@ CALT-68-1551

CCNY-HEP-89/05

(%%ggj DOE RESEARGE AND

On Non-Renormalization Theorems for
Four-Dimensional Superstrings

Olaf Lechtenfeld”

Physics Department, City College of New York
New York, NY 10031

and

Wolfgang Lerche!

California Institute of Technology, Pasadena, CA 91125

Abstract

For d = 4, N =1 supersymmetric string theories we compute the quantum
corrections to the superpotential to two-loop order. The vanishing of the amplitudes
relies crucially on generalized Riemann identities. Beyond genus one, these map to

non-trivial zeroes of theta functions implied by the Riemann vanishing theorem.
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The very reason why one is interested in N =1 supersymmetric unified theories
at all is the supposed absence of radiative corrections to the superpotential. Many
indirect arguments have been given [1,2] why such non-renormalization theorems
should hold also in string theory. However, ezplicit string computations of higher
genus corrections to the superpotential have not been performed so far™ . This is
in contrast to higher-loop computations in d = 10 (equivalent to N =4 in d =4),
for which various non-renormalization results have been obtained [4-6]. Though
lower-dimensional strings are more complex than those in ten dimensions, one can
easily isolate the structure which is relevant for space-time supersymmetry in such
theories. It turns out to be universal, i.e. the same for all possible supersymmetric
string models. One expects that all features pertinent to supersymmetry, like non-
renormalization theorems in particular, can be understood solely in terms of this
structure. We wish to demonstrate this by directly computing the one- and two-loop

corrections to the superpotential (without relying on contour arguments).

We shall adopt a meromorphic generalization of the unitary gauge in supermod-
uli space that has proven to be useful in ten dimensions. As is well-known, there
are generic difficulties with higher-loop computations in superstring theory [2] [7].
These have to do with the ambiguous supermoduli integration, with the placing of
picture changing operators and so on. It is clear that these subtleties are also uni-
versal, z.¢. independent of the particular model and space-time dimension. Qur aim
here is not to resolve these problems. Rather, we will focus on how supersymmetry
cancellations work, which is in a sense orthogonal to these issues. Thus, our results

will be rigorous to the extent higher-loop calculations are reliable in ten dimensions.

One crucial ingredient is that all information about space-time supersymmetry
in string theory is encoded in the representation theory of the exceptional groups
[8]. In particular, N =1, N =2 and N = 4 supersymmetry in four dimensions
are characterized by Eg, E7 and E3 (similarly for other dimensions). Consider for

example the N =1 case. It can be shown [9][8] [10] that part of the internal sector of

* For a related one-loop calculation, see however [3].
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any N =1 theory can always be represented by a free boson whose momenta span a
certain one-dimensional lattice /. Similarly, upon bosonizing the NSR fermions, the
light-cone space-time sector (described by the transverse Lorentz group SO(2)) can
be described by a lattice Dy. Thus the theory has the form (internal sector)xU D) in
the right-moving sector. The point is that in a supersymmetric theory the possible
quantum numbers of U x SO(2) are correlated in a specific way that is encoded in
the weight lattice of Fg. This correlation is best characterized by writing U xS0O(2)
as the maximal torus of E¢/SO(8).

More generally, any supersymmetric theory has (partly) the structure of a coset
conformal field theory E,, /SO(8); it is this feature which is responsible for all aspects
of sup¢.=:rs;)rmmetry¢ . It implies that the partition function contains as a piece the

corresponding coset branching function, defined by

Chir(r) = @@ Chp*%® (). eni?®) .

A=l,v,8,¢

Here, A and A label the level one highest weight representations of E, and 56(8),
respectively; for Eg, A labels the conjugacy classes 0,1, 1, corresponding to gauge
and (anti-)matter sectors. For the sake of clarity we momentarily write our formulae
for the torus; however, they trivially generalize to higher genera by assigning one

representation to each loop. The partition function has the form

Z(7,1) = ZP;;M(F,T){Z Chf:‘){so(s)(r)}’,\(r)} ,
A A

where Y), denotes the contributions of the superghosts and longitudinal NSR fermi-
ons, and Pj;"t the (arbitrarily complicated) partition function of the rest of the

theory. All building blocks have simple modular properties corresponding to the

1 It also implies the presence of extended world-sheet supersymmetries [9]. However, it is doubt-
ful whether this fact has any particular significance for space-time supersymmetry.
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level one Kac-Moody labels they carry. Similarly, any correlation function involving
some operator(s) @ = O"OE/SOE}OY factorizes as

(0) = x{om), {s(omem) (o)} o

A

It is clear that the precise form of the internal sector is irrelevant for our purposes.
Rather, all non-renormalization features are due to the vanishing of the braces
above, for any A. This happens because the branching functions obey certain
identities [11][10] which are a reflection of supersymmetry. These identifies can
be derived from the fact that the triality outer automorphism of SO(8) becomes an

inner automorphism when embedded into E,. They can be summarized by
E./S50(8 E,/SO(8
¥ 0w r) = el (T ) @)

where o()) denotes a triality automorphism acting on the SO(8) labels, and T,
is the representation matrix of ¢ acting on the Cartan subalgebra (note that (2)
applies to all genera). Choosing the particular automorphism ¢* : v — s,5 —
v,¢ — c one can write equation (2), at one loop, as Ch, — Ch, = Ch,; — Ch,.
Transforming from conjugacy class to spin structure basis, Ch, = %(Ch[g] - Ch[tll]),
Ch, = %(Ch[é] + Ch[i]) and so on, this takes a more familiar form:

S e*“(“‘b)Chf“/SO(S)[Z](u['r) — ZChf"/SO(S)H](Ta*V|T)~ (3)
abe{0,1}

In our application, [‘;] labels the spin structures of the NSR fermions with space-

time indices. Explicitly, for Eg, one has v = (v, 1),
V3
Tpe = : ,
-2

ChE/SOO ] (Tpew |7) = 0[] (hon + 3VBoulr) - Fa@n —Vawulr), (@)

tof—

B
% vl
Q

and



with
Fo(v|t) = {@3,6 — 9-3,6}(V|7')
Filvlr) = {016~ 056 }(v17)
Fvlr) = {9—5,6 - 91,6}("’!7') ,
where

. 2 -
en,m(VIT) - Z e21'r:rml +2wily
leZ+
are theta functions of level m [11]. Choosing a different automorphism, e.g. the one

exchanging v and c¢ instead, leads to a different identity with different To-.

More genera.ﬂy, for arbitrary genus g, one can derive

in(@5~d22) vy, En/SO(8) [E] _ o9 o En/SO® [E1]
* 3o Ch [b](vlﬂ) = 29Ch? [&2}(1;, 719), (5)
@bezoj2ze

where & = (z1,...,24) and 2 denotes the period matrix. The ambiguity in choosing
an arbitrary (not necessarily odd) reference spin structure a = [gi] comes from
an ambiguity in taking linear combinations when changing from conjugacy class to
spin structure basis. For Eg (N =4 supersymmetry in d=4), Ch[g] = 19[%:]4 and (5)
is identical to the well-known Riemann identity. For Fg (N = 1), the r.h.s. of (5)
looks complicated, but all what matters is the form

Cne/ 3¢ [Z:l } (T ?|Q) = 9O [‘fl

: |3+ 1BauI)- 75 [ 3] 4~ V1) (0)

iy
for some F; (composed of higher genus level six theta functions).

The claim is that for N = 1 supersymmetry, F-terms are not renormalized

beyond tree level. They have the form
[ oW @) = WitoR - iWien; ()

where ® = ¢ + 61 + 00F is a chiral superfield. The vertex operators for a given

supermultiplet are easily inferred from the exceptional group structure, z.e. from



the weights of 27 of Eg:

V‘P} — V(%\@,0,0, | ul)Viniez'kX
V¢(i) — V(—%\/i,:l:%,ZF%, | —-;-)V:'nteikX (8)
vE = V(—%ﬁ,o,o,]o)vintcik}( -

We use a bosonic lattice notation here: the first entry in V indicates the -charge,
the following ones an SO(4) weight and the last entry the ¢-ghost charge. As the
precise form of V™ is not relevant for us here, we will suppress it in the following.

Furthermore, we will need the picture-changing operator

P = {QBrsT:&} = Pratter + Pyhost » where

P = TP ST = P, LY 1P
‘PO — V(O’{Osil}l'{'l) COX
'pi:l — yEIVE00, |+ p

inf

and (9)

ghost = p{? —|—-'P_?_2
’Pg = ¢0¢
Pla = [200b+ndb+ 20| V(00

(in obvious notation). The subscript indicates the ¢-ghost charge, and the super-
script the If-charge. When P acts on a vertex V, it simply changes its picture. Note

that PJV must be omitted since it compensates for the difference between PV and

{QprsT,V} prior to integration.

As a warm-up we start with the one-loop calculation. In this paper we will
consider only the second term in (7) and hence amplitudes of the form < Yy¢...¢ >
for vanishing momenta and &' — 0 (the computation of the first term is completely
analogous). We furthermore restrict ourselves to massless external fields. It is

sufficient to consider only the spin-structure dependent, that is the zero-mode part



-6 —

of the braces in (1) (we shall discuss poles later). It is given by.

< V(Au,Al,Agl).¢)(z)v(#u,#l,u21#¢)(w) N >A

zero modes

— ZChE‘s/SO(S [ ]()\uz +pyw+t . Mz mw .| T) (10)

X Y[b](/\gz+;zgw+...,A¢z+u¢w+...—2A|1-) \

where . g[:] (22]7)
(3] - 280 = 9726 - 280r)

A=%(l—1’)

is the usual ratio of determinants.

Consider first the fermion two-point function, with P attached to one of the

vertex operators. By U-charge conservation only ’P_'tl can contribute, and thus
A + %) $(+)
(6)" ~ { (PEVI) VPO,
2 zero modes

= ZChES/SOS)[ }(1\/_2 fz|71)- [ ](1 z,57 — 24|7) .

a,b

(11)

From

9|} |z —28lr) = enlemtimimrotnizg [H |y

follows Y{§)(z,z — 2A) ~ &%), Thus, we can use the identity (3) and the

quantum numbers just happen to be such that (4) gives”

(ww) ~ 19[ |0, = for A=0,1,T.

One might worry about what happens if the two vertex operators collide, that is

about dertvative terms appearing in ¢-¢ for z — 0. It is trivial to see that there is
12

2!/1

no such contribution, due to the fact that ( 3653% — <) acting on (4) vanishes.

* Had we chosen different spinor indices, the character arguments in (11) would have been
changed. Cancellation still occurs, as then another Riemann identity with a different T« is
relevant. We will always choose only such configurations of Lorentz quantum numbers that
allow for an application of (3).
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Consider now M additional external bosons. Only picture changed bosonic
vertices, Vo‘b={Q BRST,{V_QSI}, occur. Counting conformal dimensions, it follows
that in the picture changing operation ’Pil and 773_2 cannot contribute, so that

%é(w) — V(0,0,0|0)_1im(z_w)—%p_~ (Z)V:'nt(w) + k_v(éﬁ,{il,ﬂ}lﬂ)vint(w)_ (12)

int
Let us focus on the first term. Then, because of the complete neutrality in the
E¢/SO(8) sector any number of insertions does not spoil the structure of {11)
and thus this contribution vanishes. It is also clear that poles coming from col-
liding operators do not matter. What remains are possible contributions from the
momentum-dependent terms. Although we are considering processes with & — 0,
we must be careful [3] [12] about possible contact terms proportional to 1}5} There

are two such correlators proportional to k*. One is

M1 A
< (Ip‘?‘lv—%éf—h)) (Z) Vf%(-}-)(()) (‘P'?'lv—wl)(y) H (’p'::lvfl)(xz) >zero modes
i=1
(13)
~ 3 cnf/o®) [‘;] (—3V3z + 13y, bz ~y|7)- ¥ [:](%z, 32— 24|r),

a,b
which vanishes identically by the same reason as (11) does. The other term is

M-=2 A

2
{ Prv)@ VPO TT (PLvE) ) TT (Prva)E:)

J zero modes

i=1 i=1 (14)

~ 9 m (y1 — 2|7) Fal21 — 4anlr) |

which does not vanish identically. However, for a possible contribution there must
occur a 1/k% pole. Such a pole only obtains if vertex operators collide to produce a
massless intermediate state. This can be treated by analytic continuation [12] unless
all but one operators collide. In (14) non-zero contributions only occur for z4, z, y2 —

0 or z;,%1,¥2 — 0. Consider the first case. This configuration corresponds to the
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situation k- <Y ... >iree level Flg'k < @™ >1_l00p, and represents wavefunction
renormalization of an external leg. Hence, this term is not in conflict with the
non-renormalization theorem. The same is true for the other configuration. This

ends the discussion at one loop.

‘We now would like to consider higher genera. As long as the auxiliary n, £ system

does not appear explicitly, the correlators are readily generalized. In particular, (10)
takes the form

2k

(Hv"’“(zk)>zm o= Chf‘*lso(s)[::](z}\ﬁ ]a,z/\i‘ /am)
P

glezsf2ze k kP

c:-*;, Q;

(Z A%/@‘,E,\g/@' 2A1) ,
ko p kP
(15)
where & are the abelian differentials and P is an arbitrary reference point. For sim-

plicity we shall denote by z;, its image [ ;" @ under the Jacobi map in the following,.

At genus g, one needs 2g—2 extra picture changing insertions, say at locations
p1,...,p29—2. However, as for ¢ > 3 certain ghost correlations cannot yet be sim-
plified sufficiently as to allow for an explicit evaluation [13}[5], we restrict ourselves
to g = 2 (apart from this, our computation generalizes immediately to arbitrary
genera). Let us again consider first the fermionic two-point function. It is conve-
nient to point-split PV;’I)!(_“) so that the picture-changing operators can be treated
on the same footing. Gh;st and U-charge conservation then leaves the following list

of terms:

<¢¢>K ~ (VO VI (w) Hr(p)) = A+B+C, (16)

zero modes

t We assume the D-term [3] that contributes to < ¢*¢> to vanish.
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4 = (VT P P00 i

ero modes

B = (VY VI (w) Phi(p1) P(p2) Pla(es

zero maodes

>¢v v
=

C

I

)
(VA VP W) Phie) Pw) Platen) ),

zere modes

The situation is not as simple as for the one-loop case as the picture-changing
insertions spoil the simple cancellation mechanism. We will adopt the strategy
[4]{5] to relate the above terms not to the trivial zero of 9 [g.:;] but to non-trivial

zeroes implied by the Riemann vanishing theorem.

To this end we have to make a clever choice of locations p, so that ¥ reduces
to a phase and the sum over spin structures can be performed. The most natural
and standard selection is to take as insertion points p, the two zeroes of some

holomorphic one-form. This implies the restriction

3p+p) = Aq (17)

where

corresponds to the divisor class of the spin-% bundle S,, a being an arbitrary,
dummy reference spin structure. This so-called unitary gauge has been used suc-
cessfully in ten-dimensional string calculations [4][5]. Since there does not exist a
modular invariant one-form on the surface, it may seem that unitary gauges break
modular invariance. However, the appearance of a spin structure a is a techni-
cal artefact of our computational scheme and merely accounts for the change from
the single, invariant one-loop Riemann identity to the modular covariant set of
higher-loop identities. It only reflects an irrelevant choice of integration path in the
definition of the Jacobi images on the L.h.s. of (17) and drops out of all final results

[5], thus restoring modular invariance.



In order to treat the three picture-changing insertions in (16) symmetrically, it

is convenient to generalize the unitary gauge to

X m-2) = a0, (18)

which indicates a meromorphic gauge slice. In fact, this can be regarded as putting
the picture-changing operators at the three zeroes of some meromorphic one-form

with a single pole at z. In the limit p, — z for one p,, we recover the unitary gauge.

Using Lorentz invariance we can always arrange terms A and B to produce

| N
o
Do

o —w], ~3 + 0] + 3" pe — 2410)
for the longitudinal and spinor ghost contributions. Employing our gauge (18) and
d

this simplifies Y[%:] — ¢iT(B1b=G28) (i7 & (&1 +w—2) (therefore “unitary gauge”). Thus,

we can apply the Riemann identity (5), with coset branching function arguments

}(z — 0 - @Q) = (iT(E b= Go)—inds (na]-zz)g[

lz19)

= =T]
o) Ry

(VUaVI)

(35(~3z +wl+pm +pr—ps), ~3lz—w])  for Aand

(:}5 -3z +wl+pm), —3le —w]ipz=Fp3) for B

By (6) we see that both results are proportional to

21 2

Hde - ml0) (19)

2

ﬂ[j:;](%[—zwlipﬁps]m) = 9|

with @ = 3 or 2 corresponding to the upper and lower signs, respectively.
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To proceed we need not take dangerous limits p, — pp; rather, we can employ
the Riemann vanishing theorem. It describes the zeroes of theta functions on the
Jacobian variety. The statement is that ﬁ[g;](é‘lﬂ) vanishes on a submanifold of

complex codimension one (the theta divisor) which is generated by the Jacobiimages

—1 Pk

@) = &= Rat & (20)
J = g

2 k=1

2L 2
L~

d

of a set of g—1 points p; on the surface. Each choice for {p;} yields a zero of the
theta function. Note that any point in the Jacobian can be written like the 1.h.s.
of (20) if we increase the summation index to g. Taking ¢ =2 it is obvious that
(19) describes non-trivial zeroes of the two-loop theta function, and terms A and B

both vanish for any «.

For the “ghost term”, C' in (16), one has to work a little harder. Fortunately,
the results of [4](5] apply here. We find

v [ ]( [z — w]|2) {fi + fa&(ps)- 3}19[%] Mz + w] 4 p1 + 2p2 — 2A|1Q)
C - ?
[ ](‘-—z-{—w +Zpa—-2A[Q

IS =11

which in our gauge (18) becomes

¢ T(@b—028) ind) (A tw—ztdpa=2ps) [ 4 £ Fps }

where f; are well-defined expressions independent of spin structure. Appending

the other degrees of freedom and employing again Lorentz invariance (we can swap
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A1 & —Aq in (15)), one gets

ix(& b 6 a
C ~ ) E RE(CAZEA )Chg /SO(B)[E{](VI:?(P] — tz+w]), -3z — w}|Q)
@fezs/27s
@y.q 1
x Y[ 2] 3z — w) + p2 — pa, 31z - wliQ)

in(@5—,8) . Be/SO(8) [C
= *Z @D Q)Chxs/ ()[E](Vlg(pl—%[z+w]),p3—p2“%[z-—w]|ﬂ)
abecZ9/2Z9

where the derivative w.r.t. p3 has been pulled out. This expression coincides with
that for case B. Hence, the two-loop two-fermion amplitude has been shown to

vanish.

To complete the argument we have to include arbitrarily many bosonic vertex
operators. Ghost charge conservation requires the zero picture which, according
to (12), consists of two terms. Like at ¢ = 1, insertions of the first, neutral term do

not effect the above argument; the spin structure dependence of

-

A

3 M
(V¥ VI w) TT P TTPR V)W) ) (22)
a=]1

; zero modes
=1

K
is not altered compared to that of <¢¢> . Replace now somewhere in (22) the
first by the second term of (12), say at location y;. U-charge conservation then
demands either to replace some Pj_'l by a ’P_?_l, or some 'P_?_l by a P, at some p,.

This will change the branching function arguments like

(vu,v1) — (i + 715(91 —Pa)s¥1 — Y1 + Pa)

A look at (5) and (6) reveals that this shift is cancelled in the final theta func-
tion argument, eq. (19). However, this procedure does not iterate and, like in the
one-loop case, there occur contributions ~ k%/k? from configurations where M+1
vertices collide. But the one-loop reasoning applies here, too, and also by general

arguments [12] we conclude these must describe only wavefunction renormalization.
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We hasten to add that our results for ¢ =2 are only true up to possible bound-
ary terms in moduli space, due to the integration ambiguity [7] (which is a generic
difficulty for any kind of higher loop computation). The appearance of such terms
depends on the compatibility of the unitary gauge with BRST invariance, which
dictates the behavior of the gauge slice at the boundary of moduli space. In partic-
ular, one has to be very careful to correctly describe the limit in which the genus
two surface degenerates into two tori. In fact, it is known [14] that in this limit
the vacuum amplitude (which is obtained from the above by dropping z,w and p;)
can get a non-zero contribution due to D-term exchange if Tr Q # 0 for some U(1)
factor. We expect something similar here, too, that is a non-zero result from the
pinching limit whenever Tr @@ # 0 (then supersymmetry is spontaneously broken).
To settle this question one would have to investigate the amplitudes for degenerat-
ing surfaces and look at their factorization properties, which is beyond the scope of

the present work.
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