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1. Introduction

In the early days of string theory it was considered a major embarrassment when it
turned out that string theories could only be formulated consisfently in 26 or 10 di-
mensions. The revival of interest in the subject was for a small, but not unimportant
part due to a change in attitude towards extra dimensions, namely the acceptance of
the idea that they can be compactified. This idea dates back to the first half of this
century, but received serious attention only during the last ten years, after the end
of the first string era. When strings were reconsidered one initially attempted to
compactify their field theory limits, with the help of the technology developed during
the past decade. More recently the attention has slowly shifted towards more “strin-
gy” compactifications.

Actually the concept of a critical dimension for string theory is a misconception.
This is clear once one realizes what this concept is based upon. All string theories
which might be relevant for four-dimensional physics (and this certainly includes the
ones considered in this paper) | are based on just two conformally invariant
two-dimensional field theories. In conventional terms, one consists of 26 bosons
whose conformél anomaly cancels that of the reparametriz.ation ghost; the other is a
supersymmetric model with ten bosons and ten fermions, cancelling the anomaly of
a reparametrization ghost and a superconformal ghost. One may use either one as
the left-moving or right-moving sector of a closed string theory. The space-time di-

mension is not simply the number of bosons, but is determined by how many of the



bosons play the role of space-time coordinates. Of course this is not just a matter of
choice, and one has to respect the consistency conditions of the interacting theory.

The compactified bosonic string may be regarded as a string theory formulated
in less than 26 dimensions, or as a string theory in 26 dimensions, of which some
have been compactified. The latter point of view is already less appropriate for the
bosomnic sector of the heterotic string [1] or a Narain-type [2] “compactification” of
the bosonic string. The latter differs from ordinary compactification of n dimensions
because left-moving and right-moving coordinates are treated as independent. It is
difficult to see such theories as 26-dimensional strings in compactified space-time,
since one cannot compactify n space-time dimensions on a (n,n) Lorentzian lattice
without the notion of strings.

The theories we will consider are a further step away from compactification. Al-
though there may be some way to regard them as compactifications of
ten-dimensional theories, they are far more easily described as four-dimensional
string theories. The starting point of the construction is a formulation of
two-dimensional field theories in which all fields are bosonic. Bosonization of the
Neveu-Schwarz-Ramond fermions has been studied recently for two entirely differ-
ent purposes. The authors of [3] [4] were interested in the resulting simplifications of
superconformal field theory. The authors of [5] [6] used bosonization as a first step
towards a construction of fermionic strings from the bosonic string. Thesg two ideas
play a crucial role in our construction, and all theories we will obtain can be regard-

ed from both points of view.



Cohn et. al. [3] observed that the bosonized fermions plus ghosts of the su-
perstring can be described by an odd self-dual Lorentzian lattice T's | with metric
(+ + + + + —). This was extended in [7] to heterotic strings, where also the relation
of the self-duality of the lattice and modular invariance was understood. It was
shown that the “0ld” EgxEg and SO(32) strings, as well as some of the new ones,
such as the O(16)xO(16) theory can be described by odd self-dual Lorentzian lat-
tices T'jg.5 1 with metric (—)16(+)5(—-) (the semicolon separates left and
right-movers). Such Lorentzian lattices are unique up to Lorentz transformations,
but not every Lorentz transformation gives a sensible theory. The lattices that do
give sensible 10-dimensional theories were classified in [8] by mapping the odd
self-dual lattices to even self-dual Lorentzian lattices r16;8 , which in turn could be
mapped to the Niemeier lattices T4 . We will give a brief summary of these ideas in
section 2.

It was also suggested in [7] and [8] how this construction could be applied in
10 —d dimensions by extending the lattices to incorporate d “compactified” bosons.
In that way one is led to consider odd Lorentzian self-dual lattices I'1g4+d.:5+d,1
which can be mapped onto even Lorentzian self-dual ones T'yg + 4.8 +d- An inter-
esting fact iS that a priori there does not seéfn to be a reason why one could not get
chiral theories. In Narain’s construction the world-sheet fermions are compactified
trivially on a torus, and this prevents the appearance of chiral fermions. In the
theories we consider the world-sheet fermions are entangled non-trivially with the
bosons, and the argument is no longer valid. The purpose of this paper is to explore

these lower-dimensional theories.



Similar ideas have been discussed by Kawai et. al. [9]. Their starting point is
exactly opposite to ours, and is based on a fermionization of all fields except the
space-time coordinates. These authors have already demonstrated the existence of
four-dimensional chiral theories in [9]. In a recent paper [10] they have bosonized
their construction and have also obtained a lattice formulation. Their lattices are
different from ours, and we believe that our lattice formulation (and in particular
the even self-dual one) has considerable advantages. The difference is however not a
fundamental one: In section 2.3 we will show that the two approaches lead to the
same theories.

The only new ingredient (in comparison with [7] and [8] ) needed in the con-
struction of theories below ten dimensions is a mechanism to maintain world-sheet
supersymmetry of the right-moving sector. In a completely bosonic formulation one
needs a bosonic realization of this supersymmetry, and one cannot expect this to
emerge automatically. Indeed, in [9] it was found that an additional constraint is
needed, and an elegant formulation of a sufficient condition (the “triplet constraint”)
was given. In section 3 we will show how one can arrive at the same condition by
requiring that only massless chiral states appear in the spectrum, and no massive
ones. Thus all massive excitations of these chiral ground states must cancel or pair
off, no small feat in a theory with an infinite number of excitations.

A consequence of this is that the chiral partition function is a holomorphic
modular function, which is subject to the same classification theorems which apply
in ten dimensions. In general, partitions functions of strings below ten dimensions

are not holomorphic, and such functions cannot be classified.



In section 4 we discuss the spectrum of the theories we can obtain. Here the use
of even Lorentzian lattices turns out to be extremely helpful, since many aspects of
the spectrum can be directly related to length two vectors (roots) of the lattice. For
example, the presence of N=1,2 or 4 supersymmetry in four dimensions can be re-
lated to the presence of Eg, E7 or Eg sublattices, in which the space-time lattice is
embedded.

In section 5 we show how large numbers of chiral four-dimensional (and other)
theories can be constructed from the Niemeier lattices. It is also made clear that,
unlike the ten-dimensional case we obtain only a very small fraction of a finite, but
presumably extremely large set of theories. Some examples are presented in section

6. In section 7 we formulate some conclusions.

2. Bosonic constructions
2.1 The covariant lattice approach

To discuss string spectra, the covariant lattice approach [3] [7] [11] is particularly
useful. By “covariant” we mean that the charges of the bosonized fermions of the
NSR-Model are combined with those of the bosonized superconformal ghost system
into a (self-dual) lattice. In order to review this approach, we focus on the case of

the ten dimensional spinning string and superstring.



Physical states are generated by covariant vertex operators V() at zero momen-
tum, acting on the SL(2,C) non-invariant vacuum [0> = c(0)]0> SL(2,C) © repre-
senting the reparametrization ghost. These operators have the form (cyy denotes a

cocycle-generating Klein factor):
V(@) = (derivatives) °e7"Heq¢(27cw s, W= (AQq). (2.1)

Here, ¢ is part of the superconformal ghost system B, y with By = d¢, and H de-
notes a five-vector of bosonized fermion coordinates, i:,sz:,sz'l = 9HI. In 2.1), A
denotes a vector of the O(10) weight lattice Ds. Since the vacuum |0 > has level —1
while expA°H and expq¢ have conformal weights 1 /2?\2 and —1/2q(q+2)?, respec-

tively, we have for the mass of a state generated by Vi
1/8m2 = 1/2A2 — 1/2¢2 — g + N — 1, (2.2)

where N denotes the total oscillator number (number of derivatives in (2.1)). In the
following discussion, we ignore the effect of oscillators.

Let us now discuss the spectrum of the covariant spinning string [11]. The pur-
pose of the factor expg¢ is to provide the correct ‘vacuum’ state for expA*H to act
on; it is well-known [4] that the vacuum states of the spinning string are character-
ized by non-zero Bose ghost sea charges |[g> = expqel0>. For instance, the ta-
chyonic ground state of the spinning string is given by | —1> = exp(—¢)|0 >, while
the massless vector state is given by |g,— 1> = exp(u-H)exp(—¢)|0 >, where p is an
O(10) vector weight. More generally, all states in the Neveu-Schwarz-sector have

ghost charge q=—1, and are built on the vacuum |—1> with mass

The linear term in g arises due to the holomorphic anomaly in the ghost number current [4].



—1/2q(q +2)—1= —1/2. On the other hand, in the Ramond-sector the states are
build on exp{—¢/2)|0 > with level 3/8—1 = —5/8. This is precisely the value need-
ed for the physical ground state |a,—1/2> = exp(a*H)exp(—¢/2)l0> of the Ra-
mond-sector to be massless, as the O(10) spinor weight obeys a2/2 = 5/8.

In general, all states in the Neveu-Schwarz- or Ramond-sectors obey |A,g> =
ltensor,—1 > or Ispinor, —1/2 >, respectively [4]. However, g=—1 or q= —1/2 are
not the only sectors in the theory. Since in operator products (<w,w'> =

AN —qq)!
VD Ve (0) ~ 25V W 7V, 4 e (VW) (2.3)

the vectors w and v add, intermediate states factorize in general on different than
the canonical ghost sea levels q. Thus the Hilbert space must be extended to include
all ghost charge sectors. However, as discussed in [4], sectors differing by mnteger
units of q are physically equivalent and related by the ‘picture changing’ operation.
In other words, any physical state has a representative in each sector g mod 1, so
that Neveu-Schwarz- and Ramond-states are characterized by qeZ and qe Z+1/2,
respectively.

Allowing thus for arbitrary ghost charges q, we find that the vector w=(A,q)
belongs to a lattice extending Ds, on which all vector additions corresponding to
operator products are allowed. From (2.3) it is clear that the natural inner product
on this lattice is characterized by a Lorentzian metric (+ + + + + —); therefore, let

us denote it by fS,l-

1The minus sign arises due to the opposite statistics of the ghost; € (v,w) below is a cocycle phase.



Since all components of WGT‘S’I are either integer or half-integer, we can define
conjugacy classes (0),(v),(s) and (c) for TS,I [81 [11], analogous to the O(2n) weight
lattices Dy,. In particular, (0) contains the massless vector |g,—1> of the Ne-
veu-Schwarz-sector, (v) contains the scalar tachyon |—1> as well as state
|u,0> =y#|0> while (s) contains the massless spinor |a,—1/2> of the Ra-
mond-sector; (¢) contains spinors of opposite chirality. In general (0) with odd ghost
charge and (v) with even ghost charge contain states of the Neveu-Schwarz sector
with the usual GSO projection, while (0) with even and (v) with odd ghost charge
contain the opposite GSO projection. The sectors (s) and (c) yield Ramond states
with opposite chirality if their ghost charges are the same.

In operator products (2.3), scalar products < , > between different conjugacy

classes occur. For f5,1 one has the multiplication rules {11] (i) = (0),(v).(s) or (¢)):

<@,M)>eZ

<OD>eZ

<(W)s)> € Z+1/2 2.4)
<W),©)> € Z+1/2

<(s)(c)> € Z+1/2

This means the spinning string theory based on fS,l is non-local [4]. The
GSO-projection, which generates the (local) superstring, reduces f5’1 to an integral
sublattice I‘5,1, which contains only the classes (0) and (s) of 'I_"5,1. In particular, all

even rank tensor fields belonging to (v) like the tachyon are projected out.



The covariant superstring lattice I's 1 is not only integral, but odd self-dual, as
was first noted in [3]. Actually one-loop modular invariance of the partition func-
tion requires invariance (up to phases and weight factors) of the lattice function

(e =(000001))?

85 l(el,;j =3 e—im-<w+e,w+e>62wi<w,e> (2.5)
! wef;',

under 7— — 1/7. This implies the lattice to be self-dual [7]. Invariance under 7> r+1

requires the lattice to be odd,
1/2<w,w> = <w,e> mod 1 = q mod 1, (2.6)

so that Neveu-Schwarz-(Ramond-)states belonging to (0) ((s)) are associated with
even (odd) points on the lattice. This in turn ensures also proper (anti-)commutation

rules of the vertex operators.

In the canonical ghost sectors, all states have q= —1 or g = —1/2. Physical light
cone states are characterized by fixed two last entries, X,=(0,—1) in the Ne-
veu-Schwarz- and x5 =(—1/2,—1/2) in the Ramond-sector. These values provide the
correct normal ordering constants for both sectors: if ueD.4 denotes the first four
entries, i.c., the light cone part of w=(u,Xy), then the mass of a light cone state can

be written as

1/2m2 = 1/2u2 - 1/2. 2.7)

"Whenever both string sectors are discussed simultaneously we will use = to refer to lefimovers and 7
for rightmovers.
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Regarding the fixed two last entries X, of w as belonging to a sublattice I'1,1, we can

identify the physical states of the superstring by decomposing Is5 to D4x1‘1,1:

(0) = ((M),(V)
(s) > ((s).(s)) (2.83)

and fixing the 1“1’1 components to the entries X, defined above.
From this the advantage of our approach compared to the conventional light cone
treatment considering only D4 becomes evident: the light cone states ue D4 them-
selves do not form a lattice, since only the classes (v) and (s) of D4 occur but not the
neutral class (0). Only when u is non-trivially combined with vectors Xo€l'y,1 (or
equivalently Dy, as will be explained below), does one obtain a sensible lattice. This
is quite convenient since, for example, investigation of modular invariance requires
only a discussion of the general structure of the lattice, and not the analysis of com-
plicated expressions like sums over spin structures.

The above concept generalizes easily to heterotic theories in any dimension

D <10 [7]. Heterotic string states are generated by vertex operators
Vi(z2) = WLF@pAR 9@y,  w = (wpiwg =(\g,Q)

The vectors w generate a lattice I'pg_p.js—p,1 With natural metric
(—)(26=D)(+)(15—D)(-). The condition for modular invariance becomes that
this lattice has again to be odd self-dual [7], obeying (2.6). In general all four conju-
gacy classes of the right part of the lattice may now appear, but the physical state
selection rule (i.e that the last two entries should be (0,—1) or (—1/2,—1/2)) re-

mains the same.

(2.9)
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As is well known, all self-dual Lorentzian lattices of given rank are isomorphic
to each other in the sense that they are related by Lorentz-type rotations. However,
for a lattice to represent a physically sensible string theory, certain physical con-
straints like correct statistical behavior and Lorentz transformation properties, as
well as superconformal invariance have to be imposed.

For the ten-dimensional case, all lattices I'j 6.5 | satisfying the additional physi-
cal constraints have been classified in [8]. They correspond precisely to the theories
found in [12] [13], constructed by different methods. To these belong of course the
well-known supersymmetric SO(32) and EgxEg theorics, which are based on the
direct product lattices I'j6.5 1 = T1eLxTs5 )R-

In the following, we will consider theories in less than ten dimensions:
D=10-2n. To these belong the Narain-type {2] compactifications of the supersym-

metric theories associated with odd self-dual lattices

Tig+2n;5+2n,1 = T16 % L2n;2n) * Tn x Ts5—n,1 )- (2.10)

Here, I'pp-2p corresponds to the compactified left- and right-moving space-time bo-
sons, I’y =D, to the compactified fermions and I's .5 1 = D4 —pxIy ; to the co-
variant space-time fermions plus ghosts. Lorentz-type rotations acting only inside of
the first bracket in (2.10) are not restricted at all, and produce a continuous infinity
of compactified theories [2]. However, these are all vectorlike, since the second
bracket corresponds to a trivial torus compactification of the superstring.

On the other hand, Lorentz-type rotations acting on the whole lattice do not

correspond, in general, to torus compactifications® of ten-dimensional theories. Since

1§ome might be related to orbifold-type [14] compactifications.
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in general for these theories the non-trivial relation between conjugacy classes of 'y
and rS—n,I in (2.10) is destroyed, there arise strong constraints due to supercon-
formal invariance. This will be discussed in section 3, where it is shown that if one
demands Lorentz invariance for chiral string theories only a finite, discrete set of
lattices remains physical. In the next section we show how the lattice T 1,1 appended
to the light cone “lattice” Dy _, can naturally be re-interpreted in the context of

embedding NSR-strings into the bosonic string.

2.2 The bosonic string approach

The idea that fermionic strings can be obtained from the bosonic string was first
suggested by [15]. A more concrete realization was proposed in [5] and was worked
out in detail, and presented in the most suitable form for our purpose in [6]. We use
only the weak version of this idea, namely the fact that the light cone formulation of
fermionic strings can be embedded in the bosonic string, provided that one makes
certain truncations. This can be demonstrated explicitly. The more interesting strong
version, namely that fermijonic strings are actually some sort of “ground state” of the
bosonic string is of course much harder to prove (see [16] for a discussion of some of
the issues involved). The following will only be a brief summary of the construction,
with less emphasis on 10 dimensions than was previously the case.

One starts with the 26-dimensional bosonic string compactified on an even Lo-
rentzian self-dual lattice T'yg4.9p 16 +2n t0 10—2n dimensions. This lattice has a

Frenkel-Kac symmetry G xGgr. To obtain heterotic strings one considers an
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SO(8 —2n) regular subgroup of GR, and adds its generators to those of the tran-
sverse Lorentz group. In this way SO(8 —2n) gauge symmetries get a new interpre-
tation as internal symmetries, and in particular if SO(8 —2n) spinor representations
are present one will get states which transform as space-time fermions. To describe
the newly generated (bosonized) world-sheet fermions covariantly one needs to in-
troduce new ghosts, as well as two additional fermionic components to extend
SO(8 —2n) to SO(10—2n). Altogether these new fields give a contribution of 12 to
the conformal anomaly (in units where a boson contributes 1), and conformal invar-
iance can only be maintained if 12 world-sheet bosons are somehow converted to
these new fields. This means that their momenta and excitations cannot be present
in the light cone spectrum. The fermionic string light cone spectrum can thus only
be obtained from the compactified bosonic string spectrum by truncating 12 bosonic
string degrees of freedom.

This truncation should respect modular invariance. Before truncation, the lattice

partition function of the theory can be written as follows
Pr(s,r) = 2 8;471(0|7) Py(r,7) (2.11)

Here we have made use of the fact that the lattice should at least contain a factor
D4 —p, Which is represented by the theta function. The sum is over all conjugacy
classes of D4 (or more precisely, it is over the sums and differences of conjugacy
classes; for example 83 represents the sum of the root lattice and the vector weight
lattice). The function P; represents all remaining components of the lattice vectors.

The full partition function is given by (2.11) multiplied by 71(7)_24n(1:j —24, To
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perform the truncation we have to remove 12 factors n{r) ~1 and a 12-dimensional
part of the right lattice. In [16] it was shown that one can do this in a modular in-

variant way by defining

Bi(r,1) = Pi(a,7)/Si(m) (2.12)

and replacing P; by ﬁi in (2.11). The functions S; must transform into each other in
the same way as the §-functions but without phase or weight factors. They must

thus transform as follows

Sy(r+1) = Sy(r); S4(r+1) = S3(7); So(r+1) = Sy(r)
(2.13)
S4(—1/1) = Sy(1); So(—1/7) = Sy(); S3(—1/1) = S3(7)

If we assume that S; is constructed out of factors 8/5 (i.e that the right lattice has a
decomposition in terms of Dp-factors), then a nontrivial solution requires at least 12
such factors, which is interestingly precisely the number required by conformal in-

variance. One of the solutions is
Si(r) = n(n) ~ 126;%0ir)=8;8(011). (2.14)

Dividing by it must have the effect of removing the contribution of 12 bosons. The
numerator of (2.14) tells us then that the original lattice must have had a factor
Dg — < Eg, where Dy _ , is embedded in the first factor. In other words, the even
Lorentzian self-dual lattice on which the bosonic string is compactified has to have

the direct product form

T16+2n;16+2n = T'16+2n;8+2n%Eg (2.15)
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There is a second independent solution corresponding to an extension of Dg —, toO
Dyg—p but then division by the S;-factors cannot be interpreted as a truncation of
the bosonic string spectrum [16].

Division by the functions (2.14) (with argument ) is easily seen to correspond

to the following truncation of the spectrum:

(i) Removal of all states with non-vanishing Eg lattice momenta
and excitations.

(i) Removal of all states with D4 oscillator excitations, and all Dy
Jattice momenta except one fixed vector weight and one fixed
spinor weight, both of length 1: for example,

Xe =(1,0,0,0) and x, =(1/2,1/2,1/2,1/2).
(iii) Adding a — sign to the partition function for those states with |

a Dy spinor weight, to compensate for the one in (2.14).

The removal of a Dy factor from Dg_p reduces it to the transverse Lorentz alge-
bra. The sign in (iii) produces the correct spin-statistics relation for the fermions.

These rules where first written like this as a rather ad hoc way of obtaining the
light cone spectrum of the superstring from EgxEg [6]. As we have shown, they
follow also from the requirement of modular invariance in the truncation, and have
clearly a more general validity.

A third way of getting them is to use the conjugacy class map introduced in [8]
on the “covariant” lattices T's_pn 1 = Dg—nxI'y | discussed in section 2.1. One

simply maps these odd lattices to even lattices I'g 5 = Dy %Dy by mapping®
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1‘1’1 to Dy, ie., the four conjugacy classes of 1‘1’1 on the same classes of Dy. It is
easy to sec that all dot-products change in precisely the right way to turn odd
self-dual lattices T'j¢ +2n;5+2n,] into even self-dual lattices I'1{6+2n;8 +2n- These
are precisely the lattices indicated in (2.15). The physical state selection rule for 1‘1,1
described in sect. 2.1 translates exactly to the truncation rules for D4 given above,
by X5+ X,.-

We find thus that from the bosonic string point of view all theories are on the

same footing, and that the truncation is the same in all cases.

2.3 The light cone approach

In this section, we explain the relation of our approach to the one of Kawai et al.2
[10]. For simplicity, we focus on the ten-dimensional superstring case; extension to
the heterotic case and to lower dimensions is trivial.

As explained in section 2.1, the bosonized light cone states correspond to the
conjugacy classes (v) and (s) of Dy; therefore, the vectors do not form a lattice. An
odd (even) self-dual lattice is achieved by appending a covariantizing factor 1‘1’1
(Dy4) to Dy. The observation made in [10] is that one can also obtain a lattice by
shifting the charge vectors ueDy of the light cone states by a constant vector
S=(1000). This maps the conjugacy classes (v) and (s} to (0) and (c), respectively,

which form an odd self-dual lattice. Modular invariance furthermore requires that

'We use this mapping here only as a formal operation which establishes the relation between the two
approaches, although it clearly suggests a more fundamental connection, which remains to be under-
stood properly.

2Meant here is the bosonic construction, not the fermionic one of [9].




- 17 -

(w=u+S)

12w2 = S-wmod 1, (2.16)

so that tensors (spinors) correspond to even (odd) points on the lattice. In fact,
(2.16) is equivalent to our equation (2.6). S plays the same role as the vector e used
in eq. (2.5), which also represents a sum over a shifted lattice. In the covariant ap-
proach, shift by e is equivalent to shift by S, because the vectors differ only by a
“root” vector. The only difference is thus the lattice factor rl,ll; this is irrelevant,
however, since, as Was showﬁ in [7], all additional states due to 1‘1,1 factor out in
the partition function. Hence the two approaches are equivalent, although the odd
self-dual lattices which are used are different.

However, we think that our approach has several advantages. First, it is physi-
cally motivated by conformal field theory: the shift vector e originates in the ghost
number current anomaly. Second, we are able to relate our odd self-dual lattices to
even ones by mapping I‘1’1+D4. This allows for an elegant and direct method of

constructing such lattices, as will be detailed further below.

3. Chirality and Lorentz Invariance

In this section, we investigate properties of lattices associated with chiral theories.

The most convenient approach is the one of sect. 2.2: Instead of odd self-dual ones,
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we consider equivalent even self-dual lattices I'y g 4 25y.8 + 2+ In general, there exists
a continuous variety of such lattices. We show below that if one demands chiral
theories, this variety is reduced to a discrete, finite one.

The presence of chiral fermions in the spectrum is easily seen to impose a rather
strong condition on a string theory. Because of Lorentz invariance, chiral states can
only be massless. However, in string theory there will be an infinite number of mas-
sive excitations of such a chiral state. Somehow these will all have to be non-chiral.

It is well-known how this works in ten dimensions. The chiral space-time states
are due to world-sheet fermions with periodic boundary conditions (PP) along both
non-contractable loops on the world-sheet torus. Their one-loop partition function is

thus given by
Py(r) = 748,401 = 0. (3.1)

This vanishes, precisely because this sector of the theory has a chiral ground state.
The two chiralities contribute with opposite sign to the partition function, and
therefore cancel each other.

What we are really interested in is not (3.1), but the factor of (3.1) that de-
scribes the excitations of the chiral ground state. This is easily obtained by factoring
out the zero mode that causes (3.1) to vanish. This can be achieved by twisting the
boundary conditions, or coupling the theory to a weak gravitational background
field, which does see the difference between the two chiralities (see [17] for a more

detailed discussion). After factorizing the zero mode we get

Py'(r) = n~4m8 40 # 0, (3.2)
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where the prime on the §-function indicates differentiation with respect to the first
argument.

In addition to fermionic oscillator excitations, the chiral vacuum is excited by
bosonic oscillators « _ 5. They contribute an additional factor .q(,,)—S to (3.2). By

using the identity
81°(0l7) = 2n3(r) (3.3)

we find then that the result is a constant. This means that with the exception of the
ground state there is an equal number of left-handed and right-handed states at
every level, so that they can combine into massive states. This cancellation is a con-
sequence of world-sheet supersymmetry which ensures an exact matching between
the bosonic excitations and those of periodic fermions. It is important that not only
the multiplicities of chiral pairs are the same, but that they also belong to the same
representations of any relevant symmetry, i.e. any symmetry which is gauged. In ten
dimensions this gauge symmetry is gravity, and the requirement is that not only
Pl’('r)n—g('r) is a constant, but that also its character-valued generalization is a
constant. The character-valued partition function can be thought of as the integrand
of the one-loop string diagram in a background field [18]. It can be shown that it is
indeed a constant [17].

Below ten dimensions a more elaborate mechanism will be needed. The cancel-
lation between world-sheet fermions and bosons with space-time indices still occurs
in exactly the same way. But in addition we have now the oscillator excitations of

the remaining bosons, and the contribution from their soliton sector. If we consider
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heterotic strings in D=10—2n dimensions, there are (2+ 1)n additional bosons (cf.
€q. (2.10)). The fermionic part of the related even self-dual lattice I'; 4 +2n:8+2n =

T'16+2n;3n% Dg —p has the following structure

(ASL;ASR»(S)) + (ACL;ACR,(C)), (34)

where Ay is a set of 16 +2n dimensional vectors, AR a set of 3n dimensional vectors
and (s),(c) denote conjugacy classes of the space-time lattice Dg — - The symmetries
associated with the left lattice are gauged, so that a chiral pair must have the same
lattice vector Ay in order to become massive. Consider one fixed such vector, fv’L.

We are interested in all pairs of states of the form

(WLASRL(S) + (WLACR.L(O), (3.5)

After cancelling the space-time factor using (3.3), we are left with the following fac-

tor from the bosonic excitations and the right lattice T3,

7(7) ~TRS@) - TRE@)] (3.6)

where I'pS and T'R® are the partition functions of ASg and ACR, respectively. Ac-
cording to our previous argurﬁents, (3.6) should be a constant, which should be
non-zero, since otherwise we would not obtain a massless chiral fermion. For arbi-
trary lattices (3.6) may be difficult to solve in general, but it becomes easy if we as-
sume that the right lattice consists of products of Dy, lattices’. Then we know that
the partition function must be a sum of products of 3n #-functions, and we are

looking for a combination of 3n factors 8/n which is equal to one. In particular this

'The conjugacy classes of these D ,’s may be comrelated with each other and with the left lattice.
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combination should be modular invariant with weight zero. In [17] all such modular
invariant combinations have been constructed, and there turns out to be just one
way to get a modular invariant function out of 3 factors 8/n. Fortunately this com-

bination is indeed equal to a constant:
n(r) ™ 382(0Im)03(0Ir)04(0lr) = 2. (3.7

It is this fact that allows us to construct chiral theories. To give a lattice interpreta-
tion to (3.7) we write it in terms of Dy conjugacy classes’, of which the §-functions

are the partition functions. Define

05(01r) = 1/2[8301r) + 84(0I")]
64(0lr) = 1/2[63(0Ir) — 84(CIn)] (3.8)

85(0|r) = 8(0|r) = 1/28,5(0i7)
Then the identity given above may also be written as
17 3(1)85(01)1862(0l7) ~ 6,20l = 1. (3.9)

Here 8, is the partition function of the root lattice of Dy, 6y the partition function
of the vector weight lattice, etc. In D=10—2n dimensions we need n factors of the
form (3.9). We can now give this result a lattice interpretation by associating the

positive terms with ASg and the negative ones with ACg.

The root lattice (0) of Dy is the set of even integers; the (v), (s) and (c) conjugacy classes are the even
integers shifted by 1, 1/2 and — 1/2, respectively.
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The identity (3.7) does not hold if the 8-functions have a non-zero argument.
This means there should be no gauge symmetries associated with the right lattice,
because this would lead to a character valued partition function which is not a con-
stant.

We specialize now to n=3, i.c., to 4 dimensions, corresponding to the even lat-
tice T'22:14=T22.9% D5 (other even dimensions are not essentially different). The
right lattice can be decomposed to (D1)9x Ds, where D5=D|xDy is the space-time
lattice, consisting of the light-cone factor D and the appended factor Dy. It may be
possible to combine the (D1)9 factor into larger Dy ’s, but this is irrelevant. Taking
the third power of (3.9), we find that the lattice must have the following conjugacy

classes of D5x (D1)9:

((5),(F3(%)
3(C)(FPWZ0)%
3(S)(FPWH0)2) (3.10)

(©)(F)3)9)

Here "F” stands for ¢ or s. All these conjugacy classes should be associated with the
same left vector ‘_’V’L- Because the Dy’s are not gauged, only the total number of
states one gets from (Dl)9 is relevant. It is therefore not a priori clear how to dis-
tribute the conjugacy classes over the nine Dy’s.

If we subtract the first line in (3.10) from the seven others we get a set of lattice
vectors with vanishing left components. These vectors must have even length, and

generate a certain sublattice. If we write the first D5x(D1)9 conjugacy class as

( (S),(SSS!SSOSO!O!OSOSO) )’ (3-1 1)
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then one can show that to reproduce (3.10) the sublattice must contain a set of vec-

tors of the form

( (D,(x,v,v,0,0,0,0) )
(():(¥,0,0,v,v,0,0) ) (3.12)

( (V),(Z,0,0,0,0,V,V) )!

where x, v and z are 3-vectors of (v)’s and (0)'s with odd length. Without loss of
generality one may assume that the (F)3 terms in (3.10) belong always to the same
three Dy factors. If one chooses them differently, one either generates a sublattice
with half-integer length vectors, or a sublattice bigger than (3.12}, which contains a
set of vectors of the form (3.12). The shortest vector in the conjugacy class
((s),(s3,06)) has length 2, and will lead to chiral fermions if \37[_2=2 and if there is
no vector ((c),(F3,06)) associated with fv"L. The existence of a set of vectors (3.12) is
then a necessary condition for the absence of massive chiral excitations of the chiral
ground state. However, there are many other spinors on the lattice, for which either
another set (3.12) must exist, or which must come in chiral pairs. The existence of
other space-time fermions is restricted by (3.12) and the self-duality of the lattice,
because they must have integer dot products with (3.12).

Modulo permutations, there are seven ways to choose the vectors x, ¥ and z.
One of these choices has the property that any fermion allowed by (3.12) automati-

cally has a chiral partner if it is massive. This choice is

( (V),{v,0,0,v,v,0,0,0,0) )
{ (),(0,v,0,0,0,v,v,0,0) ) (3.13)

( (v),(0,0,v,0,0,0,0,v,v) ).
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For example, a chiral partner for the vector ((s),(s,5,5,5,5,0,0,0,0)) associated with
any left vector, is obtained by adding the first vector of (3.13) to it; if one has a vec-
tor ((s),(0,0,0,5,0,5,0,5,0)), the complete sublattice generates chiral partners for its
massive excitations.

For any other choice of X,y and z one can find allowed spinors that do not au-
tomatically have chiral partners. If such spinors are present one has to add chiral
partners, which leads to an enlargement of the sublattice (3.12). This leads to fur-
ther constraints, etc. It is possible that one always ends up with a set of vectors
(3.13), or with a vector which destroys the chirality of (3.11). It would be interesting
to know if this is true, but it is not essential, because we will see that the constraint
imposed by (3.13) already leads to large numbers of chiral theories.

The presence of the vectors (3.13) can also be rephrased as a condition on the
spinor conjugacy classes. Because the inner product between (s) and (v) is 1/2 mod
1, we see that the number of (s) (or (c)) conjugacy classes overlapping with the (v)’s
in (3.13) must be even. This implies that the D factors can be grouped into triplets,
so that for each vector on the lattice the sum of each of the triplet components is
equal, mod 1, to the ‘D5 components of that vector. Conversely, if the latter condi-
tion is satisfied, the self-duality of the lattice implies the existence of vectors (3.13).

The same constraint has been obtained in [9] [10} from a different point of
view. These authors observe that the world-sheet supersymmetry of the right-movers
should not just be realized on the right-moving bosons and fermions with space-time
indices, but also on the n right-moving internal bosons. Although it is not clear what

the most general way of doing this is, a sufficient condition is this “triplet con-
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straint”. For non-chiral theories it is not a necessary condition for world-sheet su-
persymmetry; for example, Narain’s compactifications [2] do not satisfy it in gener-
al.

Our condition imposes constraints on chiral theories only and is a necessary
condition, which comes close to reproducing the sufficient condition of [10.] We
cannot rigorously rule out other possibilities, such as (Dl)9 lattices with a more
general constraint (3.12), or entirely different lattices which do not admit a Dj de-
composition at all, but they appear implausible.

In the rest of this paper we will restrict ourselves to the triplet constraint, which
ensures both world-sheet supersymmetry and space-time Lorentz invariance. This
implies that we only have to consider lattices which admit a Dy decomposition; this
destroys the continuous infinity of Lorentzian self-dual lattices.

This can also be understood from a different point of view. As we have seen, the
chiral partition function (i.e. the partition function multiplying the chiral ground
state) should only depend on 7, and not on r. It should in fact be a modular func-
tion of weight n—4 (in 10— 2n dimensions), and be holomorphic apart from possible
poles at ==ie (or q=ei7”=0) [17]. Functions of this kind are determined almost
completely by their modular weight and pole structure, a fact employed a decade
ago by Nahm [19] to obtain what we now call the partition function of the left
moving sector of the heterotic string.

These arguments do not apply for partition functions which depend on q as well
as q, a situation which typically arises in string theories below ten dimensions. Such

non-holomorphic partition functions are not classifiable, a fact most convincingly
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demonstrated by Narain’s construction of continuous families of non-chiral low-
er-dimensional theories.

For chiral theories we are in a better position, because we can at least say
something about the chiral partition function. Unfortunately this function is not
very useful in four dimensions: because it has odd weight (namely - 1), it vanishes.
It is easy to see explicitly why it vanishes: for every lattice vector ({:V'L;lTR,(s)) (in
I‘zzx(Dl)gx Ds notation) there is a vector (~GV'L;—1'1'R,(C)), so that the two pre-
cisely cancel against each other in the chiral partition function (they are in fact CPT
conjugates).

This is only a minor problem, which is easily circumvented by considering a
more interesting object, the character valued partition function. (For a detailed dis-
cussion see [17]. ) It does not just contain information about the zeroth order traces
(i.e. the dimensions) of the representations at all levels, but also about all higher or-
der traces. It is easy to see that the cancellation described above will not occur for
odd traces (unless only real representations appear, in which case we would not have
a chiral theory). The coefficient function Cy{(q) of any odd trace of order k, except
those proportional to TrF2 — TrR2, can now be shown to be a holomorphic modu-
lar function of weight k—1 (in four dimensions). In fact they cannot even have poles
at @ =0, because the tachyonic ground state of the left moving bosonic is in a singlet
representation of the gauge group. It is known that any such function can be ex-
pressed completely in terms of the two Eisenstein functions G4 and Gg. For exam-

ple,
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Cs; = a5Gy
Cq7 = a7Gg
Co = ag(Gy)?

C11 = 211064 Ge

Cy3 = a13(Gg)? + by3(Gg? etc.
The fact that C3 = 0 implies that all anomalies cancel! [17]. The coefficients aj
and b, are not fixed by modular invariance and have to be determined from the
lowest level(s). The traces of all representations at higher levels (and hence to a large
extent the representations themselves) are thus practically determined by the mass-
less level. This does not tell us very much about the massless level itself, but it prob-
ably does restrict it, because it will not in general be possible to find representations
at higher levels which produce precisely the right traces. It might be possible to
prove general properties of the massless states in this way, but for the time being we

will let the lattices take care of these subtle relations.

4. The spectrum

The theories we are considering can be constructed from even or odd Lorentzian
self-dual lattices. Although the two constructions are completely equivalent, the even
lattices have several practical advantages, so that in the rest of this paper we will

only consider even lattices. One advantage is that the mass formula is symmetric in

1Notice that in this case (but not in general) the anomaly cancellation occurs even at higher levels,
among left-mover excitations which do not have right-moving partners.
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left and right sectors; it is simply the one for the bosonic string,

1/8mp 2 = 1/2%] + N — 1 (4.1)
1/8mg2 = 1/2Wg + Ng - 1 (4.2)
my 2 = mg? (4.3)
m2 = 1/2(mp 2 + mg?), (4.4)

where (GV'L,\'V'R) is a Lorentzian lattice vector, and NL and Np are the bosdnic 0s-
cillator contributions. From now on, the word “mass” will be used to refer to the
value of 1/8m2. For simplicity, we will concentrate on the case D=10—2n=4;
D=6,8 and 10 are completely analogous. In four dimensions, the relevant even Lo-
rentzian lattice is 1’22;1 4 the right moving part should contain a D5 sublattice; the
rernainder should be a (Dl)9 lattice which can be split into 3 triplets, so that \—VbR

decomposes as

WR = (X%, Z VR) = (BR.VR)> (4.5)

where ‘-”R is a weight of Dg and X, ¥ and Z are 3-vectors. Because of the triplet con-
straint, the sum of the 3 entries of each of the three vectors X, ¥ and Z should be
equal the entries of VR modulo 1.

The physical states are obtained by decomposing Dg to Dy xDy4 and keeping
only states without Dy oscillator excitations and with a fixed Dy vector or spinor
weight (of length 1), for example x, =(1,0,0,0) and Xe =(1/2,1/2,1/2,1/2). Hence, the
massless states are characterized by \?V'L2=0,2 and ﬁ'stl (see table 1). The lattice
momenta plus Cartan subalgebra excitations produce states in representations of

SO(2)x Gy xGR, where Gy is a rank 22 group corresponding to the left lattice and
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Gg a rank 9 group realized on the (D1)9 part of the right lattice. The transverse
Lorentz group representation of a state is obtained by multiplying the lattice SO(2)
representation (from the Dy subalgebra of Ds) with SO(2) representations generated
by the left and right moving uncompactified bosonic oscillators.

This construction is illustrated in table 1, where we summarize all states with
masses less than or equal to zero that might occur in the four D5 conjugacy classes.
Right moving oscillators can be ignored, because they only contribute to massive
states. The left movers can be divided in space-time oscillators (NLS) and internal
ones (NLI), which generate the Cartan subalgebra of Gy . The mass difference be-
tween the ground state and the first excited state can be as small as 1/4, because one
can add two spinor entries to the same triplet of GV'R without violating the triplet
constraint. Tachyons can only appear in the D5 conjugacy class (v). The absence of
tachyonic fermionic spinors is guaranteed by the triplet constraint.

In four dimensions (and also in eight) a change in the sign of a spinor weight
changes the conjugacy class from (s) to (¢) and vice versa. The lattice has a vector
(-fv’L; —\_N'R) for every vector ({V'L;GV'R). These two are each others” CPT conjugates,
but each such pair should be counted as only one Weyl or Majorana spinor. This is
most easily seen by counting gravitinos or gauginos in supersymmetric theories.

Another advantage of the even Lorentzian lattices is that all gauge invariances
of the field theory can be traced back to roots of the lattice, i.e. vectors with either
v"v’L2=0, WR2=2 or GV'LZ =2, GV'R2=0. In some cases we may conciude from the
presence of such vectors that Dy is actually embedded in a regular way in a larger

simple Lie algebra. The following gauge particles may appear:

— gravitons, Bm,, dilaton: They owe their existence to the root lattice
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of Dg (with WL=ITR=O) and are therefore always present.

— G gauge bosons: Their presence is due to the Gy x Dy root lattice
(with ug =0) and they are therefore also inevitable. There are at least
22 U(1) gauge bosons , plus one for every vector with \?L2=2.

— Gp gauge bosons: their existence requires a vector WR

of length 2, with WL =0.

Furthermore the Ds-component of WR should be a vector. The presence of such a
vector indicates that Ds is a part of a larger algebra, which must be a Dy, algebra
(n>5). But then the D, spinors would decompose into D5 spinors with opposite
chirality, and we would get a non-chiral theory!. Thus chiral theories do not have
GRr gauge bosons. (This was a crucijal assumption in sec.3, which has now been jus-

tified).
Finally, there may appear

- Gravitinos: to obtain gravitinos we need length 2 vectors ‘_’V.R (%L =0)

with spinor components in Ds.

The only regular embedding of D5 which vields such roots is in Eg, E7 or Eg. It is
easy to see that these choices lead to N=1,2 and 4 supergravity respectively. Analo-
gous results for other even dimensions are shown in table 2. (In two dimensions

there are interesting additional possibilities because one can get spinors from triality

This is true in the absence of GR gauge symmetres. One might wonder whether the fermions could
be in chiral representations of Gg. This is impossible because the gauged part of GR has no such
representations: The GR gauge bosons originate from length 1 roots, so that the gauge group can only
be a product of SO(3)’s [20]. In particular, this applies to models generalizing type II superstrings,
which can straightforwardly be obtained by our construction.
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rotated embeddings of D4 in Dy.) This result also explains why only two of the
ten-dimensional heterotic strings constructed from Niemeier lattices [8] have
space-time supersymmetry. Some expected consequences of supersymmetry follow
immediately, such as the presence of gauginos (the presence of WL=O for some x'v'R
implies the presence of the entire Gy root lattice combined with the same iv'R).
Others, such as supersymmetry at higher levels, are less obvious, and depend on

rather intriguing properties of exceptional groups’.

5. Construction of lattices

Any even self-dual lattice constructed entirely out of Dy- factors can be mapped to
another even self-dual lattice by changing the dimension of any Dy-factor by multi-
ples of eight, keeping all conjugacy classes the same. Such a transformation leaves
the lengths of all vectors unchanged mod 2, and all mutual dot-products mod 1, so
that it does not affect self-duality. One may even subtract multiples of eight to make
the dimension of a Dy-factor negative. This can be interpreted as a change of me-
tric. For example, (Ds5)g can be changed to (D3)j , where the subscripts refer to the
left (negative metric) and right (positive metric) part of the lattice. We will make ex-

tensive use of such transformations.

Thus, these may play in the covariant lattice approach including ghosts an important role in obtaining
off-shell formulations of many supergravity theories.
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In this way we can associate with any even self-dual Lorentzian lattice consisting
entirely of Dp’s a left Euclidean lattice (obtained by mapping the right lattice to the
left) or a right Euclidean lattice. Because of the triplet constraint, the lattices of chi-
ral theories we consider consist only of D,-factors on the right (as discussed in sec-
tion 3), so that in all cases we can associate left Euclidean lattices with them.

Euclidean lattices have the advantage of having useful classifications. Lorentzi-
an lattices do not: their classification is up to Lorentz transformations, which unfor-
tunately do not leave the physics invariant. This Euclidean lattice classification is
very successful in ten dimensions, where only 24-dimensional lattices have to be
considered [8].

In four dimensions things are far more complicated. In the worst possible case
we have a lattice 2214 = (F22)Lx(D5x(D1)9)R, which can be mapped to
(Tpx D3x(D7)9)L’ a Euclidean lattice of dimension 88. A lower limit on the total

number of such lattices is provided by the Siegel mass formula [21] [22]
1 1 ke 1
FEA) T = 8k B4k31}| (4)) ™ "By;, (5.1)

where the sum is over all even self-dual lattices of dimension 8k, and g(A) is the or-
der of the automorphism group of A. Because g(A)>1 the right hand side is a lower
limit of the number of lattices (sz are the Bernoulli numbers). For k=11 this num-
ber is of order 101500 y The requirement that A should contain D3><(D7)9 with a
triplet constraint will reduce the number considerably, but clearly this is not a viable
approach towards classification. It only tells us that the number of chiral theories is

finite, but most likely extremely large.!

'A more reasonable but less rigorous estimate can be made by observing that the 88-dimensional lat-
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However, it is easy to construct many examples already from the 24-dimensional
Niemeier lattices: a list of those may be found in [23.] To do so, one decomposes

such a lattice in Dy-factors by using one of the following regular embeddings

Eg = Dg

E7 2 DgxAj

Eg 2 DgxU(1) (5.2)
Ap @ [D3Ex UK=L (k=[(+1/4])

Ay 3 ApxU(1)

After these decompositions one is left with factors Ay and several D{’s. An even
number of Aj’s can be combined to Dj’s because Dy = AyxAj . In all cases we
have considered all m remaining factors can be rotated to a (D)™ lattice, and it is
not unlikely that this is always possible, even for the Leech lattice. Notice that we
are not doing anything to the lattices; we simply regard them as root-lattices plus
weights of subalgebras of the original algebras. Some of the weights may have length
two and this indicates the possibility of enlarging the dlgebras. One should always
keep in mind that the Euclidean lattices are only used for classification. Their roots
are not very relevant; the relevant roots are those of the associated Lorentzian lat-
tices.

The Lorentzian lattices can be constructed as follows. A Euclidean lattice with p
factors Dy, can be completely specified by a list of all conjugacy classes that appear.

For self-dual lattices there are 2P classes out of a total of 4P on this list. The list can

tice has (at most) 32 factors, so that combinatorically their classification should be similar to the clas-
sification of even self-dual lattices of dimension 32 with D lattices as building blocks. On the basis of
such an estimate one would still expect a very large number of solutions.
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be condensed to a set of generators, from which all others can be obtained by addi-
tion. For definiteness we will construct four-dimensional theories. Then the lattice
must contain a Dg factor, which becomes part of the right lattice. All other Dy’s
can be decomposed, and put partly on the left and partly on the right. The
space-time Dg cannot be embedded in such a left-right split D;,, because the spec-
trum would then contain tachyons of mass —1/2 (see table 1. The ten-dimensional
theories provide a nice illustration: the tachyon-free ones are precisely those with a
separate Dg-factor.). Furthermore, as discussed in section 4, D5 cannot be embed-
ded in a larger D, which stays entirely on the right, or else the theory will not be
chiral. Thus we should look for a separate Dg (it may part of an Eﬁ, but that is ir-
relevant at present).

The left-right decomposition of the remainder of the lattice should satisfy the
triplet constraint. T_hiS is easy to achieve. One considers all possible ways of selecting
3 of the remaining Dy-factors. (Each factor may be selected more than once in one
triplet). Then one makes a list of basic triplets, satisfying the constraint. Of course
only the generators of the conjugacy classes have to be inspected. Finally one con-
siders all possible ways of choosing 3 triplets from the list, where again each triplet
may be chosen more than once. The triplet assignment may now be forgotten; the
only relevant information is how many times a D, -factor has been selected. If it has
been selected m times, one can replace (Dp)r by (Dy)R % (D —n+8k)L, where k
is adjusted so that the dimension is positive. The left dimension is now automatically

22 mod 8, and may or may not be adjustable to 22 by changing the values of k. If it

cannot be adjusted, the lattice is of no interest.
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Because many triplet assignments are possible, one generates many Lorentzian
lattices from a given Euclidean one. Furthermore there are several simple tricks to
construct even more Euclidean lattices. Of course one may add Eg factors. One can
“blow up” Dy-factors, by changing their dimension by multiples of 8. One can de-
compose Dp 4 t0 DpxDp. However, there is no advantage in decomposing a
Dy-lattice in smaller Dy pieces. A more interesting change is splitting off a Dy,
making a triality rotation on it and then blowing it up. This process destroys the
length two vectors that hint at the fact that D4 was once part of a larger algebra.
Similarly one may recombine Aj factors from several D)’s and blow up the latter.
One can always construct a mirror lattice by changing all Dy’s to negative dimen-
sions (using mod 8 reductions), and changing the overall sign of the metric. Using
combinations of these tricks one can change any Dy with odd n to a Ds. Several of

the Niemeier lattices can be obtained from the dimension 8 and 16 ones in this way.

6. Examples

We now illustrate the above-explained construction of Lorentzian lattices f22; 14
satisfying the triplet constraint, by means of some examples. We start with é Eucli_—
dean Niemeier lattice with an Eg-factor, so that we can expect to find some string
theories with N =1 supersymmetry. There are two such lattices, namely (E6)4 and
A1 xD7xEg; in the following, we focus on the latter. The conjugacy classes which

are present in addition to the roots can be found in [22]. They are generated by a
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weight of the representation (12,64,27) of SU(12)xSO(14)x Eg . This is a vector of
length-squared four on the lattice. To decompose the lattice into Dj-factors one

simply considers, for example, the regular embeddings

SU(12) = SU)xSU4)xSU@)xU(1)x U(1) (6.1)
and

Eg > SO(10)x U(1).

The SU(4) factors give D lattices because A3 = D3 . The three remaining U(1)
factors can be rotated to a (D1)3 lattice. To see explicitly how that works, consider

the decompositions of the (12) of SU(12) and the (27) of Eg with respect to (6.1):

(12) = (4,1,1,1/6,/3,1/6,/3)
+  (1,4,1,1/4-1/12,/3,—- 1/4 - 1/12/3)
+  (L,1,4,-1/4—1/12,/3,1/4—1/12,/3) (6.2)

@27) = (16,1/6\/3) + (10,—1/3/3) + (1,2/3,/3)

Here the charges have been normalized so that they give the correct length-squared
of the SU(12) and Eg weights (namely 11/12 and 4/3 respectively). We can now de-

fine (D1)3 spinor weights as the following vectors on the U(1)3 lattice:

51 = (1/6,/3,1/6,/3,1/6,/3)
sy = (1/4—1/12,/3,~1/4—1/12,/3,1/6,/3) (6.3)

—-

3 = (—1/4-1/12,/3,1/4—1/12,/3,1/6,/3).

w

wi
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These vectors are mutually orthogonal and have length-squared 1/4. We can now

express all other vectors on the Ay xD7xEg lattice as weights of

(D3)?x(Dp)3xD7x D, (6.4)

by projecting on these three vectors. By decomposing the representation (12,64,27)
completely one gets then a set of generators for the conjugacy classes of the lattice,

which is in fact slightly redundant. A minimal set is

(5,0,0,5,0,0,c,0)
(0,5,0,0,5,0,¢,¢)
(0,0,S,0,0,S,c,c) (6'5)

(0,0,0,5,5,5,0,5)

By adding these vectors in all possible ways one generates 256 conjugacy classes (the
addition rules for Dy, n odd are (s}+(s)=(v), (8)+ (©)=(0), (v)+(s)=(c),
(V) +(c)=(s), (v)+(v)=(0) ). Notice that the result will be symmetric under simul-
taneous permutations of the first three entries (the D3’s) and the second three (the
Dy’s).

The last entry in the vectors (6.5) indicates the conjugacy class of the space-time
factor D5. We now have to form triplets of the remaining entries that add up to the
last one, mod 1. The solutions can be specified by giving the vectors (3.13) which

enforce the constraint. One has the following seven possibilities

f'i'..3=(v,0,0,v,0,0,v,v) (+ perm.)
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S

“6 = (O,V,V,V,0,0,0,V) ( + Perm-) (6.6)

-

7 = (0,0,0,V,V,V,O,V)

Here “perm” indicates the simultaneous permutations of the first and second three
entries. These seven vectors have integral dot-products with all the generators, and
by self-duality they must therefore be vectors on the Euclidean lattice. Now one has
to select three triplets out of these seven. Valid choices are, for example, 3xf'1' ,
2xt] +13, ty + g + 7 etc.

This determines the right lattice. For example, to obtain the triplet constraint
corresponding to SET one maps the Euclidean lattice to the following Lorentzian lat-
tice

(D3R) X (DSL) x(Dsy)x (Do x D3R) X (D7L) e (D7L) X (D4L X D3R) x(D5Rp)-

The factors between parentheses indicate how the eight factors of the original lattice
are distributed between left and right. By decomposing the vector tT one obtains
(among others) a set of three vectors of the form (3.13). The factors on the left Iat-
tice are determined mod 8, and we have chosen the minimal dimensions. In this case
the total dimension of the left lattice is 30, which is too large. By considering the

choice 3x17 we get

(Ds1)3x(Dyp xD3Rr)3x(D 1) x(DsR).
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This example yields a rank 22 gauge group (SO(IO)xSO(4))3xU(1). In general one
simply calculates the sum of the selected vectors t"l, replacing the entries (v) by 1.
The resulting vector specifies for each D, factor of the Euclidean lattice which part
of it is put on the right lattice. The remainder (which may have positive or negative
dimension) is moved to the left lattice; it can always be given a positive dimension
by adding multiples of 8. Finally one has to check that the left lattice has dimension
22.

By going systematically through all possibilities and removing trivial permuta-
tions, we have obtained 21 different string theories from the Niemeier lattice
A7xDy1xEg. Not all of these have supersymmetry. To get a supersymmetric theory
one has to make sure that the Eg-factor of the Euclidean lattice remains intact. Be-
cause the U(1), which enlarges D5 to Eg, is a linear combination of the three Dy’s,
these must all be selected precisely once, since otherwise the length of the Eg roots

would be destroyed. There are 4 solutions (again up to permutations), namely

G+5+55
G+
iy +15+1g (6.7)
§+5+i5

The gauge groups associated with the first three solutions are respectively
SO(12)3xSO(®), SO(14)2xSO(10)xSO(6) and SO(14)3xU(1). The “minimal” left

lattice for the last solution is (D6)2x D5, which has dimension 14. We can enlarge
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the rank to 22 by extending any Dy -factor by eight, or by simply adding an Eg fac-
tor. In any case the result will not be chiral, because none of the groups has complex
representations. Of the first three supersymmetric models, two are at least potential-
ly chiral, and we we will see further below that they do indeed have chiral fermions.
To obtain the complete spectrum of any of these theories one has to consider all
256 conjugacy classes, and decompose all D, factors in left and right parts. The de-

composition rules for the conjugacy classes are

0 - (0,0) + (v,v)
(V) ~ (v.,0) + (O,v)
(s) > (s,5) + (c,0) (6.8)

() = (s,0) + (c,9)

It does not matter whether one uses these rules for a “Euclidean” decomposition
Dm +n>PaxDpp, myn >0, or for a “Lorentzian” one where n or m can be negative.
Obviously many sectors are generated, and a complete description of the theory
would be rather lengthy. But if one is only interested in the massless sector (as one
usually is) one can eliminate most of the conjugacy classes, because they have a
minimal weight length larger than 2 on the left or the right lattice. As an example
we consider the non-supersymmetric (SO( 10)xSO(4))3xU( 1) model described
above. The lattice conjugacy classes that give rise to chiral spinors are (in the order

specified in (6.4))

(5,0,0,5,0,0,cc) +c.c.

(0,5,0,0,5,0,c,c) +c.c. (6.9)
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(0,0,5,0,0,5,c,c) +cc.

where c.c. denotes the same set of vectors, but with opposite sign (so that (s) and (c)
are interchanged). A vector and its opposite describe together just one physical state.
One can immediately read off the representations of the chiral fermions (all taken to

be lefthanded) for the group SO(10) x SO(10)x SO(10) x SO(4) x SO(4) x SO(4) x SO(2)

4(16,1,1,2 ,1,1,1/2) +4(1,16,1,1,2 ,1,1/2) +4(1,1,16,1,1,2 ,1/2)+  (6.10)

4(16,1,1,2',1,1,1/2) + 4(1,16,1,1,2/,1,1/2) + 4(1,1,16,1,1,2",1/2),

where (2) and (2°) denote the inequivalent spinor representations of SO(4). The
multiplicity of 4 is simply the dimension of the spinor representation of a factor
(D3)g which is not gauged. The spectrum is obviously chiral, and has 16 genera-
tions of (16)’s for each of the 3 SO(10) groups. The last entry gives the U(1)
(=SO(2)) charge. There is no sign mistake: this U(1) factor is indeed not traceless,
and it has anomalies with each of the SO(10) and SO(4) groups. This is in agree-
ment with the theorem proved in [17], which states that because of modular invari-
ance the anomaly is factorizable. For four dimensions the six-form from which the

anomaly can be derived is predicted to be proportional to

(TtF2 — TrR2) TrF. | (6.11)
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The factorization itself is a triviality for the theory under consideration, because it
has only a U(1) anomaly. But the prediction goes further than that: if F and R are
both in the vector representations of SO(N) groups, then TrR2 and TrF2 should
appear with relative factor —1. Furthermore this should be true for each simple
factor of the gauge group.

One can calculate the anomaly explicitly by using the index theorem in six di-

mensions. By the usual arguments [24] the anomaly of a Weyl-spinor is generated

by

(constant)x (1/8 Tr(F)2 — 1/48 TrR2) TrF,, (6.12)

where TrF, denotes the trace over the gauge group representation r of the Weyl spi-
nor. (TrF, used above, refers to the vector representation). Using the fact that for

spinor representations of SO(N) groups

Tr(Fg)? = 1/8 dim(s) TrF? , - (6.13)

one can easily show that the anomaly of this model does indeed have the predicted
form. The triplication of the SO(10) and SO(4) groups is essential to get the correct
ratio between gauge and gravitational anomalies.

The appearance of such anomalous U(1)’s is not a new phenomenon. It has
been observed before in [25] and [26] (the U(1)’s discussed in these two papers have

different origins: those of the first paper come from isotropy groups of the compac-
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tifying spaces, whereas those of [26] are U(1) factors left over from the breaking of
Egx Eg). We expect that they are cancelled by the four-dimensional analogue of the
Green-Schwarz mechanism.

Returning now to our example, we find that the massless scalars are in the fol-

lowing representations

6 (10,1,1,1,1,1,21) + perm.
6(1,1,1,44,1,00 + perm. (6.14)

6 (10,10,1,1,1,1,0) + perm.,

i.e., one has to include the permutations of the SO(10)xSO(4) factors and in addi-
tion to that a multiplicity factor of 6. Evidently the model .is not supersymmetric,
and it dbes indeed not have gravitinos. |

The N =1 supersymmetric SO(14)3><U(1) theory discussed above has the fol-

lowing massless fermions in addition to the gravitino

2 (64,1,1,1/2) + perm.
2 (64",1,1,1/2) + perm.
{14,14,1,0) + perm. (6.15)

- (14,1,1,%1) + perm.

This theory is chiral, but only because of the anomalous SO(2). Again the anomalies
factorize properly because of the triplication. The other ‘potentially chiral N=1

model turns out to be precisely the one discussed in [10]. .
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The 21 models obtained from the Euclidean lattice Aj;xD7xEg with the spe-

cific embedding (6.1) are distributed as follows over the various possibilities:

2 Chiral, N =1 supersymmetric

4 Non-chiral, N =1 supersymmetric

11 Chiral, not supersymmetric, tachyon free
3 Non-chiral, not supersymmetric, tachyon free
1 Chiral, not supersymmetric,

with tachyons of mass! —1/4

Similarly, from the lattice (E6)4 we obtained seven non-chiral and two chiral N=1
supersymmetric models, as well as 27 chiral, tachyon-free non-supersymmetric ones.

The spectra of these models show some intriguing features. We find that the
number of (16)’s of SO(10) (minus the number of (16*)’5 ) is always a multiple of
16. (Similarly, there are always 4k chiral (64)’s of SO(14)). Should this be a general
phenomenon, then the prospects for these models are not very good. However, we
do not know of any reason why this should be true in general.

It might be more attractive to look for models with a smaller gauge group real-
ized on the massless fermions, such as SU(3)xSU(2)x U(1). If such groups arise on
Dy, lattices, they will not be easy to find. They can only appear when several D or
D, factors turn out to form a sublattice of the lattice of a larger algebra. To find
such cases one has to look for additional length-2 vectors on the left lattice. It is not

easy to look for such examples systematically, but they might very well exist.

1We remind the reader that by construction tachyons of mass — 1/2 (the mass of the Neveu-Schwarz
tachyon) cannot appear in these models.
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An obvious but important observation is that the only representations of any
simply laced group one can encounter in the massless fermion or scalar spectrum are
those with weights of length two. Chiral fermions with simple groups can therefore
only owe their chirality to the spinor representations of SO(14), SO(10) and SO(2),
at least as long as one only considers SO(n) symmetries and not their possible en-
largements (SO(6) spinors are anomalous; the anomalies of the SO(2) spinors can be
cancelled by the Green-Schwarz mechanism). Furthermore an SO(10} spinor must
appear in combination with a spinor representation of another orthogonal group in
order to have the correct weight length. Despite the presumably gigantic number of
models that may exist!, the possibilities are thus still severely limited in comparison

with field theory in four dimensions.

7. Conclusions

As anticipated in [7] [8], we have found that the covariant lattice construction,
which provided a simple and elegant way of classifying all ten-dimensional string
theories, has similar advantages for constructing chiral string theories below ten di-
mensions. We expect that all theories discussed in this paper have the same degree
of consistency as the well-known ten-dimensjonal theories. Although the general
class of theories we find has already been constructed fermionically in [9], the lattice

approach gives far more immediate insight in their structure. Although the number

'With the help of a computer, it is easy to generate spectra of hundreds of theories within of a few
moments.
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of chiral theories of this type is finite, our results suggest that there exist very many
of them, so that a complete enumeration appears impossible. Perhaps some interest-
ing subclass can be classified completely.

It seems that not much is left of the once celebrated uniqueness of string theory.
Of course string theory never really was unique even in ten dimensions, and it is al-
ready known for some time that the situation is much worse in four dimensions. Up
to now, one may have .taken comfort from the fact that four-dimensional theories
are just compactifications of the ten-dimensional ones, at least if one believes that it
is better to have one string theory with many vacua than many string theories. If
this kind of uniqueness is what is desired, one would be better off if all fermionic
strings could be shown to originate from the bosonic string, which seems the best
candidate for a really unique theory. Our construction puts the ten- and low-
er-dimensional theories on equal footing in this respect.

Even if all that string theory could achieve would be a completely finite theory
of all interactions including gravity, but with no further restrictions on the gauge
groups and the representations, it would be a considerable success. But the situation
is better than that; although gauge groups are not very much restricted except that
in chiral models their rank cannot exceed 22, the representations are. The fact that
weights of length larger than 2 cannot appear in the massless sector selects
low-dimensional representations; therefore, it is impossible to obtain many models
that have been considered in the past, such as those with large Higgs representations
or color exotics. Furthermore, one is not free to select fermion and scalar represen-

tations in an arbitrary way, and couple them with arbitrary coupling constants.
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In our models, there is a built-in mechanism for naturally producing several
generations. The multiplicity occurring in the spectra (6.10) and (6.15) of our exam-
ples is a quite general phenomenon; it arises due to the possibility of assembling
length-squared two vectors in the right-moving sector in different ways.

A rank 22 gauge group may seem excessively large in comparison with the stan-
dard model, but this problem can be dealt with in the same way as the “second” Eg
from the ten-dimensional heterotic string. There should be many cases where a large
part of the gauge group does not act on the massless chiral fermions or where scver-
al parts of the gauge group act on several sets of fields separately. In fact, there is a
slight tendency in favor to such a situation because of the limited weight length of
massless states; we have indeed found examples where that is the case. Furthermore,
it may be possible to reduce the gauge symmetry by dividing out discrete groups
along the lines of [14] [27] [28]. It is obvious that there will exist even more string
theories in four dimensions than the ones we can construct from self-dual lattices, or
which have been constructed in [9] [10].

Of course we do not exclude the possibility that the kind of theories we con-
struct here can in some way be regarded as compactifications of some or all
ten-dimensional theories, but this will almost certainly be a rather epicyclical de-
scription compared to the one we have given here. In particular, there is no need
anymore to study ten-dimensional field theories. If everything works as expected,
one can directly calculate all relevant quantities in four dimensions using conformal
field theory. After our recent excursion into higher dimensions, it may be difficult to

get used to the fact that perhaps the world is four-dimensional after all.
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Table 1: Massless Particles and Tachyons

Conjugacy classes D= DyxD, Excitations Mass Particle type
g 3* I S 2
Ds D1 D, 1,'2uR 1]2wL+ Ny NL. 1/8m
(0) © (0) Not physical i
)] (v) 0 1 0 Gy gauge bosons
(v) (v) 0 1 0 gravitons, B e dilaton
) ) (0) Not physical
(o) {v) 0 1/2 0 —1/2 scalar tachyon
0} (v) 1/4 3/4 o -1/4 scalar tachyon
(©) {v) 172 1 o 0 massless scalar
(1)) (v} 12 0 1 0 Gp pauge bosons
(8) (e (c) Not physical
(s) (s 3/8 1 0 0 massless fermion
(s) (s) 3/8 0 1 0 gravitino
() Same as (s), but with opposite chirality.

Table 2: Conditions for Extended Supergravity and Chirality

Dimension Embedding of space-time lattice Supersymmetry Chiral
D=2 D, =D, None possible
D, = Dn’ 5<n<l16 None
Dy e D, 55ng16 (%) (2n—-8,0) yes
D, = B (2,2)
D, < E, 4.4
D, = By (8.8) !
D=4 Dgc=D None possible ‘
D5 = Dp,6<ng14 None
Dg < B N =1 possible
D5 z E7 N : 2
D < Eq N=4
D=¢§ I)6 © Dg None possible
D¢ © D, 7<n<12 None
Dg = EL, N =1 yes
Dg = Eg N=2
D=8 D, = D, None possible
D, <= D,, 8<ng10 None
D, By N =1
b =10 Dg = Dy None possible
Dy © Eg N = yes

The second column gives the maximal extension of the space-time lattice Dy _,=D4. . xD 4 Within the right-moving part of
the lattice T 6+2m8+2g (D=10—2n). The entry “possible’ means that the conditions for chirality we display are only neces-
sary, but not su&{‘lﬁent; ) indicates triality rotated embeddings. In type 11 theories one gets similar structures (with the same
or opposite chirality) from the left-moving sector.
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