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Abstract

We present a formalism describing dynamical properties of Goldstone
fields in N = ! supersymmetric theories. The concept of pseudo-symmetry
currents is introduced. This allows to deal with complex extended pseudo-
symmetries of the superpotential in a similar manner as with conventional

symmetries. Within this framework, we generalize the usual PCAC relations.



l. Intreduction

In the context of composite models, N = | supersymmetric Goldstone
models have received much attention. The idea is to interpret quarks
and leptons as composite 'quasi-Goldstone fermions" [1], i.e., as super-
symmetric partners of massless Goldstone bosons originating from a spon-—
taneous breakdown of some global internal symmetry group G down to some

subgroup H. For some semi-realistic models, see [1,2].

As it turnmed out, such supersymmetric Goldstome theories have an
interesting group theoretical structure [3]. To be more specific, con-
sider a general Lagrangian involving chiral superfields ¢g (1 = flavor

index)

[ =& B Ik(E, -k - 4D R@EY A

Let A, be invariant under transformations of some global flavor group

G. In addition, we assume the superpotential W(¢¢) is such that it leads
to a vacuum expectation value (VEV} (¢?£> # 0 so that G gets spontan-
eously broken to some subgroup H. The crucial point is that since W(¢W)
contains only d% and no'g}, its full symmetry group'a is larger or equal
to the nonunitary complex exteansion of G, which is denoted by G. © gels
broken by (¢h) to 12 H> H where H is the complex extension of H.
Now, from the G invariance of W(4ﬁ) follows the supersymmetric Goldstone

equation ﬁ31

le (T)?(‘#ub = 0 (1.2)

where (T)? is a general nonhermitean T generator and m. the chiral super—
field mass matrix. It follows that for any broken G generator there exists
a massless chiral Goldstone superfield TI . Thus, the number of Goldstone

superfields is given by
Nﬁ = _-_;_ A'W(C/ﬁ) (1.3)

Note that this theorem is independent of the properties of the D-term
K in (1.1), even after the introduction of H-gauge fields [4]. Thus,
Goldstone physics is completely given by the properties of W(@;). (1.3)
suggests that the relevant coset manifold is a (noncompact) Kihlerian

extension of G/H.
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Surprisingly it tuarned out that Np is not fixed for given G and
H, in general [1,5]. The reason is that & and N are not fixed for given
G and H. Hence, the number of Goldstone superfields depends on the speci-
fic linear model. 1In principle, Nir can vary between the "minimal' case
where N = %—dim(G/H) [6,F1] over the "fully doubled" case N = dim(G/H)
to even higher values [7]. Thus, the total number of massless scalar
states is always equal to or greater than the number of Goldstone bosons
Ng = dim(G/H) since the complex scalar component T of a chiral Goldstone
superfield Tl contains two bosonic degrees of freedom. The interpretation
is that the additional scalar states are pseudo-Goldstone bosons, resulting
from the breaking of the additional extended pseudo-symmetries G/G of
the superpotential. (To define the terminology, we call a symmetry G
of the whole Lagrangian (i.1) a true symmetry, G the superpotential sym~
metry and symmetries of the superpotential which are not symmetries of
the whole Lagrangian C/G pseudo-symmetries.) For instance, in the case
where Np = dim(G/H) (if € = G, § = H) every Goldstone boson g is accom~
panied by a pseudo-Goldstone boson p s0 that T = g + ip. Hence the name
"fully doubled" case. If Ny, < dim(G/H), which obtains if H 2 H, one
speaks about a "non-fully doubled" case. Here Np £ N8 so that at least
some Tt are of the form ™ = g + ig. Of course, the total number of true
Goldstone bosons is always Ng = dim(G/H). Only Np and therefore Ny =
%‘(Ng + Np) depend on the linear theory. What case obtains in a specific
model depends on pure group theory or on vacuum expectation values. TFor
example, cousider a U(N) invariant theory in which a N-plet ¢ (N) has
a VEV. Then from (1.2) it follows that we have just N Goldstone super-
fields:

m, 0
Mo Xo = O 17, <éw>= o (1.4)
T 1%

Xa are the broken nonunitary G = GL(N) generators. Note that the Goldstone
superfields sit in a complex representation of H = U(N - 1). However,
there are also nondoubled cases (e.g., supersymmetric QCD), where the
Goldstone superfields sit in a real representation of H. On the other
hand, if one N- and one N-plet have VEV's, one obtains the fully doubled
case
Ty
0 ; - T
ch.Xa = ' \ PSS = LbmS (1.5)
Moy == Ty



where the T{ are in a real representation of H. All these issues have

been discussed extensively in the literature [3].

In this paper, we want to go one step beyond group theory. In con-
ventional, nonsupersymmetric Goldstone theories, there exists a lot of
additional dynamical information like low energy decoupling theorems,
reduction formalism involving PCAC and so on. We like to generalize
that to supersymmetric theories. For "fully doubled" cases, this has
been discussed already in [8,9]. We want to treat the general, i.e.,
"non-fully doubled" case. The main problem is that in such cases (e.g.,
{(1.4)) the Goldstone spectrum is asymmetric: (X TTa)} # (X“Tﬂljr Hence,
we have to find a formulation which takes this feature into account.

This is done in the next section where the concept of pseudo-symmetry
currents is introduced. These are related only to symmetries of the
superpotential which is important since the naive Goldstone theorem (1.2)
involves only these symmetries. In Section 3 we prove the field theoreti-
cal version of the Goldstone theorem in terms of such pseudo-currents,
verifying that they are the relevant quantities. In Section 4 we consider
current field identities and discuss the structure of Goldstone field
operators. Moreover, in Section 5 Dashen's formula involving only pseudo-

symmetry currents is derived. The last section summarizes the paper and

indicates interesting points which are not fully discussed in this note.

2. Global Pseudo—-Symmetry Currents

1"t

In this section, we introduce a more general class of "conserved"

quantities, which are related only to the symmetries of the superpotential.

We start naively by considering the superfield equations of motion

1 =2

“I}DK* + W¢, = 0 (2.1)

(Ké = 9K/3¢ We = AW/3¢ ) corresponding to the Lagrangian (1.1).

(Sgcp = iTo\ 47 (2.2)

By multiplying (2.1) by

we see that for every symmetry of W(¢))



dald = Wy b =0 (2.3)
there exists a quantity Ja which obeys a "conservation law"

D'(Ky) Sud = D(ky§ud) = O

or

-2
D J,. =0 (2.4)

where

J—m = [<q>'rq ¢)

(2.5)

Here we used the chirality property 5g¢>= 0. In the nonsupersymmetric case
there is no analogue of that, thus, (2.4) is a specific supersymmetric

feature. For canonical kinetic terms K = ¢Hb . Ja = ¢ Tad).

Now, as remarked above, if W(¢ ) is invariant under (unitary) trans-

formations corresponding to some (compact) Lie group G

S6 = NaSub = idTd -0

with real parameters ?‘a and hermitean generators Ta’ it 1s also invariant
under these transformations with complex fka. That is, W is invariant under
the non-compact non-unitary complex extension G. Actually, the full invari-
ance G of W may even be larger than G [ 7). Hence, from (2.3) it follows

that for any such symmetry there exists some "conservation law™ (2.4).

There appears a slight complication. In (2.6) the generators Ta are
hermitean, suggesting the current for canonical kinetic terms Ja = (bTa¢

is real

:ra = jm (2.7)

However, since ‘A 5 2re complex, we could equally well take a nonhermitean
complex linear combination of the Ta as basis of the Lie algebra of E}
e.g., the nophermitean step generators in the case of G = SU(N), G = SL(N).

Then (2.7) is not fulfilled. It will turm out later that it depends on



the specific problem which choice of basis is suitable. Therefore we had

better use a notation which does not specify the basis; just define the

general G-generator as an unspecified complex linear combination

-Tl = >\Q-T;. + -73T = 7;3
(2.8)

N A e A W

1

and similarly
Ts = Xe Ju
& = T , (2.9)

To understand how the quantity J, 1is related to the usual hermitean

conserved current, we repeat our arguments more carefully, employing func-

tional superfield formalism. The global symmetry operator, which determines

the variation of the action [' under a variation of a chiral field ¢ is
given by

Q,(¢) = soﬁx o, (9) = lds J*‘#S% (2.10)

where dS = dqxdze = dax(—l/a D2) is the chiral measure. Acting with

dA(¢>) on [T ylields basically the equations of motion for ¢ :

L:(fﬂ,’?: ~ D D(K N Cf’) —'Dlw NS (2.11)
A [ e ¢ Y 4: b3
Consequently, we have as Ward identities for the pseudo-currents J

“ID S W) + LD DT, - &, (0]

h

9, {2.12a)

v

~ DG W@) - DD - da () = 0 (2.120)

A A A T
Defining the full variation by W, = 'A)A(¢) + #\)Af(d?‘) Egs. (2.12) combine to

—_ . -2 A
AOSW DN - (VT DT ) = 45 0



A
Thus, using the equations of wmotion kh»f[ﬂ = 0, there is for any sym-

metry of the superpotential a generalized pseude—conservation law [ F2]

Tl —t 1= (2.14)
DDTIT, ~DDIy = O
(In fact, from (2.4) we have the even stronger statement 52Jk = 0.) (2.14)

is more general than the usual conservation law. Define hermitean (J: )

and antihermitean (J; ) currents by

+

j‘)‘...

i}

(2.15)

which represent vector superfields. Then from (2.14) it follows on shell

A
where w“*f?= 0:

-y -
[0, 8)T} + /D, D17, = 0 (2.16)
or, defining
+ ! ' =
I\r = 3 g;«[DJ‘Dé] Tj (2.17)

s0 that
+

A U - — Tt
e [0 D]T, = -9 Jap (2.18)

one arrives at

ar$:~ LD, 3T, = 0

(2.19)

Clearly, this constitutes a true conservation law only if the second
term vanishes. To make contact with the usual curreant conservation laws,

note that the Lagrangian (1.1) can be written in the form

N T - (2.20)
L s DL- ¢DdL
where

‘,__‘L
L=-~3DK+W Dyl =0 (2.21)



Varying L1eads to the coaventional identity for hermitean currents

_ P~ tomu. A
L = 7 TA,_ + LJA[—', Ae iR (2.
or
; 1 ‘ ~1 - - "i‘ - - (QwVv, A )‘_’
where
—— gy, ( s —
“JA = 3 ( h:¢.71 ¢ + ‘P _[;1(¢ )
—J-(mv-= -4 (oc-'t[D j_]j(.w. (2.
e ¢ <y Y A
are the conventional real vector supercurrents. Thus any true symmetry
of the whole Lagrangian leads to a true conservation law
P Coms (2.
R PR
r\
Comparing (2.23) with (2.13) we see that for real % J: = Jionv. and its
divergence is related to the variation of the € noninvariant part of [ :
_l— 1 -2 = { oot ‘-b 3 ¢
16 {D!‘D}j—/\ -‘j—‘)"{DID‘)(S},A"k((“L) 2.

However, for canonical kinetic terms X = ¢¢ the variation of {D2,52} K

vanishes

[, BV (T ~Te)d = 0

because of the chirality property 53¢?= 0 and the equations of motion

(2.

F]-)ZE) Tn§ = Wi T, tiv = §, W =0, assuming also d,W = 0. This is not sur-

.. . . . . + - . ]
prising since for canonical kinetic terms J, = ¢ U&ff&f )¢ is a hermitean

22)

.23)

24)

25)

26)

27)

G-current for which (2.19) should turn into a true conservation law (2.25).

Moreover, for canonical kinetic terms we have a conservation law (2.25)

also for the non-unitary €/G currents. This is due to 3; = J, in that

case. That is, from Dzﬁz

J, =10 and DzﬁzJ# = 0 it follows also EZDZJA

0



by conjugation. Defining J,, by (2.17), subtracting ﬁzDZJ from DzﬁzJ
¥y jug 8 Yo A A

and using (2.18) one obtains

'arj:\r = 0 4 e ¢ (2.28)

}

Hence, for canonical kinetic terms there is for any superpotential symmetry

a true conservation law.

Imagine now gauging some subgroup S of G. As it is well known, this

breaks G explicitly down to some subgroup §$'2 S. In other words, the con-

nv.

. co . T vV
ventional currents Jy, get a divergence (we set K = $ e ¢ )

LY. i T -1 v,
WL s -+ [D, DT

I USRS A (2.29)
p (6 ) SL{D'DB ¢Le,T.T¢

&~8=0 6=8<0

and are modified to

oV - v
]-;. - ‘l.L CP { e } T)Is ¢ (2.30)

(V are the S gauge fields). The unbroken global group §' is defined to

be generated by those T, which obey [V,TA] = 0, so that the corresponding
currents are conserved. Thus, the remaining symmetries G/S' have become
pseudo-symmetries. However, the pséudo-symmetry conservation law (2.14)
remains unspoiled [F3], the only effect of gauging i1s that the pseudo-currents

get changed to

— v ~ — v
j_;\ = (P < T,\ (‘P 3_’\-! CPT)* e “P (2.31)

)

]

This certainly was expected since (2.13) involves only the superpotential
symmetry $. But that is not changed because gauging affects only the D-term

k(¢ ,¢). 1In short, gauging S results in G—»S' but G -—» G.

We can summarize this section as follows: For any superpotential sym-—
metry & there exists a generalized pseudo-conservation law (2.14) which
however does not imply a true conservation law (2.25), in general. Only
in the case of canonical kinetic terms or (unitary) symmetries of the whole
Lagrangian are there true conservation laws and thus conserved charges.

Corresponding to non-unitary symmetries 5/G (or E/S' in the gauged case)



there exist no true conservation laws for non—canonical kinetic terms.
However, this does not imply that Eqs. (2.12)-(2.14) have no physical import-
ance. In fact, we claim that at least for Goldstone physics precisely the
pseudo-currents J, are the relevant quantities, together with the Ward
identities (2.12)-(2.13). This is suggested by the fact, as already noted

in the introduction, that the Goldstone spectrum depends only on the broken

»n
G-generators, i.e., on the properties of the superpotential.

3. Goldstone Theorem

In this section we show that the weaker pseudo-conservation law (2.12)
is sufficient to establish Goldstone's theorem, indicating the importance
of the pseudo-current J, . {(In Section 6 we will discuss shortly another
class of Goldstone theorem.) Consider (2.12a), assuming some superpotential

symmetry:

E DB, - A(ed [ =0 (3.1)

Introducing sources for J, and ¢ we define the generating functional

TWIT, g ] ,-{P(bj+_(astr.p¢+$a§f¢$+javn“j} 5
0 = {[do1e >
Using (3.1) we get as Ward identity for W[33f3¢]

. _t S A (3.3)
(_'_Dmm__ ~ 0, (Tp) ) WiH,3) = 0

where

. $
LJA( Je)) = “i;Dl(')cS,\ j@(l) ﬁ(t) (3.4)

and (1) denotes some point in superspace. Differentiating (3.3) with respect
to Jg (2) yields
o s
- —_ | ra
J—‘D(\)Dlm — + gD T, Sy = W =0 .5
e § T2 $T §Te(1)
~

Here &(1,2) is the chiral delta function. Integration over x  and writing

l



VEV's yields finally

{—',;gay,b’tnﬁ“’m@wm\m4»m§|0> = T (o>
Or=0

Thus, for every (nonhermitean) g'generator T, which is not annihilated

by <$> the L.H.S. of (3.6) has to be non-zero. Now, because of super-

space translation invariance one can write
Lo T T, (% 8, &), 6, 81410

= axp [ (6678, + 6,675, -26,65,) % } (3.7)

'<0!IA(0,0(0) ¢(XZ-'X{,GL‘6’,O)‘O>

. . \ =2 .
assuming unbroken supersymmetry. Acting with D™ on (3.7) and transforming

2
D
Lo momentum space, one obtains for the Si = Gi = 0 compenent

1.2 (06763,
FT DD e (ol T (90,0)¢(-9)]0>
6=8=0
2 -1 0676 by
= D(«)yD(k)y e f(e) (3.8)
6= 0
'
~ K
But because of (3.6) this does not vanish for k%—o 0. Hence we conclude
that there is a 1/k° pole in O[3,V (2 - Dj0O>, indicating a massless
excltation coupling to the current Jy - This proves the Goldstone theorem:

for every broken G generator T, there exists a massless excitation coupling
to J, . Now, as we mentioned in the introduction, T, £ $> # 0 does not
necessarily imply T» {$> # 0, see e.g. (1.4). Therefore the Goldstone
excitation does not, in general, couple to Jye 5 t.e., J, and Js are really

independent quantities. This leads to relate Jy and Jg¥ separately to



_]]_

different Goldstone interpolating fields 77; and 7T . Before this is
done in the next section, we remember that our starting point, (3.1), remains
unchanged if we gauge an unbroken subgroup S € H. Thus, the Goldstone spec-
trum is not changed by this gauging, i.e., the radiative Goldstone mass
shift is zero. This reflects just the nonrenormalization properties of
massless fields [I!], which are, however, not trivial if one deals with
bound states. For other non-perturbative proofs of the absence of radiative

mass shift for supersymmetric Goldstone fields see fz2,171.

4. Current-Field Identities

In conventional theories there are the usual PCAC current-field identi-

ties which look close to mass shell
i  lkx
(ol Top 1T = =ik |, T (LT

ik
LA Ta, 0N[> = ~wt T (T e G.2)

{we normalize Tr(TaTb) = éa This implies the real Goldstone interpolating

B
field operator to be

-

w fr

and f; ). We wish to generalize this relation.

A
mw, =

’Df':r;r‘ (4.3)

(suppressing indices on My
Since our pseudo-currents J are "one-half" of the usual hermitean currents,
P A

we are led to identify near mass shell

‘ = ;L(X
<o -_Tif(blb1TA)(Y, o(o){n,\r> = —‘i MATTL fa T (T ) € (4.4)

suggesting that

.

2 _ t 2.1 —~
Mi(x,6,8) = g DD TN(x8,8) 4.5)

is the antichiral interpolating superfield operator. However, as noted

in the introduction there are "nmon-fully doubled” cases where the Goldstone



superfields sit in a complex representation of H. 1In such a case mgy = O,
that is, there exists no real PCAC. Eq. (4.5) is not well defimed in such
a case. Of course, even in conventional nonsupersymmetric PCAC, m, may
be regarded as a regulator which appears in such a way in physical matrix
elements so that the limit m,—% 0 can be taken at the end of the calcula-
tion. Thus, one may expect that this happens also in the supersymmetric
case. On the other hand, one can perform calculations using (4.1) instead
of (4.2) without referring to m, explicitly. Thus it would be useful to
have a supersymmetric generalization of (4.1). This will be discussed

further below.

The problem of m, = 0O can be by-passed also in another way. As it
will turn out below, inspite of the form of (4.5) only the true Goldstone
boson component operators are proportional to I/mﬁ . For the fermionic
components the I/mi dependence cancels out. Now, for the bosonic compon-
ents of TT, my # O is not forbidden by any chiral symmetry. Only the quasi-
Goldstone fermions may be chiral protected. Thus, we can regard m, # O
as an {explicit supersymmetry violating) bosonic regulator mass which is

set to zero at the end of a calculation.

(4.5) can also be derived by acting with the anti-chiral projector

1/]6E3'4D252 on the m, independent identity

-'lled"’é-:)r KX

ol Thix,8,8)Imy> = ~i fH TW(hiTvle e (4.6)

This is a more fundamental relation, from which generalizations of (4.1)

and (4.2) can be derived by acting on it with covariant derivatives. One
can immediately identify the component interpolating field operators. For
simplicity, we focus on the case of canonical kinetic terms in the following.

With the definition of the components of the current superfield

T, ()

n
A
»
-+
@
R
i
»
+
Pt
'y
b d

+ YL B T + 1 BEeTA, v Lo A,



one obtains

[k
Co| GO ITe> =-ifq T(BTe)e @

—_— l.lfx
Lol T YD = 2kax fn T(DTYE  4.9)

Thus, the anti-quasi-Goldstone fermion operator is given by the spinor current

A
— J ol
= (4.10)
,l]‘l)‘ _(‘n T)\

In fact, there is no dependence on my , so that this relation is well defined
even for chiral protected fermions. On the other hand, the bosonic operator
is oot given by just C, . (4.8) involves only the lowest component of J,

and does not include derivatives. Acting with DD on (4.6) gives the momentum

dependent identity, genmeralzing (4.1):

"k x
Lol B0 + K GO TS = =20 b £ To (T e G.11)

The second term of the L.H.S. contains just the momentum-independent ident-
ity (4.8). Thus, one obtains for the anti-Goldstonme boson operator near

mass shell

A-)( -~ ’ i l
7 = —_— I + —
Ca M‘nl Fﬂ ’a Ar FT‘ C% (4.12)

and for its real and imaginary parts

""‘*al\cn %(ﬁf) = "BrI: (A_zt_)\*) t ;WHZC"(%;”) (4.13)

ma fo e (T = - 'D’”J_’,-('\?‘)-!- g C+(’Hj) (4.14)

A

The R.H.S. of (4.13) and (4.14) are precisely the 8 = ® = 0 components
of (2.19) and its conjugate, respectively. One can interpret (4.13) and
(4.14) as follows: The glﬁhlparts represent just true Goldstone operators

[F4] (§), as can be seen from the derivative low energy decoupling property.
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The C parts are pseudo-Goldstone operators (5). Thus, in general, both
real and imaginary parts of TU have both pseudo- and true Goldstone boson

properties.

Now, we come to an important point. Namely, the question which basis

{Tg& i1s to be chosen for a specific problem. One has to distinguish two
cases. First, as reviewed in the introduction, there exists the "full
doubling" case with equal numbers of pseudo- and true Goldstone bosons.

. - 0 . - - [ad
This situation precisely obtains if for any broken G-generator

(4.15)
A <> +0
also its hermitean conjugate is broken
(4.16)
T {d>+ 0
This means the theory is symmetric in Js and Jy [F5]. Hence, we can
choose a hermitean basis for the broken generators, i.e., Jn = Jx =
J; = Jionv > J; = 0 for canonical kinetic terms. Then we regain the con-

ventional case which has been studied already in [8,9]. From (4.13) and

(4.14) it follows

2 . A - Cobv, (4.]7)
& (TCA) 3} -~ Fr uﬂn D ]-;\

a ) ' Lomv.

It T g = - T
fua (70) 2 . Ca (4.18)

Thus, in the "fully doubled" case the real part of T© is the conventional
Goldstone field (g), which couples only derivatively. On the other hand,

the imaginary part does not couple derivatively, so that no low energy
decoupling theorem is associated with it. We can identify it with a pseudo-
Goldstone field (p), associated with the broken generators of 7/c. (4.18)
can also be derived directly from (4.8) which implies because of the behavior

under complex conjugation, i.e., parity

(4.19)
Lol GV P> == fn  LolCa(o)loys=0

and combined with (4.11) [F6]



Lol Ty (]9, == tg o ol Tn ()1 12> 20 (.20

{4.17) and (4.18) reflect precisely the well-known fact [1] that the low
energy interactions in the sector of true Goldstone bosons are uniquely
fixed in terms of G/H. The interactions of the pseudo-Goldstone bosons
are not determined by the geometry of G/H and depend specifically on the

linear theory.

Now we turn to the "non-fully doubled" case, for example (1.4). Here
the number of Goldstone superfields is less than dim{(G/H). This is due

to the fact that

(4.21)

Tx > #0
but nevertheless

(é> =0 (4.22)

From the Goldstone theorem it follows that Jy is a "broken" current while
J¢ 1is not. Thus, we have only a Goldstone superfield TT} but no Ttw.
Because of this asymmetry, we cannot choose a hermitean basis for the broken
G-generators, i.e., J, 1is a pseudo-current. From (4.13) and (4.14) it
follows that the real and imaginary parts of T¢ do not obey (4.17) and (4.18)
any more. At first sight it seems that because of (4.13) and (4.14) both
real and imaginary parts contain both contributicns from true ( g“Ju) and
pseudo- (C) Goldstone bosons. However, since only Jj is broken and Jy»

not, we have f. # 0, fn” = 0. From (4.13)

- * C ol = oa-AF
V”WL{nA R (1) = ~ B"T;(*;") Folmg €Ty G2
follows

A ¥ .
0 = W‘; \Cn; Re (Tew)= “Drjr+(A;A ) - Wﬂ (’\ ) (4.24)

which fixes a relation between ‘QHJ (XN+X) and ¢ (X =X, similar

arguments apply also to Im( Kb\) Thus, we can eliminate € ( A - A¥) in



(4.23) and obtain for the real and imaginary parts of 7T,

il

A — | A
@c(-ﬂ:x\: mgrj:(A+A*) 2@)\“3

(4.25)

n

/ A { - — * oA
i (Ta) = 3 97T (AN = 20 gueae

Both behave as true Goldstone bosons, as it was expected by simple counting
arguments indicated in the introduction. Moreover, what happens if one
gauges an unbroken subgroup S &£ H? It is clear that some of the Goldstone
bosons turn into pseudo-Goldstone bosons, since some symmetries transform
into pseudo-symmetries. This was discussed in Section 2, where it was shown
that the only change is that the current Jx is now of the form (2.31).
Hence, the PCAC~relations (4.4)-(4.6) remain unchanged. The pseudo-nature
of the Goldstone bosons appears only at the component level. For instance,
it follows from (2.29) that in the fully doubled case the true Goldstone

operator (4.17) is modified to a pseudo-Goldstone operator:

2 2 4 ' o eV (4.26)
frwd d, = =TT+ 55 (DD ble, TUH)|
=60
To summarize, we derived SUSY generalizations of the conventional PCAC current

field identities. These generalizations imply the usual true Goldstone

low epnergy theorems and weaker theorems for pseudo-Goldstone bosons.

5. Dashens's Formula

We now want to derive a SUSY variant of Dashen's formula [14]. For
fully doubled cases, this has been done already in Refs. [9,10,15,17] .
OQur derivation, however, applies also to the general case. In some parts,

we follow the strategy of [10]. To begin, consider the Green's function

de, Lol TL{DW BT Sy W)Yo (5.1)

Fd

where 5XW(2) # 0 expresses the explicit breaking of the global symmetry G.

Using the Ward identity (2.12a) and the action principle



_]7_

Colt{s¢ Elxtlo> = ide(r{ie fXy10> 2

and noting that {(see (2.10))

-~ ":.IF S AX, <O, T{DlCl)(SA 4’(!)5—“;—0—)(5,\’[«\)(2”]}’ o>

A (5.3)
= Lo| Lyx(¢) Sy W(Ylo> >

i

(ol Sy Sw W |oe>

one arrives at

¢

Té SJ)([(OIT{Dl(l)'B‘lC()TA(” Sy W3 (o>

= “#SJY‘(olT(DL(l)éA LJ(;)CSAfLJ(L)}|O> (5.4)

t o Lol Sx S lW(odie>

Now, we transform to momentum space and insert Goldstone intermediate states
into the first two terms, saturating the spectrum.

on shell yields

Comparing the residues

FT (75 <ol DB Ialm><n] Svlo> )

(5.5)
2
< F1 (4 <ol PERUITS Lrl Syl 10> )
Inserting the current field identity (4.4) we have, therefore,
2 z 5.6)
2o | DSy WEIRD = 2y f4 (

Taking now the zero momentum limit of (5.4), the first term vanishes assuming

no massless pole because of the perturbation 5gw # 0. Hence

J

LLolBoWIn> L crlifywie> = - idel nvwion 7
13

in [10] it was shown that



ol Satuln> |t = ‘JTHI | o] D Salolme> " (5.8)

Combining (5.6)-(5.8) yields finally, after introducing indices on f7r and mp,

(e de = 7 <ol 3 S () o> (5.9)

as generalization of Dashen's formula. It has the usual form [9,10,15,17].
But its derivation was more general so that it is valid also for these
"non-fully doubled" cases where Goldstone superfields are real under H.

Of course, in cases where Goldstone superfields are complex with respect

to H, my, = 0, that is, both sides of (5.9) vanish identically. As indicated
in Section &, in (5.7) and (5.8) My should be regarded as a bosonic regula-
tor mass which is finally put to zero, so that (5.7) and (5.8) are well
defined. We want to note that although one could replace J,W by o0xL in
(5.1), one could not use (5.8) to eliminate Zol&LIn> in (5.7). Thus,
according to this derivation, Dashen's formula involves only the super-
potential and not the whole Lagrangian. Of course, this is not a proof

but it is plausible since as stated above, the Goldstone spectrum depends

only on properties of the superpotential.

6. Summary and Further Aspects

In the foregoing sections, we emphasized the relevance of global super-
potential symmetries in supersymmetric Goldstone theories. We introduced
pseudo-symmetry currents obeying generalized conservation laws. These pseudo-
currents are basically "one-half" of the conventional hermitean currents;
this feature is essentiai if one wants to describe Goldstone fields which
are asymmetric, i.e., non-real with respect to the unbroken subgroup. More
precisely, for every symmetry of the superpotential there exists such a
pseudo conservation law. Of course, among these superpotential symmetries
are the "true" symmetries under which the whole Lagrangian including D-terms
1s invariant. For these symmetries, the pseudo-conservation laws turn into
conventional current conservation laws, associated with conserved charges.
However, we showed that in fact just the larger class of pseudo-symmetry
currents is relevant for Goldstone physics. This was proven by deriving

Goldstone's theorem using the more general Ward identities for pseudo-symmetry
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currents, which involve only the superpotential. Specifically, gauging

an unbroken subgroup does not change the superpotential symmetry. Thus,

the pseudo-current conservation laws are not affected. Then, by Goldstone's
theorem, this immediately leads to Ehe conclusion that Goldstones get no
radiative mass shift by gauge fields. Moreover, we presented a general
framework of supersymmetric PCAC. Qur formulation also applies to cases
where the number of chiral Goldstone superfields Ny differs from dim(G/H).
The structure of Goldstone field operators comes out as naively expected:

In the "fully doubled" case where Ny = dim G/H, the real part of the scalar
component is just the usual Goldstone boson, subject to low energy decoupling
theorems. The imaginary part is a pseudo—Goldstone boson associated with
the breaking of pseudo-symmetries of the superpotential. Its interactions
are not restricted by strong low energy theorems. In cases where
Ng < dim(G/H), we showed that both real and imaginary parts decouple at
low momenta, which is consistent with their interpretation as to be both
true Goldstone bosons. Finally, we derived a further generalization of

Dashen's formula, valid for all values of Ny -

Of course, there are many further aspects which were not discussed
yet and some of which are presently under investigation. For instance,
. . . ; . . conv.
in [8] it was pointed out that if the conventional hermitean current Js

had a vacuum expectation value,

ol Torlo> + 0 (6.1)

peculiar things could happen. Now, looking to the matrix element of con-

ventional currents

P Lol T{Ar T T e > (6.2)

and using (2.22) and the action principle (5.2) one immediately gets some

sort of Goldstone's theorem:

ke Lol T{TE T Y 10| = S dol T 10> 60

’\/
r O=6:=0

Thus, for any symmetry broken by (6.1) there has to be a massless excitation
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conv.
Xr —
argue that this excitation belongs also to a real supermultiplec TT =TV ,

coupling to Jionv. and 'BHJ which however are both real. Hence, we

i.e., to a new kind of supersymmetric Goldstone excitation. Its structure

should be equal to that of the symmetry breaking field Jg?nv.

Another point is the question of anomalies: are there anomalous con-—
tributions to the pseudo-current Ward identities (2.12) at the quantum level?
In the case of supersymmetric QCD it is well known that the anomalous con-

tributions split in fact into two parts [16],

opi [

[

QA+ a0

(6.4)

G(A v+ G (R

where A is the chiral superparameter of axial gauge transformations and

G(A ) the generalization of the chiral Adler-Bardeen anomaly given by [16 ]

G(A) = N\ as o (AW lu ) (6.5)

32t

(Here N, is the number of colors and Wx 1s the SU(N)V chiral field strength
spinor.) Thus, because of the separation of A and K dependent parts in
(6.4) we argue that our pseudo-current conservation law (2.12a) gets anoma-—

lous contributions of the form

11 Nc .1 <
DD T, = -EEFFID T (Ta b LJd) (6.6)
The implications are not clear yet. Perhaps, one has to extend the concept

of anomaly matching. We hope to come back to these issues in a further

publication.
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Footnotes

[FI]

[F2 ]

F3 ]

[F4 ]

[F5 ]

[F6 ]

This case cannot be realized by a model of type (1.1). However,
after introduction of gauge fields it is possible in some cases

[6,4]. Of course, a necessary condition is that G/H is Kihlerian.

This generalized divergence is a sum of "counting operators" [ 10]
which vanish upon using the equations of motion. This may lead
to simplifications in calculating Green's functions, as was empha-

sized 1n [10].

In fact, after introducing S gauge fields there are additional terms
in the Ward identities (2.12)}, proportional to §V. However, in

the context of Goldstone physics we are interested only in the broken
global ﬁ/g pseudo-symmetries since broken local symmetries S do

not lead to Goldstone fields because of the Higgs mechanism. But

for these global G/S symmetries §V = 0. Thus Eqs. (2.12) remain
unchanged for glg'symmetry currents. Note we write S instead of

S since the full local symmetry is the complex extension of S.

Strictly speaking, if my; # 0 all Goldstones are pseudo. However,
we use the terms true and pseudo- Goldstone bosons according to

their origin in the massless limit, i.e., true or pseudo- symmetries.

However, in the general case the VEV's in (4.15) and (4.16) need
not correspond to the same field. Thus, T, and T, may be broken
at different scales, implying fn* # fﬂr . Then the theory is

not symmetric in J, and J . We assume here that fn, = fma which
is implied automatically if e.g. (¢:> is in a real irreducible

representation of G or G/H is a symmetric space [13].

For mp = 0, both equations in (4.20) look equivalent. However,
the last relation should be interpreted that there is no one-particle

state Ip;> coupling to 3r}br , contrary to |gi>
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