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ABSTRACT

Certain N =1 supersymmetric string one-loop effective actions can be obtained directly
from the path integral. As the computation is essentially the same as the one leading to the
index of the Dirac-Ramond operator, they are determined by the gauge and gravitational
anomaly structure of the theory. Specifically, we calculate the four-point effective action in
ten dimensions, the corrections to the kinetic terms in d=6 (including auxiliary fields) and
the Fayet-Iliopoulos D-term in d =4. We also compute the g-function of four dimensional
N = 2 theories from the elliptic genus in d = 6. Furthermore, we derive supersymmetry
Ward type identities in terms of Kac-Moody characters, relating parity conserving with

parity violating amplitudes.
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1. Introduction
1.1 GENERAL REMARKS

Some progress has recently been made in explicit computations of certain one-loop
amplitudes in various heterotic string theories [1-6]. Common to all of these calculations
are (almost) holomorphic modular integrands in the low-energy limit, which allow for an
explicit evaluation of the v and 7 integrals. Such a holomorphicity always arises if only
massless zero modes contribute in the right-moving sector, in that the contributions of all
massive states (m% s 0) cancel out. Then the right-moving partition function is a constant | .
In particular this happens in the case of the Green-Schwarz anomaly cancelling terms (1(4],
where only the zero modes 5 contribute (giving the e-tensor), and massive states cancel
because of opposite helicity. This can directly be interpreted in terms of the index of the

Dirac-Ramond operator [4].

A similar phenomenon occurs also for certain supersymmetric string amplitudes, where
only the zero modes of the Green-Schwarz fields 5¢ contribute and massive states cancel
because of supersymmetry. More specifically, it was noticed in [7][5] that various bosonic
four-point one-loop amplitudes of supersymmetric ten dimensional heterotic strings have
basically the same structure as the anomaly cancelling terms, except for the e-tensor and
the B-field. Furthermore, it is known that in four dimensional superstring theories, a certain
part (the Fayet-Iliopoulos D-term [2][3]) of S;floop has a structure similar to the anomaly
cancelling term, [BTrF'.

Our objective is to clarify the relation between these and other observations, and to show
that all holomorphic supersymmetric amplitudes can be directly related to and expressed

in terms of the elliptic genus.

We will discuss in the following three generic cases, where holomorphic (bosonic) am-
plitudes can occur: four-point amplitudes in d = 10, two-point amplitudes in d = 6 and
one-point amplitudes in d =4. In these diménsions, N =1 supersymmetric theories can be
chiral, and amplitudes can be mapped to the chiral index” . For these numbers of external

legs, the zero modes 5§ are just saturated.

1 Thus, infinitely many "unphysical” states with mi #Fmh = 0 may contribute to the modular integral.
* Therefore, three-point amplitudes in d =8 are missing in the list, as there is no chiral supersymmetric
theory in d=38.
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Amplitudes with less external legs vanish identically, and amplitudes with more exter-
nal lines do not have, in general, holomorphic integrands, precluding model independent
statements. Exceptions are amplitudes where all contributions come from the boundary of
modular space, i.e., from configurations where some vertex operators come close together,
thus effectively producing holomorphic amplitudes with less external legs. Examples for this
are the anomaly cancelling term which arises as a boundary in the anomaly diagram, and
the four-dimensional D-term, which is a boundary in the scalar two-point amplitude [2}(3].
We will also find that in d =6 holomorphic two-point amplitudes arise as boundary contri-
butions in three gauge boson amplitudes, thus relating coupling constant renormalization

to the elliptic chiral index.

Our results are relevant also for torus compactified lower dimensional theories with
extended supersymmetry. As an example, we will show how the J-function in d=4, N =2

supersymmetric theories can be related to the chiral anomaly in six dimensions.

The above three cases are simply the only possibilities for supersymmetry one can have in
heterotic string theories. According to the construction of ref. [8], they can be characterized
by the exceptional groups Eg, E7 and Ej in a model and dimension independent way. We
will use this in the appendix to derive supersymmetry Ward type identities between partition

functions. They explain our results from the NSR point of view.

1.2 ANOMALY CANCELLING TERMS REVISITED

For later convenience, we recall that the anomaly cancelling effective action in d=2n +2

dimensions can be computed as [4]1 (for heterotic strings)

S;Eloop(By F, R) — /d2n+2t (Iﬁl‘ﬁr’B/;_-(I:::)z z(q,Im‘r, F, R)) (1.1)

2n+2 form

where B is the antisymmetric tensot two-form, F and R are the gauge and gravitational
curvature two-forms, and A(g,Imr, F, R) is related to the character valued index of the
Dirac-Ramond operator [9-11]. The index is given by

indGo(q, F, R) =q—1/ A(R)Chiq, R) Chiq. F)

top form

(1.2)

top form

EfA(q,F,R)

t We set gauge coupling constants to unity, and o' = %; g = €>™'7 refers to the left-moving sector.
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where A(R) is the Dirac genus and Ch(q,R) = Y22, q"Trj,je2x the Chern character for

ot

every left-moving string level. More explicitly, the elliptic genus A(g, F, R) has the form [9]

 Alg,F,R) = i awry T ()" uln) - xpp(yglt) (1.3)
where Goi(7) = 3.'(m7 4+ n)~?* are the Eisenstein series (modular forms of weight 2k for
k > 1), xpp(yg|T) is the (gauge) character valued partition function associated with the
periodic-periodic sector of the space-time fermions, and ys are the skew eigenvalues of z—i;F .
Due to anomalous modular properties of G2 in the exponential (and xpp) above, A(qg, F, R}
does not have a nice modular behavior unless Tr F?2 — Tr R? = 0. However, the function

appearing in (1.1) is not (1.3). but

|

A(q,Imr, F,R) = etaam o (TTF? =Tr )} . (g F R)
(1.4)
= e laaw (Co(r) = e) (e F? =Te RO} [

whose 2n-form part is modular invariant. The appearance of - above is a manifestation of
Quillen’s holomorphic anomaly. It (partly) arises due to a particular regularization scheme

[12], which maintains modular invariance but spoils holomorphicity: only

1 1 T

(mr +n)? fmr +nf* Col") = e (1.5)

@2(1’) = ljnb

is modular covariant. Thus, the integrand in (1.1) as a sum of products of G, G4 and Gy

does not factorize holomorphically, at least not in the most naive wayzl

Using the formula

[ 2455 fa) = 2 (G0 0) (1.6)

coeff. of q"

for weight zero functions f(q), the modular integral (1.1) over the tower of infinitely many

Jeft-moving modes can explicitly be evaluated [4]:

/ ( dzr z(qi Imfs F‘R) = —6’-1:772 ‘an(F?R) : (1'7)
F

3
Imr) n—{ornm

. The 2n-form X3, is a certain polynomial in terms of traces of powers of F' and A, and is

h Accordingly, with "holomorphic” we always mean holomorphic up to such Imr’s and up to the pole at
g=0.
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defined by the chiral anomaly Isn44 of the particular theory:

Lnia(F,R) = A(q,F,R)‘ = & (Tr F? — Tr R?) - X30(F, R) . (1.8)

2044 formn
coeff. of 4?

Because of modular invariance (9], (1.8) has always this factorized form. It follows
Sffloop(BvFr R) = —4 fd2n+21' Bin(F,R) . (19)

This is precisely the counter term anticipated by Green and Schwarz [13].

2. Effective Actions from Loop Space Index Theorems
2.1 THE TEN DIMENSIONAL CASE

We compute first the four-point one-loop effective action for gravitons and gauge bosons,
for the well-known ten dimensional supersymmetric heterotic string theories. For reasons to
become clear later, it is easiest to employ light-cone Green-Schwarz formalism. As there are
eight zero modes 5§ (a = 1...8) and since bosonic vertex operators contain two 52, saturation

of the zero modes implies that the corresponding four-point amplitudes are holomorphic.

The effective action is given by

s (F,R) :/DX‘DS’DADh e ~Se(F,R) (2.1)

1-loep

where the path integral is to be evaluated on the torus. The fields X* (i = 1...8) and $¢
have periodic boundary conditions along both cycles as required by world-sheet supersym-
metry, DA implicitly contains an appropriate sum over the spin structures of the left-moving
fermions, and the integral over the world-sheet metric A can be traded for a modular inte-
gral. The two dimensional euclidean action is given by a ¢-model on a torus characterized

by the modular parameter 7:

1 s
1 . i
Sg = %;fdt/da- [ﬂ;gi,-(}{)ax*a)(f ~ MDAy - 5°DS, = Limr FAB 541 5% 40p
0

0
(2.2)

This action can be obtained via hamiltonian operator formalism along the lines of [10].

In (2.2),; 3 = 2ilmrd,, @ = -2ilmrds, z = o + rt, multiplication with appropriate two
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dimensional gamma matrices is understood, and

Drg = 0rg — i AN T YAPAXAE
(2.3)
DS@ == 65 + wlk(.X)aX 61_7 absb .

In the limit Imr — 0, the path integral is dominated by small fluctuations around the
classical solutions. These are given by the zero modes of the pertodic fields, and we can
write in the usual way
X' =z + VImr X" |
(2.4)

§° = S84+ 8.

27rImr

Since our result will be holomorphic, it follows by analytic continuation that the lowest

order approximation is exact. Upon normal coordinate expansion around zo,
gij(X) = &ij — %Ier._-kj;(zo)X”“x.” +
Ll (X)8X'6:;5%v% 8% = MmrRyju(zo) X 0X" Sy 8P + ...
and choosing the gauge A¥ = 0, the terms leading as Iin7 — 0 are:

s <L / dt do [ax;&x”’ — 5§38, —~ 23X,

3 : kl b AB
15 Riju X"0X" S3v5355 — e Fy SomSo'\A"B] (2.6)

=% ] dt do [9X"(38;; + 7-Rij) X" — 505, — \a(B64F + L F4B)ap] .

Here,
ﬁz] = %ﬁijabsgf\sg (2.7)
o
FAB = LF3P S5 n 8¢
and
Rijop = ﬂabﬁ’uu (2.8)

4B _ )
Fab - 47a.b (T

As 7’%51- and F48 are valued in the exterior algebra of the spinor bundle generated by 5§,

we may regard them as spinor two-forms. Such objects have been discussed recently [14]. -
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The leading part of Sg is quadratic, and one can easily evaluate the non-zero mode

integrals:

1 1
(2) _ w 2 ScAB | i FAB\]2
/ DXDSDA e 9E = f dzi age |96t (O)) 7 | det(O8T + 5,7
det'(8)] | det'(B6; + £Ri;)
(2.9)

/dxodSOH(“& )ZH( ( ))

Apim
sirnctares

In the first equation, summation over the spin structures of A4 is implicitly understood, and
To, Yg in the second equation denote the skew eigenvalues of 5- 'R,J and ;3 .FAB respectively
(e = 1..4, 3 = 1...16). Note that all dependence on Imr dlsappears. The first bracket
above cancels due to the world-sheet supersymmetry between X" and $'®, hence (2.9) is
holomorphic in ¢g. The crucial point is that the calculation we are performing is very similar
to the one leading to the index of the Dirac-Ramond operator {10]{11]. In fact, the index is
given by (2.9) if [dSg is replaced by [di and the spinor forms ﬁ,‘j,ﬁAB by

koo
Rij = 3 Rijravg A

FAB = EFS( )AB¢0/\ I/Jo )

(2.10)

which are two-forms in the exterior algebra generated by 1,03. Thus, we can borrow from the

index calculation to rewrite (2.9) as

(2) .- o
/DXDSD,\ e SE = /ds:z: A(q,F, R) = indGol{q, F,B).  (2.11)

spinor 8-—form

Here, 'spinor 8-form’ refers to terms contributing after the Berezin integration proportional

to

[ a5 S5 sy = e (2.12)

similar to
fd¢5 SR . Py = et (2.13)

in the index computation.
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To obtain the effective action, one still has to perform the modular integral, with the
correct measure. Using the results of a covariant treatment [15!, one can infer a factor of
Imr ! from the ghosts and the same factor from the longitudinal modes of X*. Altogether
we get the modular invariant measure I—dn%%' Of course, we cannot derive the absolute

normalization in such an easy way; our results will be correct only up to overall factors.

The integrand (2.11) is not yet modular invariant due to the above-mentioned modular
anomalies associated with G3(7) in A(q, F, R) (1.3). Therefore, one has to regulate the deter-
minants in (2.9) in a different, modular invariance preserving way. The same problem occurs
of course also in explicit loop amplitude computations [4]{5][6]. Performing the (-function
regularization (1.5) of G(r) effectively amounts to replacing A(qg, F,R) by A(q,Imr, F,R)
(presumably, one can also add suitable local counter terms to the ¢-model). Then, using

the formula (1.7), (2.11) can explif:itly be integrated:

—loop

s (F,R) < —ﬂ’f—/d% A(q,Imr, F, R)
F spinor 8—form

(2.14)
= —64n’ / &% €0yay..00 X319 (F, R) .

The spinor form f;“‘”"'“’(f’, ﬁ) is obtained from the eight-form XS(F, R) appearing in the
anomaly polynomial (1.8) by simply replacing vector by spinor indices and the two-forms
F, R by the spinor two-forms F and R. Note t.ha.t even though (2.14) contains an e-tensor,
Sf_loop(F , R) does not necessarily violate parity. Rather, the contraction of the y-matrices
in F and R with the e-tensor produces the well-known {-tensor:

(3+3) (1) () (o) exbesedoh = gisbimnra (2.15)

An explicit expression for giiklmnpg can be found e.g. in [16]. We thus obtain the results
derived by explicit string loop computations [5][6]. For example, from the formula for

Xs(F, R) corresponding to the SO(32) heterotic string [13][4| one immediately deduces

e 1 t1kimn
§:F0EN(F, R) fd%: mt’“ e {41&- Ri; Rkt Romn Rpg + Tr ( Bi; Rit) Tt ( Renn Rpg)

+32 Tt Fij FtFonn Fpg — 4Tt (Fij Fig) Tr (Ronn Rpg) }
(2.16)

(the traces are over the vector representations). Due to its close connection to the chiral
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index of the theory, it is conceivable that this expression does not receive corrections in

higher loop orders.

As four-point amplitudes involving external fermion lines have the same structure as
those with purely bosonic legs (modulo kinematical factors) [17], we conjecture that also
the fermionic (i.e., the complete supersymmetric) effective action should be expressible in a
way similar to (2.14). However, it seems to be difficult to implement fermionic couplings in
the light-cone o-model (2.2), and one should probably better adopt a covariant formulation

in order to check that.

The result that the effective action (2.14) is closely related to the anomaly (1.8) can
be understood in terms of triality rotations in the SO(8) transverse Lorentz group. More

precisely, the transition between Green-Schwarz and Neveu-Schwarz formalism is achieved

by
b = ?73635

) gy (2.17)
5% = _7:'1, Ead)i 3

where ¢ is a real, commuting constant 8. spinor satisfying ££ = 1 [18]. Clearly (2.17)
can only make sense if ¥* and S° have the same boundary conditions. As S° is periodic
along both cycles, y* is also periodic. Thus, (2.17) maps the GS-theory to the PP-sector
of the NSR-theory. But this is precisely the sector where %" has zero modes, and where
the anomalies (as well as all parity violating amplitudes) reside. How this relation between
parity”violating and parity conserving sectors comes about in the NSR-formalism (where it

is not so obvious), will be discussed in the appendix.

‘The same method works also for four and six dimensional N =1 supersymmetric theories.
However, since the number of the supercharges (or S§ zero modes) is smaller in these cases,
the structure of the effective theory is less fixed, and accordingly we will be able to compute

only a few terms of the effective action.



2.2 THE Four DIMENSIONAL CASE

The situation is simplest for ¥ =1, d =4: here we have two zero modes S5, a = 1,2
One can therefore obtain results only for one-point functions. The only term we can add to

the ¢-model which will give a non-trivial result is
ASg = —5= f dtdo Limr D48, 5255 4 A5 . (2.18)

The field D4? is not a physical field, but rather it is (essentially } the auxiliary D-component
of a N =1 vector superfield. There is no reason to exclude such an auxiliary field bé.ckground

coupling from the o-model. By the same argumentation as above, in terms of

D48 = 1DAPSe n Sh (219
DAP = —ie,s D*(To)"B | '

the effective action is

1

: . det(8648 + LDAF)| 2 o

Seﬂ' D /__i‘r_:_/d 1dsc “Z‘X .
1-loop( D) x [ oy | 20 dSo 30 03) , (2.20)

with an implicit sum over spin structures. Using the relation to the elliptic genus, one gets

immediately
off ' dr 2, 4 D | o
Sl—IOOP(D) x /_j,_.(f""-"")2 _/d T A(q’ImT’D’O) spinor two—form .

= —64r? ] d*z €, X34(D) (2.21)

1
- —gfdza: D*Tr(T.) ,

since Xy(F} = —gé-; Tr ('51;-) As the trace is over the U(1) charges of the massless chiral
fermions, {2.21) is precisely the Fayet-lliopoulos term. It was computed already in [2][3],

although with different methods.

= 1t is not .completely clear how to interpret auxiliary fields in the GS-formalism; (2.18) gl_iffc:é from the
corresponding NSR-model by a certain term. As discussed in the appendix, this term does however not
contribute. :



— 10 —

2.3 THE SIX DIMENSIONAL CASE

a

For N =1, d=6, there are four Green-Schwarz fields, S5, @ = 1...4. One expects therefore
results for two-point functions. Usually, two point amplitudes involving gravitons and gauge
bosons vanish on-shell. However, we will use nowhere the equations of motion, and obtain
the two-point effective action directly from the path integral. Since we are not using the
field equations, we can also derive the effective action for the auxiliary fields Z#8, 1 =1...3

of the gauge supermultiplett .

The in the limit Imr — 0 relevant background dependent terms are

ASE = —51; dt do [%Ier;,-,,;X"aX'j S“*y:ng + %ImTE'?BSGY;'LSbAAAB
+ %ImTZf‘Bg’h(aI),hug"AA/\B] .

(2.22)

Here, §"°’L, §"‘(n, m = 1,2) in the vertex operator for the auxiliary field are the Green-Schwarz

fields in a complex basis, as defined in the appendix. Note that the spinor indices in the

other terms run from 1 to 8. The point is that even though 5% a = 5...8 are not free fields,

the composite object

RY = lgo4%gt ab=1...8,
47 Tabm (2.23)

is a well-defined conformal field; it is the current of the uncompactified, transverse Lorentz

group. Of course, only S%,2 = 1...4 have zero modes,

5% = /55t 4+ 5, (2.24)

2xrlmr

so that in the ImT — 0 limit the other fields play no role. Hence

1

,  [det(FsAB + LFAB L i 34B)]>
S oopl F R, ) o [ by [ dsias MOF g A g2 ) (2.25)
P F ) det (661] + -2—1-1-‘_-7-\’,,']')

t For the auxiliary fields Z} of the supergravity sector, the o-model coupling term is not quadratic in the
left-moving bosons. Therefore we cannot deal with these fields in an easy way. The same applies also to
the other supergravitational auxiliary fields.
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(with implicit summation over spin structures), where

2] b
Ri; = lRijab 53/\ Sg

FAB — LFAB g2 5 S5 (2.26)
24P = 32153 )

and
Rijgp = trey Rijni
FjP = — v F5(Ta)*? (2.27)
Zf% = —iZ}(T.)"7 .

Using again the relation to the elliptic chiral index, it follows

-~

5t op(F R, Z) /Jr(-fg-;-j- /dwods— Aq,Imr, F + 2,R)

(2.28)
Y / & Xy(F+ 2 R)
spinor 4—form
From the definition of A(g, F, R) one can derive
iy 2 Ry 2
Xy(FR) = —hz {Te () +6Tr (B)'} (2.29)

where the traces run over the representations of the massless chiral fermions. Together with

1 47 1_ kI abed _ Lijkl
(irah) (i) ==t = ¢

. o (2.30)
= _ ;Etﬂcl % (611«:61! . 631631:)

one finally arrives at”
SI loop(F$ RsZ ]C#IJ —TI‘ TI‘ZZ - i‘TI'-Fith’j - %TI‘Rt'J'Rij} . (231)

The first two terms represent the one-loop correction to the bosonic kinetic terms of the
d =6 gauge supermultiplet; they describe a finite gauge coupling constant renormalization.
We expect that upon coupling fermion background to the o-model, the full supersymmetric
kinetic terms appear. Similarly, we expect that also all supersymmetric partners of the

gravitational term above appear upon coupling the corresponding fields to the o-model.

+ Like in the ten dimensional case, the e-tensor is dropped as it does not survive covariantisation to six
dimensions.
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As (2.31) is obtained by an index computation, is is natural to assume that it is not
renormalized in higher loop orders. In particular this would mean that the gauge coupling
constant does not receive contributions beyond one loop. This is in striking contrast to
N =1, d=6 point particle super Yang-Mills theory which is not even renormalizable. Like
in the ten dimensional case, besides the physical massless fermions also an infinite tower of
unphysical (m} # 0) excitations contributes in the modular integral (2.28). This has no

description in terms of particle theory.

In (2.31), the traces run over the representations of the massless chiral fermions, counting
right- (left-) handed spinors with plus {minus) signs. Since the gravitinos are right-handed

and the matter fermions left-handed, the gauge part of (2.31) can be expressed as
& (Coss - ) [t {32525 - LrgEoe}, (2.32)

where C4; and C'y are the corresponding gauge and matter second order Casimir invariants.
Thus, if Ch4j = Cy and the above assumption holds, there are no quantum corrections to

the gauge coupling at all.

One could of course obtain the same result by explicit loop calculations. As two-point
amplitudes vanish on-shell, one would have to consider three particle scattering. Such kind
of computation has recently been performed in [19] (for d = 4). It was shown that the
only contributions to Tr F2 come from boundary configurations where two vertex operators
collide. The corresponding poles cancel then zeros in kinematical prefactors. Thus, one

effectively computes two-point amplitudes.

In our case, the two-point boundary contributions are holomorphic due to the saturation
of S5 zero modes, and therefore related to the elliptic index. This is analogous to two-point

scalar scattering in d =4, where the boundary contribution is given by the D-term [2](3].

2.4 J3-FuNcTIONS IN FOUR DIMENSIONAL N =2 SUPERSYMMETRIC THEORIES

It is interesting to check to what extent the above results are relevant also for lower
dimensional, torus-compactified theories. One certainly expects that some of the special
features of index-related amplitudes persist after compactification. As we will see, the
situation is slightly different in the lower dimensional theories, because the structure of the

bosonic zero modes changes upon compactification.
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As an example, we consider gauge coupling constant renormalization in d =4, N =2
superstring theories, which are torus compactifications of d =6, ¥ =1 theories. As there
are four zero modes §%, the simplest method is to directly compute the two-point effective

action in a way similar to the d =6 calculation above.

We restrict ourselves to those gauge groups which are present already in the six dimen-
sional theory. Generalization to gauge fields generated in the compactification process is
straightforward. The background couplings we consider are thus the same as in the d =6

computation in the foregoing section,
ASp=—4 / dt do [%Imfﬂ‘}BS“vﬁSbA arp + Hmr ZABS™(01), S AAB] . (2.33)

In (2.33), me denotes the auxiliary field triplet of N =2, d =4 super Yang-Mills theory.
For convenience we chose a six dimensional notation: Fj;, (i,7 = 1...4) are six dimensional
(light-cone) gauge field strengths, which will be decomposed later into four dimensional

gauge field strengths plus two scalars A and B. Evaluating the path integral, we get

1

(2) _ det(F§AB 4 i FAB [ i 74B\]12

DXDSD) e °F = Imrﬁg;g(r,?)/d:ca dSy il 2”, — * o )
det (3}

= Imr £2;2(T,F)/da:f, dSy ](q,lmr,ﬁ-l— 2,0) ,

. (2.34)

where i = 1,2, ¢ = 1...4 and where A(q,Imr, F, R) is the elliptic genus of the six dimen-

sional theory. The lattice sum in the modular invariant correction factor

Imr Lop(7,7) = Imr Z 'qipl g:Pr (2.35}
(pripn)Elzs

arises from the zero mode integration of the compactified bosons; I'z;2 denotes the even self-
dual lorentzian lattice on which the six dimensional theory is compactified. The factor of
Imr appears because the Im7’s arising from the analogue of (2.4) do not cancel. Obviously,

(2.34) is not any more in our sense holomorphic. Nevertheless, our result will still be related

to an index.
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In (2.34), the Sy integration picks out the modular invariant spinor four-form part.

Thus, the effective action is

dir — - o~
51 loopt £ Z) o /—*--,ng(‘f‘ T)/dzx A(g,Imr, F + Z,0) ] (2.36)

Imr spinor 4—form

The presence of a single factor Imr ~! signals a possible logarithmic divergence of the modular

integral.

Since the left-moving ground state does not carry gauge charge, it follows that the four-
form part of A(q,ImT, F,0) does not have a pole g~!. Therefore the leading, logarithmic

divergent contribution is associated with the Imr independent part of

Laa(T,7) = Z e~ *ImT{py +0R) imRer(pL—pR) (2.37)
{pripr)El1a

that is, with p% = p%z = 0. In other words, the lattice partition function does not play any

role for the leading contribution. Introducing an infrared regulator i, we find that

(,u:a')_ld_[ 1/2
lim f il /dRe‘r /d% A(q,Imr, F + Z,0) (2.38)
p—0 ImT spinor 4--form
1 —1/2

is the same as the divergent part of (2.36) above” . As the integration region is rectangular,
the Rer integral projects onto the physical massless states satisfying mzL = m% = 0, that
is, on the q° part of the four-form part of .4(q, F,0). It is given by

A(q,F,U)' — 967 X4(F,0), (2.39)

4+ —form
coefl. of Y

with X4 defined in (2.29). We now decompose the six dimensional gauge fields into four

dimensional gauge fields plus scalars 4 and B. Using (2.39), the divergent correction to the

* The finite parts of (2.36) and (2.38) are of course not the same; they differ e.g. by the integral over the
non-rectangular part of the fundamental regior {7 | ir| > 1, —-l < Rer < _,,0 < Imr < 1}. From this
region, there are contributions of infinitely many unphysical states with mL # 0. The finite parts also
differ by contributions from L3.a(7, 7)
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(bosonic) d=4 N =2 gauge supermultiplet kinetic terms looks then

ST EF,A,8,2) = —azryln(u’)
x /d% Tr { — :(F5)* — 3(D;A) - {(D:B)? - 4({4,B))* + %(Z;)z} .

' (2.40)

We have included some constant factor a, as we did not work out the absolute normalization.
The kind of the trace above is determined by X4(F,0) which itself is defined in terms of the
six dimensional chiral anomaly. It is identical to the trace occurring in the six dimensional
computation above, counting d =6 gauginos and matter fermions with opposite signs. Upon
compactification, gauge and matter fermions in d = 6 are mapped to gauge and matter
fermions in d =4, respectively. It follows that the corrected gauge coupling constant in four

dimensions is given by

1 2
= 5-2- {1 + g% + o2 (Cadj - CM)Iﬂ(ﬂza')} ’ (2.41)

8

1
2 2 .1
gog(pia')

where b denotes the finite corrections. Viewing o' as an inverse squared ultraviolet cutoff,

the 3-function is easily inferred from the divergent part:

2 0 3
Blg) = —20/ 298 ) g (cad,-—cM). (2.42)

a—-—-——

da' 8n?
It is identical to the result obtained in d=4, N =2 super Yang-Mills particle theoryif e = 1.
This is consistent with the belief that string theory should always give the same answer as
particle theory, whenever one computes a quantity which is meaningful in particle theory.
In particular, in our string calculation only the physical massless spectrum (m = m% = 0)

contributes f

In particle theory, it was shown that (2.42) is not renormalized beyond one loop [20].
This perfectly agrees with our conjecture, that index-related superstring amplitudes should
not get renormalized in higher orders. From our viewpoint, higher loop corrections would

be zero due to the vanishing of the six dimensional index factor in (2.36).

t In contrast, in the previous chapters we computed quantities which are not meaningful (since stronger
than logarithmic divergent) in particle theory. There is no reason why only massless, physical states
should contribute, as the decoupling theorem is not valid in these cases. Indeed, we found thai infinitely
many unphysical states (mi # 0) contribute in the ten and six dimensional cases. The situation is
similar for the finite cotrection b above, which is also not a meaningful quantity.
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3. Conclusions

We have shown that a certain class of supersymmetric string scattering amplitudes or
effective actions is intimately related to the chiral anomaly structure. Specifically, in a
d =2n + 2 (n=1,2,4) dimensional ¥ =1 supersymmetric theory, the (light-cone) bosonic

n-point effective action in question has the form
Sleﬁloop = /dan )?211. . (3.1)

The spinor form X an 18 closely related to the 2n-form X;, which multiplies Tr F? — Tr R?
in the expression for the anomaly of the theory. The close connection to the anomaly is due
to the fact that the computation leading to (3.1) is essentially a triality rotated version of
the one leading to the index of the Dirac-Ramond operator. Assuming the Adler Bardeen
theorem holds, it is conceivable that {3.1) is not renormalized in higher loop orders. Our
approach is useful also for torus compactified theories; for example, we derived the well-
known result for the F-function in d =4, N =2 theories from the chiral anomaly in d = 6.

We expect analogous results for four-point scattering in d=4, N =4 theories.

In the appendix, we investigated the map between parity violating and parity conserving
sectors in supersymmetric theories, from the NSR point of view. It can be expressed by the

following Ward identity:

n

(M%) o =

1'=1 seclor

T
B

i ) (32)

evern spin )
strmctures

< n

1=1
Here, J; are the number currents of the world-sheet fermions with space-time indices, ¥*
(¢t = 1...2n). At the right hand side, J; are U{1) Kac-Moody currents, which belong to the
various world-sheet NV = 2 superconformal algebras defining the supercharges. We found

that (3.2) implies a wealth of Kac-Moody character identities that can be related to the

representation theory of exceptional groups.

We remark that it might be possible to prove absence of supersymmetry anomalies by
use of the techniques developed in this paper, in a way similar to the treatment of chiral

anomalies {9].
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APPENDIX

Supersymmetric Character Ward Identities

The relation between parity violating and parity conserving amplitudes can easily be
understood in terms of the triality map (2.17): periodic Green-Schwarz fields S® are mapped
to periodic NSR fields v*, that is, to the odd spin structure sector in the NSR, formalism.
It is interesting to investigate how this relation comes about in the NSR formalism. Here,
the parity preserving amplitudes reside in the even spin structure sectors. It follows that
in supersymmetric theories there has to be a relation between even and odd spin structure
sectors:

dy e IE(¥) /ds e 9B = T /d¢ e SE(W) (A1)

seclor eves spin
strnciures

Here, even and odd spin structures refer to the boundary conditions of the (free) space-
time fermions ¥’ on the torus, and integrations over all other fields as well as appropriate

operator insertions are understood.

Al THE TEN DIMENSIONAL CASE

We start with the ten dimensional case (this includes of course torus compactifications).
Saturating the zero modes, one gets ‘
dp e SE@) iyt gt o« Y /d-!,[* e SE(¥)glsz. 58,  (A2)

nren ~pim
sbrmcynres

sector

In order to exhibit the relation between ¢'* and S%, it is convenient to bosonize these fields:

vply? = 8oy = Jy

‘1 3 4: = 10 = J

LA t0¢2 2 (43)
Y Y® = 18¢s = Js

i Yt = i9¢s = Jy,
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where ¢ ... ¢4 are free bosons. Then

15187 = %(Jl t R+ Ji+Js) = 30
18384 = %(J1 + Jy — J3 — J4) = %\72
- b b 1 1 (A4)
:i8°8% = H(i- D+ - 0) = 47
115758 = %(Jl -Jr-J1+ J4) =N
such that J; = ,_‘J (vi);J;. One can therefore rewrite the relation (A2) as
<J1J2J3J4> o T € <J1J2;7334>,m oot ? (A5)

sector stractnres

where J;, 7; stand either for the currents themselves or only for their zero modes. The
distinction is irrelevant, since because of the Berezin integrations, only ¥ and S zero modes

contribute. The constant ¢ is to be determined below,

Eq. (A5) represents a Ward identity, because it relates different scattering amplitudes
through a symmetry principle. It is almost trivial from the Green-Schwarz point of view, but

non-trivial in the NSR formalism. To prove it in the NSR-formalism, we employ operator
formalism to rewrite the LHS of (A5) as (F; = (J;)o)

By the Riemann type identity

4 4 4 4
(H 3—?;) { H‘l’l viit) — Hﬁg(vﬂ?‘) + Hﬁ.;(v”r) + H'l?z(l/i-l'r)} =0
1=1 ' 1=1 t=1 i=1 vi=0

t=1

4
with ] = %Z(v,')juj, this is the same as
i=1

() {35 lo - come ) -ge ]}

=% (BRTsT)

vi=0

ayam apin :
sbrRciures

Thus it is a theta function identity which is responsible for the Ward identity (¢ = 2).
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In lower dimensions analogous identities have to hold. To derive these identities, it is
convenient to switch to a different, bosonic language, where sums over spin structures are
replaced by lattice sums. This is because in this formulation, all information about super-
symmetry is encoded in weight lattices of the exceptional groups Eg, Ey and Ep {8 [21] (this
applies to any kind of supersymmetric string theory). We can thus expect supersymmetry
Ward identities to emerge as relations between certain Kac-Moody characters associated

with exceptional groups.

There are certain rules how to extract the physical (and also the auxiliary field) spectrum
from the exceptional groups {8]. The rules are as follows: decompose Eq ~» I'n_q x Dy, where
[,_4 is some n — 4 dimensional lattice associated with the physical states, and D4 describes
unphysical degrees of freedom. Accordingly, decompose all vectors {or better, conjugacy
classes) in the same way. The physical light-cone states are then precisely those which
are associated with the (v) or (s) conjugacy classes of Dy (auxiliary fields with (0)). The
partition function is thus characterized by a sum of characters of I'»_4, with positive signs
for states in the NS-sector {(v) of Ds) and negative signs for states in the R-sector ((s} of
Dy).

To make this more clear, we reformulate the ten dimensional case in this language. This
case with maximal supersymmetry corresponds to Ez. According to our rules, we write
Es — D4 x Dy, with conjugacy classes (0) — ((0),(0)) & ({v),{v))®((s),{s)) & ((c),(c)).
The physical states are those in (v) and (s) of the first Dy above. The partition function in

terms of Dy Kac-Moody characters is therefore
CRD4(0}r) = CR*(0|r) = 0.

The D, characters are given by

ChDo(u; |7) = s ——{ [ Fatuslr) + ] Palwilr) }
ChD~ (s |7) = %n;ﬂ{nas(w:r) - TI9stwiin)}
=1 =1
N 1 n n
1

ChO™(vilr) =}

n {H‘h(”ﬂf)—n%l’l(wh)} .
" (T) i=1 i=1 .
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In this formulation, the Ward identity (A5) is equivalent to the following identity between
54 Kac-Moody characters:

= 8\ 4 N 5 -
(Haw) Chy'(vi|T)u=0 = %(Ha‘){alf‘(u: |“r)—Ch,D‘(y:- |—r)} . (A6)
i=] 1

i=1 =

For the lower dimensional cases, we can now proceed in a similar way.

A2 THE Four DIMENSIONAL CASE

For N =1, d=1, we have only two 5% The two space-time fermions ¥* are free and can
be boscnized as in (A3). However, as one can see from (A4), the 52 have also components in
the internal, compact sector of the theory. The crucial point is that this part of the internal

sector can always [22] be represented in terms of a free boson H, so that

Lt

i818% = {(n+70) = 17

J0n) = V3aH .
J1 is precisely the b?(-f ) current belonging to the global N =2 world-sheet supersymmetry
[23] (similarly, the currents J; = 3 (v;); J; above and below belong to several copies of N =2
algebras). Saturating the zero modes in (Al), the supersymmetric identity then takes the
form

(1) e = 4{ ) s (AT)

secior stractures

We like to identify the character identities that are responsible for that equation, and to

determine c.

For the case at hand, the relevant lattice is Es. Upon decomposition Eg — [[/(1)D]x Dy,
we see that besides the boson belonging to the transverse Lorentz group D, there exists
another free boson associated with the /(1) factor. It is of course identical to the boson H
above. This observation is quite powerful, as it allows to investigate the relevant part of the
partition function, no matter how coﬁpﬁcated the full partition function (e.g., corresponding
to a Calabi-Yau compactification) is. The relevant part is simply given by certain level one

Kac-Moody characters of [U(1)D,].
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We need of course to know what characters of [[/(1)D;] actually do occur. This infor-
mation is easily inferred from the weight lattice of F4. There are three conjugacy classes
of Eg, (0),{(1) and (I) (we do not need to discuss (1) separately); (1) is the class to which
the 27 belongs. Applying our selection rules, we obtain the following conjugacy classes of
[U(1)Dy]:

“

(10], (v))
(1], (0))
O = (@)
([—%]v(c))
((31,(9))
([_%]1("))
W= (1)

Here, [q] means U(1) charges v/3(q + 2k), k € Z. The classes (0) and (1) belong to different
sectors of the theory; to (0) belong in particular all gauge particles, whereas (1) defines
the matter sector. For example, graviton and gauge bosons belong to (0,(v)), the gravitino
belongs to (32@ ,(s)) and the (massive) holomorphic 3-form field to (v/3,(0)). The massless
matter fields sit in (lgg,(O)) and (——%g,(s)).

The characters associated with (0) and (1) do not factor out of the whole partition
function, but rather multiply different (gauge and matter) sectors. That means, the Ward

identity (A7) has to hold in the two sectors separately.

Defining now

H

Y 1.2 -
C'hg(l)(vh) _ ___1__ Z qim 82m\/§mv

-
n(r) meEV3{2Z+q)

one can build [/(1)D1] characters in the following way:

Ch[ ](UI,U2|T) = C-'hgr(“(ul {r) -Cﬁ?’(ug[r) .

q.*

In terms of these functions, the relevant factors of the partition function are

Chi,](0,017) + Chi1,61(0,0|7) — Chi1/2,4(0,0]7) — Chi_1/2,4(0,0}r) = 0 (A8)
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in the gauge sector, and

Ch1/3,0/(0,0(7) + Ch{_2/3}(0,017) — Chy_1/6,)(0,0|r) — Chys/s,(0,0]7) = 0 (A9)

in the matter sector. These identities are the essence of N = 1 supersymmetry in four
dimensional string theories. For instance, all cosmological constant loop calculations should
boil down to (generalizations of} these equations. That these equations have to be true
follows of course from the fact that the number of fermion matches the number of bosons
at every string level. This can be proved by e.g. using triality properties of D4 embedded
in exceptional groups (21]. We checked these and all other equations below also explicitly

by expanding them up to fifth order; in this way we determined the coefficients c.

Highly non-trivial are character-valued generalizations of (A8) and (A9), as these equa-
tions are not valid for 1,17 # 0. For instance, the Ward identity (A7) is equivalent to the

derivative character identities

8
5;{0;1[,,1/6,3](051/2 |T) + C‘h[s/ﬁ'c](or v |T)}vg=0
— 1 8 a
= 55;;{671[1/3,0}(:/1,0 I7) + Chi_z/3,0)(11,017) = Chi_y /6 j(v1,0|7) = Chyss6,¢j(21,0 lT)}uL=0
(A10)
in the matter sector, and
ad
5;—;{6%[1/2!3](0’1/2 |T) + Ch[—-l/Z,c](O, 2 |T)}vg=0 =0
J
5o 1 Chioal(#1,017) 4 Chiy (41, 017) = Chiyja (1, 017) = Chiy a1, 01) | = 0
(All)

in the gauge sector, for ¢ = % These equations are the d =4 analogues of (A6). (All) tells
that there are no contributions from the gauge sector; this is consistent with the fact that in
d =4 gauge supermuliiplets do not contribute to anomalies. Equation (A10) is not precisely

the same as (A7), but rather an expression of

() e = 30T )

seclor siractures

This equation has already has been discussed (3} in the context of the D-term calculation.

In fact, JO™) = {/3 8H is the (right-moving part of the) vertex operator of the D-field. In
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our Green-Schwarz computation above, (,71 =Ji+J (i“‘)) even spin appears instead. “This is

Atrucinzes

however equivalent to the above expression, because

1l
=

S

strmcinres

A3 THE Six DIMENSIONAL CASE

The N =1, d=6 case can be dealt with in an analogous way (this includes also N =2,
d =4). The four free fermions ¥* can be bosonized as in (A3). Like in the previous case,

part of the internal compactified sector can be represented by a free boson H, so that

i515% = Y+ R+ ) = L7,
i575% = (4B -0 = 17,

JUnt) — 200 |

and the supersymmetry Ward identity in question is

(N2) 4y = ke (N1T2) s - (A12)

ector struciures

The spectrum is characterized by E7; — [A1D;] x Dy, where D; is the transverse Lorentz
algebra in six dimensions (for d =4, one decomposes of course Dy — Dy Dy). The boson H is
associated with the internal A, 'K.a.c-Moody algebra (ﬁhich is part of a N =4 sﬁperconfdrma.l
algebra [24]). According to our physical state selection rules, the two conjugacy classes of

E7 lead to the following list of [A1D3] conjugacy classes:

0, {v
) — { ([0, (v))

@ - { (131 (0))
(0], ()

(10] and (4] mean isospin I3 even and odd, respectively). The [A;D;] Kac-Moody characters

3
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are defined by

Chir, (102,03 |7) = ChiMur|r) - CRD (g, 1y |7)

with

Y 1 1.2 :
Cﬁg’(f/h‘) - = Z ™ 82m\/§mu‘
mEVZ+15)

The vanishing of the partition function is then due to
Oh[o.v](oaov 0)r) — Ch[l/Z,s](Os 0,0|r) = 0
Chi1/2,0(0,0,0]r) ~ Ch 4(0,0,0|7) = 0

in the gauge and matter sectors, respectively. These identities and their character valued
generalizations are the essence of N =1 (d=6) and N =2 (d=4) supersymmetry in string

theories. For (A12), the following derivative identities are relevant (they imply ¢ = %)

9? , 07
al/lallg %{1/2'3](0, Vi, 12 ’T)m:{) = zaylauz {C'h[o'v](ul — v, + 9,1 + 1y |T)

—C'h[l/z,,](f/l — v, + v, + g |‘r)}

n=0

32

d? 1
Iaylayz {C?L[I/Z,D](Vl - v, + 1 + g |T)

3:/1 Ovn C'h[o‘c]((], v,z IT)VI=0

_Ch,[o'c](lq — e, 4+ v, + g |T)}u1—0

In this case, both gauge and matter sectors contribute to the Ward identity. Furthermore,

via similar identities one can derive

<J1J2> pp = ‘%( (g2 >. apin

rector atrnciness

= < (1) > win < (2)" ) i

siracinees ntracimres

for the current zero modes.

Since relevant in sections 2.3 and 2.4, we need to discuss some aspects of auxiliary fields
in N=1, d=6 (and N =2, d=4) supersymmetry. Auxiliary fields can also be inferred from

the decomposition E7 — [41D;] x Dy: they are associated with the (0) conjugacy class of
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D4 [25] (we consider here only the right-moving parts of their vertex operators; they still

have to be combined with the appropriate left-moving, gauge or lorentz part). Thus, the

scalar auxiliary fields Zy, I = 1...3 which we consider in our computation above are simply

given by the roots of A;, and their vertex operators are”

vZse — (EiV2H | /oy o jlint)

Adopting a complex basis for the Green-Schwarz fields, §m™ = «‘}-2-(.5' m—l 4 185%™,

§™ = %(52”_1 — i§%™), m,h = 1,2 one can also write

Vi = §’h(01),;,_n5":

using the Pauli matrices.
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