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Open/closed string mirror symmetry

flux numbers,  periods 

Switching on fluxes

Putting in extra D-branes

Recap:  reduce SUSY from N=2 to N=1 in 
Type II compactifications on CY threefolds, by

W.Lerche, Trieste Spring School 2003Part 3

W(t) =

∫
Ω (3,0) ∧ H =

∑
NAΠ A(z(t))

∫
γ 3

A
Ω (z) = (1, ta, ∂ aF , F 0)(t)

...superpotential depends only on “bulk” geometry

new ingredient: brane moduli
parametrizing open string (”boundary”) geometry

How do these ingredients fit together ?

Seek: uniform description of open/closed string 
backgrounds labeled by

t̂, ẑ

{
X, NA; MA

}

and make use of mirror symmetry:{
X, NA; MA

}
(t, t̂) ∼= {

X̂, N̂A; M̂A
}
(z, ẑ)

closed ;  open string sector
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A-type branes in Type IIA compactification

relevant moduli:  Kahler deformations

open sector:

closed sector:

position of brane in
homology class ~
size of diskγ 2

i ∼ P 1

γ̂ 2
i ∼ D

ti =

∫
γ 2

i

J (1,1) , i = 1, ..., h1,1(X)

Disk with boundary on 
SL 3-cycle

These volume integrals give contributions of the
world-sheet instantons to the disk amplitude                    ;
(which coincides with the superpotential):

t̂i =

∫
γ̂ 2

i

J (1,1) , i = 1, ..., h1(Σ A)

Fg,h = F0,1

F0,1(t, t̂) ≡ W(t, t̂) =

math theorem: 
classically, deformations of
SL cycles are unobstructed

superpotential is entirely
non-perturbative (q ≡ e−t)

= 0 · t t̂ +
∑

n1...nr;
m1...ms

Nn1...nr;m1...ms
Li2(q1

n1...qr
nr; q̂n1

1 ...q̂ns

s )

(!n, !m) labels a “relative” homology 
class in(H2(X), H1(Σ A))

Σ 3
A

Σ 3
A

X

D6

size of P1
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B-type branes in Type IIB compactification

relevant moduli:  complex structure deformations

open sector: (?)

closed sector: Π A(z) =

∫
γ 3

A

Ω (3,0)(z)
volumes of
3-cycles in

Consider holom. Chern-Simons action 
(describing open strings for D6-brane on     ):

SCS =

∫
X̂

Ω (3,0) ∧ Tr[A ∧ ∂̄ A + 2
3A ∧ A ∧ A]

X̂

X̂

We will be interested only in (complex) one 
dimensional cycles:                 ; 

Dimensionally reducing

Σ B ∼ γ 2

A → φ yields

W =

∫
Σ B

Ω
(3,0)
ijz φ i∂̄ zφ

jdzdz̄

Rewriting locally using                        gives:Ω ijz = ∂ zω ij

where the integral is over the
3-chain
whose boundary is the holomorphic
B-type cycle

Σ 2
B

X̂

∂ γ̂ 3 : ∂ γ̂ 3 ≡ Σ B
γ̂ 3

So the relevant 3-volumes are that 
of 3-chains ending on D5-branes

D5

W(z, ẑ) = Π̂ =

∫
γ̂ 3(ẑ)

Ω (3,0)(z)
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Mirror symmetry for D-brane configurations

Recall N=2 decoupling property (similar for IIB):

Reflected in decoupling theorems:

B-branes

A-branes

W (z, ẑ), τ (z, ẑ)

D(t, t∗ , t̂, t̂∗ )

W (t, t̂), τ (t, t̂)
D(z, z∗ , ẑ, ẑ∗ )

holom. potentials

FI D-term potential

holom. potentials

FI D-term potential

{
{

MIIA(X) ∼= M[t]
KS(X) × M[z]

CS(X)

Open string sector:

M(X, D6)A/IIA
∼= M[t,t̂]

KS(X) × M[z,ẑ]
CS (X)

Invoke mirror symmetry: 

A-branes in Type IIA/ B-branes in Type IIB/X̂X

t̂∑
n,m

Nn,mLi2(q
nq̂m)

{
... exact result !

...corrections by sphere and disk instantons

WA/IIA(t, t̂) = MLΠ̂ L = WB/IIB(z(t), ẑ(t, t̂))

Π̂ L(t, t̂) = Π̂ L(z, ẑ) =

∫
γ̂ 3

L(ẑ)

Ω (3,0)(z)
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Unifying flux and D-brane potentials

Recall fluxes:

X̂

The corresponding “relative” period vector

Aim: obtain an uniform description of generic superpotentials

Recall D-branes:

Wflux = NAΠ A

WD−brane = MAΠ̂ A

Write general potential:

where

W = M Λ Π Λ = M Λ

∫
Γ 3

Λ

Ω (3,0)

Γ 3
Λ =

{
γ 3

A, γ̂ 3
L

} ∈ H3(X̂, Y ; Z)

are “relative” homology cycles on     which are closed
only up to the boundary Y ≡ ∂ γ̂ 3

contains the 
”holomorphic potentials of N=1 Special Geometry”

for bulk (closed str) subsector:

for boundary (open str) subsector: do not integrate!

The existence of many independent potentials reflects 
that N=1 SUSY theories are less constrained than their
N=2 counterparts

Wi = ∂ iF

{ti, t̂k}

Wk

{F i, Wk}

Π Λ ≡ (Π A, Π̂ L) =
(
1, tλ , Wµ, ....

)
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The Geometry of

A) Space-time effective action:  
     holom. superpotential 

Just like for the N=2 prepotential     , the N=1 
superpotential       (given by periods and semi-periods)
can be interpreted from three inter-related viewpoints:

B) Correlation functions and ring structure constants
     of open string TFT

C) Boundary (open string) variation of Hodge    
     structures, in relative cohomology

(note: superpot has special features as compared
to generic supergravity superpotentials, eg integral
instanton expansion)

W

W
F
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Open string topological field theory (B-model)

Recall observables in bulk B-model:

O
(p,q)
B = ω (p,q)i1...ip

j̄1...j̄q
λ i1...λ ip

ψ j̄1...ψ j̄q ∈ H0,q

∂̄
(X̂, ∧ pT 1,0)

Complex structure deformations are associated with

O
(−1,1)
B = ω (−1,1)i

j̄λ iψ
j̄ ∈ H−1,1 ∼= H2,1

which generate the (a,c) chiral ring:

R(a,c) : O
(−1,1)
B,a · O

(−1,1)
B,b =

∑
c

cab
c O

(−2,2)
B,c

Now in the open string B-model, we consider B-type 
(Dirichlet) boundary conditions along a sub-manifold Y:

ψ ī = 0 (D) λ i = 0 (N)

The observables are like above, however now
elements of H0,q(Y, ∧ pNY )

(normal bundle to Y)

The “boundary” moduli are associated with 1-forms:

which generate the boundary (open string) and bulk-
boundary chiral rings:

Ô(1)
α = ω (1),i

α λ i ∈ H0(Y, NY )

Ô(1)
α · Ô

(1)
β =

∑
γ

cγ
α β Ô(2)

γ

O(−1,1)
a · Ô

(1)
β =

∑
γ

cγ
aβ Õ(2)

γ
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The “relative” (open string) cohomology ring

The upshot is that we can pull through program of 
N=2 Special Geometry, but for “relative cohomology”

We get an extension of the chiral ring by
boundary operators:

where the relative cohomology group is 
defined as the dual to the relative homology 
group discussed before.

equivalence rel:

This mirrors the structure of differentials 
in relative cohomology:

...loosely speaking: total derivatives can become
non-trivial once we have boundaries:

Thus a form that is exact on      and thus trivial in 
may be non-trivial in relative cohomology, and equivalent 
to some form on the sub-manifold Y.

∫
γ dλ =

∫
∂ γ λ

Physics interpretation: 

Operators that are BRST exact in the bulk TFT,
can become non-trivial in the open string sector !

X̂ H ∗ (X̂)

H∗ (X̂, Y )

!Θ = (θ X, θ Y ), θ X ∈ H ∗ (X̂), θ Y ∈ H ∗ (Y )

!Θ ∼= !Θ + (dω , i∗ ω − dη )

!OΛ = (O(−1,1)
a , Ô(1)

α ) ∈ H ∗ (X̂, Y )

Roc : !OΛ · !OΣ =
∑
∆

cΛ Σ
∆ !O∆
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The relative period matrix

The natural pairing between relative homology cycles 
and cohomology elements is:

Π Λ Σ ≡ 〈 Γ Λ , Θ Σ 〉 =

∫
Γ Λ

θ X −
∫

∂ Γ Λ

θ Y

=

 1 (ti, t̂i) (F j, Wj) ...
0 δ Λ Σ ∂ Σ (F j, Wj) ...
0 ... ... ...


This relative period matrix contains all the building 
blocks of N=1 Special Geometry, and uniformly 
combines period and chain integrals; ie., 
closed (flux) and open string (D-brane) sectors.

Its first row is nothing but the rel. period vector we had 
before, which gives the total superpotential

... analogous to ordinary period matrix

W = M Λ Π Λ 1

Show:  rel. period matrix satisfied a system of DEQs:
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Variation of Hodge structures

The variation of Hodge structures for the
relative cohomology takes care of the boundary
terms in a systematic way; schematically:

...which equivalent to a system of coupled, higher 
order generalized Picard-Fuchs operators.

(Ω
(3,0)
X , 0) −→ (ω

(2,1)
X , 0) −→ (ω

(1,2)
X , 0) −→ (Ω

(0,3)
X , 0)

(0, ω
(2,0)
Y ) −→ (0, ω

(1,1)
Y ) −→ (0, ω

(0,2)
Y )

0

open string deformation   (N=1 boundary)

closed string deformation (N=2 bulk)∼ ∂ /∂ z

∼ ∂ /∂ ẑ

(This picture applies to a particular brane 
configuration, and becomes more complicated for 
several branes.)

In effect one obtains a linear matrix system

∇ IΠ Λ Σ (z, ẑ) ≡ (∂ I − Γ I − CI) · Π Λ Σ (z, ẑ) = 0
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Can show: [∇ I, ∇ J ] = 0

Combined open/closed moduli space is flat.

... seems mathematically quite non-trivial !

Thus there exist flat coordinates          on the 
combined moduli space.

ti, t̂j

Physics: open and closed string moduli fit
consistently together in one combined moduli 
space.

For these, the ring structure constants obey

MCS(Dbr/X̂)

z

ẑ

cij
k(t, t̂) = ∂ i∂ jWk(t, t̂)

k-th flux or D-brane sector

∼ 〈OiOj〉 (k)
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N=1 “Special Geometry”

Basic object: relative period vector

gives general flux and brane-induced N=1 superpot:

Monodromy:  
mixes flux and brane numbers

MCS(X̂)

“Non-renormalization” property:
boundary (open string) quantities can get modified/
corrected by bulk (closed) string quantities, but not
vice versa:                                       .

(note: brane->brane+flux, not v.v)

z = z(t), ẑ = ẑ(t, t̂)

The relative homology lattice 
is the BPS charge lattice of the domain walls in the 
N=1 theory

The bulk (flux) sector is secretly N=2: the 
integrate to the N=2 prepotential.
This is not so for the brane potentials,       .
The ring coupling constants obey nevertheless:

Π̂ Λ =

∫
Γ Λ

Ω (3,0) ∼ (1, ti, t̂k, F i, W k, ...)

Wtot(z(t), ẑ(t, t̂)) =
∑

N Λ Π Λ

= N (0) + N
(2)
i ti + N

(4)
i F i(t) + M (k)t̂k + M (! )W !(t, t̂)

F i = ∂ iF

Wk

H3(X̂, Y ; Z)

cij
k(t, t̂) = ∂ i∂ jWk(t, t̂)



Example: on blackboard


