Superpotentials, A, Relations and Notation/Language/WhatlsItAbout
WDVV Equations for

Open TODO|OgIC8| Strlngs e ""bulk” sector = closed string sector. operators ¢;,
M. Herbst, C. Lazaroiu, W. Lerche, hep-th/0402110 deformation parameters

e ""boundary”, "brane"” sector = open string sector;
D-branes = boundary conditions;
operators v, deformation parameters s:
"boundary preserving”: ¥ = 1ea ~ Hom(a, a)

1. Closed string TCFT "boundary changing”: . ~ Hom(a,b)
e objective: compute W(t;, s,), which is understood
2. Basic quantities in open string TCFT here as generating function of deformed disk corre-
lators F

3. Consistency relations Wt sa) <€tifnd2wipesa 0dea>
- Y = S a5ty B0 Farn (1)

(a) A relations
(b) Bulk-boundary crossing relation

(c) Cardy relation

. L L e Derive conditions on A (and thus, W) from TFT
4. Application: LG minimal models consistency conditions (Moore, Segal, Lazaroiu)
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TCFT on the sphere (I)

cohomological TCFT from twisting a N = (2,2) SCFT
Q> =0
T(z) = [Q,G(2)]

physical fields and descendants:

[Q, M%) O
[Q, ¢V = 8¢
[Q,¢P] = doM

integrated insertions:
[Q, | ¢ = 0
S2

basic deformed correlation functions (fix SL(2,C)):

Ci.i 1= (i, - .. ¢i3/¢§42) e /¢§,?)>52

depend on @-cohomology classes and are independent
of world-sheet metric and are constant.

TCFT on the sphere (II)

write in terms of deformed 3-point correlation functions:
(2)
Ciriyis (1) = (¢i, i, Pis, et [ )

Ward identities of the current G(z) and G(Z) fix contact
terms:

e correlation functions are symmetric under exchange

of all fields.
e the 2-point function is independent of perturba-
tions.

integrability (DVV):
0i,Ciinis () = 04, Ciyiyiy (t)

prepotential F (eff. lagrangian in N = 2 supergravity):
Ciyizis (t) = 0;,0,01,F (t)
factorization - WDVV equations:
0;0;0mF N™" 0,0k F = 0i0x0mF 0" 0n0;0,.F

What is the open string analog ?



TCFT on the disk (I)

boundary conditions - N = (2,2) - N = 2:

T(z) = T@)|,_;,
G(z) = G&),_;

physical fields and descendants:
[Q, %] = O
[Q, V] = dips

integrated insertions:

TR

Q, [ ¢@1= / @ [0, / "W =
D2 0D?2 T

TL

Q maps to the boundary of the (super)integration do-

main!

The boundary contributions are a new feature, and com-
plication, as compared to the closed string correlators

on the sphere

TCFT on the disk (II)

basic correlation functions (fix SL(2, R)):

B(10~~am;i1u-in = = < ¢i1¢ao P/¢z§,11) .. /wg,l,t) /(bff) s /(Zsz(f) >

= (_1)25@*‘“) { Yoot P/ng;).../ng}l)l %m/qsf).../qsf) )

Ward identity of the current G(z):

e the metric wy 1= (Ya1hy) does not get corrections
from integrated insertions

e the correlators are constant, independent of WS—
metric

e Ward identity relates the two kinds of correlation
functions (exceptions: By, Bay; and Bgpe)

e the correlators are symmetric in bulk fields: inte-
grability wrt ¢;

. (2)
Faoan(t) = £ <¢aowalp/"/’az---/¢am11/)11,,;@Z’t1f”2¢1 )

61'.7"(,,(15) = — <¢z wa, ezltl fD2 ¢L(2)>

)

(2)
- <¢L Tpa P/wgl) ezitl nz(bl >

ai]:ab(t)



e Note: tadpoles F,(t) and Fu,(t) vanish, if the bulk

moduli ¢; are turned off (ie., switching them on re-
quires adjusting boundary deformations).

Grassmann grading:

While integrated and unintegrated bulk fields have
the same Z, grade, the grades of a physical bound-
ary field and its integrated descendant differ

"suspended” grading: @ = || + 1 (mod 2)

assoc with deformation parameters (safngl)):
|sa| = @

the correlators are invariant under cyclic permuta-
tions of the boundary fields:

Fao...a,(t) = (_1)am(ao—i_”‘+a"kl)-7'—amao.-.am (t)

The suspended grading a; is the natural one!

Superpotential W

Infinite sequence of t-dependent prepotentials:

F(t) prepotential (on the sphere)
fa1(t)

falaz(t)
F (t) cyclic correlators (on the disk)
A1a203 do in general not integrate

fa1a2a3a4 (t)

Encode in generating function W:

1
W(s,t) = Y —sa.- S0 Faran(t)
m>1 m
1
= Z —8a,, - Sa, Aa,.a, (1)
sl m!

symmetrized string amplitude (for boundary preserving
sectors):

Agya, () = (m = DV Fy (00,0 (1)

ordering matters for the boundary changing open string
“moduli” s, ~ non-commutative (cyclic derivatives)
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Ao relations (I)

(1Q, bistba, P / O / P / 2. / 671y =0

Q maps to the boundary of the (super)integration do-
main:

e m > 2 boundary fields and n > 0 bulk fields ap-
proach each other

e m > 0 boundary fields and n > 1 bulk fields ap-
proach each other

-\’l = qc“té‘f’
. *

The factorization by insertion of a complete system of
boundary fields leads to a cyclic A, structure:

m

Do PR ) s () = €
k,j =20
k<j

...derivation quite technicall!

A relations (II)

Define open string scattering products r,, : H®™ — H,
through the relations:

rm (e, - Va,) = Flaa,(t) Y for m>1
ro(1) = FUt) v¢q

Then the A, algebra becomes:

m

Z (_1)al+m+ak7am—j+k(¢u1 o wam Tj—k(¢ak+1 000 d’lﬁ)a ¢aj+1 ooo '(/}am) =0

k,j=0
k<j

minimal Ao if rg=7r1 =0 undef. theory

(strong) A if 70=0
DGA if ri1,70 7% 0 only

weak A if r»7#0form=20,1,... def. theory

The bulk field insertions deform a minimal A. alge-
bra into a weak Ay algebra (Fuli=0o = Fult=0o = 0).
(Hochschild cohomology)
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open string field theory

Gaberdiel, Zwiebach (hep-th/9705038):
OSFT has the structure of a cyclic A algebra

Witten: (hep-th/9207094):
topological open strings described by Chern-Simons the-
ory as OSFT

Define a string field

@Z):Z'SawaEHo

and non-degenerate bilinear form on H,:

w(Wa, Y1) 1= wap = (Yathp)

then the superpotential can (formally) be written as
string field theory action:

Wis, ) = 3 —— w(t, (™))

mZOm—l—l

. tree diagrams, bubbling off disks (Kajiura)
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bulk-boundary crossing symmetry

bulk fact: boundary fact:

azajak]:(t) TIM 8l]:aoa1~-am(t) =

== Z (_l)s fa&n(lmlbam2+1-~~a7‘n3cam4+l~-~am(t) 8i~7:bam1+1---am2 (t) aj]:cam3+1mam4 (t)

0<mi<..ma<m

(sign: s =am,41+ ...+ am,)

These equations relate the bulk prepotential F(t) to
the disk correlation functions Fg,. ., (t)!
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topological Cardy relation

factorize cylinder diagram:

be
by
bulk fact. / \ boundary fact.

1l
™M
2

>—9

0iFao...an 10 Fpo. by =

_ E st+eé1+cx  ,c1dr , cadp
- (_1) w w fao-uanldlbm1+1--~bm202an2+1~--an fbo...bmlC1a"1+1...andebmz.H...bm
0<n1<no<n

0<mi<mz<m

This powerful and important relation too relates bulk
with boundary correlators
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Summary: TFT consistency relations

(WDWVV) Di0j0mF N™" OnOKOF = 0;0k0mF n™" Ond;OF

m

(AOC) Z (_)a1+'4.+&;¢ faoalu.akcaj+1u.am ]:Cak+14..a] =0
k,j=0
k<j
(Crossing) 000, F 1 O Fugar...an =

_E _\amg+1+F-.Famg b . TC
- ( ) B ]:ao.“amlbam2+1.4.am3ca,m4+1“.a,m 61]: Qg +1---Gmy 6]]: Qg +1---Amy

0<mi<..ma<m

(Cardy) OiFao.an M 0 Fvo. b =

m

_ § : stéi+é | ,eidi  codo
— (7) w w ]:ao...a"ldlbmlJrl...bm2cga,,2+1.4.a” fbo...bmlclanlﬂ..4a"2d2bmz+1...b

0<ni<nx<n
0<mi<ma<m

These form an in general infinite system of algebraic and

differential equations ...

explicitly 7

can we ever hope to solve them
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Example: B-branes in topological minimal models

boundary Landau-Ginzburg action:

drdd NJ(z), (DN = E(z))
oD?

(Warner, Kapustin, BHLS)

S ~ / d?zd?0 Wia(z)+
D2

BRST operator/SUSY charge: Q = (g g)

The action is supersymmetric iff:

1
Wie = 5Q2 = JE.

Consider first undeformed theory (parameter k="level"):

the bulk sector is governed by

k+2
x
k>

Wia(z) = [ >1

the B-type DO-branes M, are given by the polynomial
matrix factorizations of Wyqa:

J(z) = 't E(x)zxk_Hl, g=_1707m,ﬁ
k+2 2

15

Physical spectrum: Q-cohomology

boundary preserving physical fields (Hom(M,, M,)): com-
posed of =, w = even/odd generators of boundary co-
homology with relations

S B W2 = gh—2t
fields parameters Q-exact
¢ ={1,m,...,2"} {tk+2, tht1, .- - t2} 0:Wrg ~ 0
o ={1,z,...,2% {€t2)/25 - > Eht2) j2—1} gcd(J, E) ~ 0
Yo =w®{1l,z,...,2} | {s041,5¢0,...,51} gcd(J,E) ~ 0

(def. parameters s grassmann even, £ odd def params)

boundary changing fields (Hom(M,,, M,,)) between two
branes M, and Mj,,:

fields parameters | Q-exact

d)ﬁl’fz = ﬂfl,fz ® {1,$, e 7$€12} {gah&} ng(Jla El) ~ O

Yot =t @ {1z, ..., 20}

sety gcd(J;, E;) ~ 0

(l12 = min(41,42))




Kontsevich’s triangulated category C)y,

The Landau-Ginzburg model provides a concrete phys-
ical realization of Kontsevich's proposal for a certain
Z> graded derived category (worked out by Orlov, Ka-
pustin, BHLS)

...the objects correspond to our branes My:

~ (po £ (e))
M, (Pl — P,
(graded modules Py, P ~ C[z])

...the morphisms correspond precisely to the boundary
LG fields introduced above:

J
]\461 (Pffl) : PQ(&))
. E¢D

1%

01,60 01,00

Cq o £y ,L
: el e

~ J¢2) *
( 1 ETz) 0

M,

2

All maps J, E, ¢, ¥ have an explicit realization in terms
of Landau-Ginzburg quantities (boundary potential, per-
turbations)
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Deforming the theory

infinitesimal perturbations:

k
Wig(z) = — Z thpoiT'
i=0
/
6J(x) = — Z Upt1—aqT”
a=0

0E(x)

l
_xk72€ (E :Ué+1—a$a>
a=0

Effects:

e The supersymmetry is generically broken, since
Wie # JE. It can be restored on submanifolds of
the t,u parameters space.

e Thespectrum of topological boundary fields is gener-
ically truncated, since
deg(gcd(J, E)) < deg(J).

e Branes M, can decay/bind to other ones.
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Applying the consistency constraints

. only a finite number of polynomials equations.

All correlation functions for the minimal model are uniquely
determined once the constraint equations are imposed !
(The A relations by themselves do not suffice.)

Concise result:
W(s,t) = }{WLg(w,t) log det J(z, s)

where flat bulk LG potential (DVV):

k2
k+2

and where (for a pair of branes M, M;,):

k
Wia(t) = — D groi(t) o
=0

64+1 b [11] R 4T [12]
J = v 2ia=0 St 1-a" 2520 'S%(zlJr£2)+1—vﬂcv
- o U1 [21] ¥y O+1 4> [22] a
2o Si(l6)+1-4% T 2 a=0 5 +1-a%

...makes direct contact to the categorial description !
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NB: Superpotential can also be rewritten as

W(s,t) = TrV(X(s),t)
where
0.V (z,t) = Wig(z,t)
X (s) = diag(z1(s), ...@s,+0,+2(5))

detJ(z,s) = [[(z — zi(s))

...Kontsevich matrix model !
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Properties of deformation space

Matrix factorization «— crit. locus of W(s,t)
E(:Z}, S, t) = WLG(£7 t)/J(ZIJ‘, 3)
If we require this to be polynomial (E_- = 0), then (v.v.):

OsW(s,t) = ?{Tr[E(x,s,t)asJ(ac,s)] =0

This allows to systematically and exactly study compos-

ite brane formation ("tachyon condensation”, "bound-
ary flows")
The topological LG model is a nice (the sim-
Moo, . plest?) toy lab for studying D-brane cate-
W gories !
M; & My
Physical realization of cone construction:
triangle : My, 5> My, ——C(s) —= My, [1]
J(s)
cone : C(s) = (pl(fl) ® pl(fz):Péel) o Pézz))
E(s)
anti-brane (shift functor): swap J, E
o 2 L0\
Mf[l] - (PO - Pl ): M.y
—Jo
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