
Iy = {73} € Hs(X,Y; Z) instanton expansion)
2:1? Lelat::‘t,r?e ?)%Tﬁé%?y ;:/y cl_esacir;X which are closed B) Correlation functions and ring structure constants
yup y¥ =0y of open string TFT
@ The corresponding “relative” period vector C) Boundary (open string) variation of Hodge

A structures, in relative cohomology
I\, = (HA, HL) = (1,13,\, W'u, )
A X
{tiafk} {fi’ Wk}
contains the
"holomorphic potentials of N=1 Special Geometry”

for bulk (closed str) subsector: Wi = 8;F

for boundary (open str) subsector:  WP* do not integrate!

The existence of many independent potentials reflects
that N=1 SUSY theories are less constrained than their
N=2 counterparts
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[ Open string topological field theory (B-model) jJ

@ Recall observables in bulk B-model:

O](Ez;,Q) — (p,q);;";r;)\

Complex structure deformations are associated with
01(8—1,1) — w(—1,1)§>\i¢3 e )2 R -V = P B!
which generate the (a,c) chiral ring:

Z Cab’ Ogj 2)

@ Now in the open string B-model, we consider B-type
(Dirichlet) boundary conditions along a sub-manifold Y:

a,c) . -1,1 11
R@) ;. oM. of Y

Pt = 0 (D) Xi = 0 (N)

The observables are like above, however now

elements of H"(Y, A’ Ny) (normal bundle to )

The “boundary” moduli are associated with 1-forms:
oW = owWix; € HY, Ny)

which generate the boundary (open string) and bulk-
boundary chiral rings:

Aal (1) Z ca60(2)

o1 . (1) anﬁO@)

il € HYY(X, APTH)
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[ The “relative” (open string) cohomology ring J

The upshot is that we can pull through program of
N=2 Special Geometry, but for “relative cohomology”

@ We get an extension of the chiral ring by
boundary operators:

Ox = (05, 0)) € HY(X,Y)
R . 6A'6§; = ZCAgAéA

A
where the relative cohomology group is .
defined as the dual to the relative homology H,.(X,Y)
group discussed before.

This mirrors the structure of differentials
in relative cohomology:

® = (0x,0y), Ox € H*(X), 0y € H*(Y)
equivalence rel: © =2 © + (dw, i*w — dn)

Thus a form that is exact on X and thus trivial in H*(X)
may be non-trivial in relative cohomology, and equivalent
to some form on the sub-manifold Y.

...loosely speaking: total derivatives can become
non-trivial once we have boundaries: f = fa,y

@ Physics interpretation:

[Operators that are BRST exact in the bulk TFT, j

can become non-trivial in the open string sector !
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[ The relative period matrix jJ [ Variation of Hodge structures J
@ The natural pairing between relative homology cycles @ The variation of Hodge structures for the
and cohomology elements is: relative cohomology takes care of the boundary

terms in a systematic way; schematically:

ITas = (Tx,0Ox) = / 9X—/ Oy
FA 8FA
1 (ti,t)  (F, Wi) ...

— 0 (sAg 62(?3, Wj) \ \ \ 0

0 /
2,0 1,1 0,2
0,w”) — (0,wy") — (0, W)

Q%2 0) — (W§Y,0) — (W§P,0) — @Y, 0)

This relative period matrix contains all the building

blocks of N=1 Special Geometry, and uniformly ~ 0/0z closed string deformation (N=2 bulk)
combines period and chain integrals; ie., —> ~ /82 open string deformation (N=1 boundary)
closed (flux) and open string (D-brane) sectors.

(This picture applies to a particular brane

configuration, and becomes more complicated for

several branes.)

Its first row is nothing but the rel. period vector we had
before, which gives the total superpotential

_ A
W = M7 1 @ In effect one obtains a linear matrix system

@ Show: rel. period matrix satisfied a system of DEQs: Villps(z,2) = (87 —T1 = Cp) - IIax(2,2) = 0

... analogous to ordinary period matrix _ , ,
...which equivalent to a system of coupled, higher

order generalized Picard-Fuchs operators.
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[ N=1 “Special Geometry” J

@ Can show:
Vi, Vy] =0 @ Basic object: relative period vector
Combined open/closed moduli space is flat. 2 - i
inedop il space M, = / QGO (1, 4, by FLWE L)
... seems mathematically quite non-trivial ! Ta
Physics: open and closed string moduli fit gives general flux and brane-induced N=1 superpot:
consistently together in one combined moduli X
space. ) Wiot(2(t), £(t, 1)) = > N,
z . ~ ~
‘ = NO 4+ N®t, + NYFi(t) + M, + MOW(t, )
."\‘/: Mcs(Dbr/X)
@ Monodromy:
—_— z mixes flux and brane numbers

a note: brane->brane+flux, not v.v
@ Thus there exist flat coordinates t;, t; on the ( )

combined moduli space. “‘Non-renormalization” property:
boundary (open string) quantities can get modified/
For these, the ring structure constants obey corrected by bulk (closed) string quantities, but not
vice versa: z = z(t), 2 = 2(t,t).
cii*(t, t) = 8;0,W"(t,1) @ The bulk (flux) sector is secretly N=2: the F* = 8;F
(k) integrate to the N=2 prepotential.
~ (0:0j) This is not so for the brane potentials,W* .
¢ The ring coupling constants obey nevertheless:

k-th flux or D-brane sector cii”(t,t) = 8;0,WF(t,1)

@ The relative homology lattice H3(§(\, Y; Z)
is the BPS charge lattice of the domain walls in the
N=1 theory



Example: on blackboard



