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Notation/Language/WhatIsItAbout

• ”bulk” sector = closed string sector: operators φi,
deformation parameters ti

• ”boundary”, ”brane” sector = open string sector;
D-branes = boundary conditions;
operators ψ, deformation parameters s:
”boundary preserving”: ψa ≡ ψaa ∼ Hom(a, a)
”boundary changing”: ψab ∼ Hom(a, b)

• objective: compute W(ti, sa), which is understood
here as generating function of deformed disk corre-
lators F

W(ti, sa) ∼ 〈 e
ti
∫
D
d2z φi Pe

sa
∫
∂D
dxψa 〉

=
∑

sam...sa1
∂tin...∂tinFa1....an(tk)∫

φ3

∫
φ2

∫
φ1ψ12∫

ψ23

ψ31

ψ11

�

�

�

�

• Derive conditions on A (and thus, W) from TFT
consistency conditions (Moore, Segal, Lazaroiu)
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TCFT on the sphere (I)

cohomological TCFT from twisting a N = (2,2) SCFT

Q2 = 0

T (z) = [Q,G(z)]

physical fields and descendants:

[Q,φi] = 0

[Q, φ(1,0)
i ] = ∂φi

[Q, φ(0,1)
i ] = ∂̄φi

[Q,φ(2)
i ] = dφ(1)

i

integrated insertions:

[Q,

∫
S2

φ(2)
i ] = 0

basic deformed correlation functions (fix SL(2, C)):

Ci1...in :=
〈
φi1 . . . φi3

∫
φ(2)
i4
. . .

∫
φ(2)
in

〉
S2

depend on Q-cohomology classes and are independent
of world-sheet metric and are constant.
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TCFT on the sphere (II)

write in terms of deformed 3-point correlation functions:

Ci1i2i3(t) = 〈φi1φi2φi3 e
∑

i
ti
∫
S2
φ(2)

i 〉

Ward identities of the current G(z) and Ḡ(z̄) fix contact
terms:

• correlation functions are symmetric under exchange
of all fields.

• the 2-point function is independent of perturba-
tions.

integrability (DVV):

∂i0Ci1i2i3(t) = ∂i1Ci0i2i3(t)

prepotential F (eff. lagrangian in N = 2 supergravity):

Ci1i2i3(t) = ∂i1∂i2∂i3F(t)

factorization - WDVV equations:

∂i∂j∂mF ηmn ∂n∂k∂lF = ∂i∂k∂mF ηmn ∂n∂j∂lF

What is the open string analog ?
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TCFT on the disk (I)

boundary conditions - N = (2,2)→N = 2:

T (z) = T̄ (z̄)
∣∣
z=z̄

,

G(z) = Ḡ(z̄)
∣∣
z=z̄

physical fields and descendants:

[Q,ψa] = 0

[Q,ψ(1)
a ] = dψa

integrated insertions:

[Q,

∫
D2

φ(2)
i ] =

∫
∂D2

φ(1)
i , [Q,

∫ τR

τL

ψ(1)
a ] = ψa

∣∣∣∣τR
τL

Q maps to the boundary of the (super)integration do-
main!

The boundary contributions are a new feature, and com-
plication, as compared to the closed string correlators
on the sphere

5

TCFT on the disk (II)

basic correlation functions (fix SL(2, R)):

Ba0...am;i1...in := −
〈
φi1ψa0 P

∫
ψ(1)
a1

. . .

∫
ψ(1)
am

∫
φ

(2)
i2
. . .

∫
φ

(2)
in

〉
= (−1)

∑m−1

`=1
(a`+1)

〈
ψa0ψa1 P

∫
ψ(1)
a2

. . .

∫
ψ(1)
am−1

ψam

∫
φ(2)
i1
. . .

∫
φ(2)
in

〉
Ward identity of the current G(z):

• the metric ωab :=
〈
ψaψb

〉
does not get corrections

from integrated insertions

• the correlators are constant, independent of WS–
metric

• Ward identity relates the two kinds of correlation
functions (exceptions: Ba;i, Bab;i and Babc)

• the correlators are symmetric in bulk fields: inte-
grability wrt ti

Fa0...am(t) := ± 〈ψa0ψa1P

∫
ψa2 . . .

∫
ψam−1ψame

∑
i
ti

∫
D2
φ(2)

i 〉 ,

∂iFa(t) := − 〈φi ψa e

∑
i
ti

∫
D2
φ

(2)

i 〉 ,

∂iFab(t) := − 〈φi ψa P

∫
ψ

(1)
b e

∑
i
ti

∫
D2
φ(2)

i 〉
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• Note: tadpoles Fa(t) and Fab(t) vanish, if the bulk
moduli ti are turned off (ie., switching them on re-
quires adjusting boundary deformations).

• Grassmann grading:

While integrated and unintegrated bulk fields have
the same Z2 grade, the grades of a physical bound-
ary field and its integrated descendant differ

”suspended” grading: ã = |ψa|+ 1 (mod 2)

assoc with deformation parameters (sa
∫
ψ

(1)
a ):

|sa|= ã

• the correlators are invariant under cyclic permuta-
tions of the boundary fields:

Fa0...am(t) = (−1)ãm(ã0+...+ãm−1)Fama0...am−1(t)

The suspended grading ãl is the natural one!
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Superpotential W

Infinite sequence of t-dependent prepotentials:

F(t) prepotential (on the sphere)

Fa1(t)

Fa1a2
(t)

Fa1a2a3
(t)

Fa1a2a3a4
(t)

...

 cyclic correlators (on the disk)
do in general not integrate

Encode in generating function W:

W(s, t) =
∑
m≥1

1

m
sam . . . sa1

Fa1...am(t)

=
∑
m≥1

1

m!
sam . . . sa1

Aa1...am(t)

symmetrized string amplitude (for boundary preserving
sectors):

Aa1...am(t) := (m− 1)! Fa1(a2...am)(t)

ordering matters for the boundary changing open string
“moduli” sa ∼ non-commutative (cyclic derivatives)
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A∞ relations (I)〈
[Q,φi0ψa0P

∫
ψ(1)
a1

. . .

∫
ψ(1)
am

∫
φ

(2)
i1
. . .

∫
φ

(2)
in

]
〉
= 0

Q maps to the boundary of the (super)integration do-
main:

• m ≥ 2 boundary fields and n ≥ 0 bulk fields ap-
proach each other

• m ≥ 0 boundary fields and n ≥ 1 bulk fields ap-
proach each other

The factorization by insertion of a complete system of
boundary fields leads to a cyclic A∞ structure:

m∑
k, j = 0

k ≤ j

(−1)ã1+...+ãk Fa0
a1...akcaj+1...am(t) F

c
ak+1...aj(t) = 0

...derivation quite technical!
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A∞ relations (II)

Define open string scattering products rm : H⊗mo → Ho

through the relations:

rm(ψa1
. . . ψam) := Faa1...am(t) ψa for m ≥ 1

ro(1) := Fa(t) ψa .

Then the A∞ algebra becomes:

m∑
k, j = 0

k ≤ j

(−1)ã1+...+ãkrm−j+k(ψa1 . . . ψak , rj−k(ψak+1 . . . ψaj), ψaj+1 . . . ψam) = 0

minimal A∞ if r0 = r1 = 0 undef. theory

(strong) A∞ if r0 = 0

DGA if r1, r2 6= 0 only

weak A∞ if rm 6= 0 for m = 0,1, . . . def. theory

The bulk field insertions deform a minimal A∞ alge-
bra into a weak A∞ algebra (Fa|t=0 = Fab|t=0 = 0).
(Hochschild cohomology)
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open string field theory

Gaberdiel, Zwiebach (hep-th/9705038):
OSFT has the structure of a cyclic A∞ algebra

Witten: (hep-th/9207094):
topological open strings described by Chern-Simons the-
ory as OSFT

Define a string field

ψ =
∑
a

saψa ∈ Ho

and non-degenerate bilinear form on Ho:

ω(ψa, ψb) := ωab =
〈
ψaψb

〉
then the superpotential can (formally) be written as
string field theory action:

W(s, t) =
∑
m≥0

1

m+ 1
ω(ψ, rm(ψ⊗m))

... tree diagrams, bubbling off disks (Kajiura)
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bulk-boundary crossing symmetry

bulk fact: boundary fact:

∂i∂j∂kF(t) ηkl ∂lFa0a1...am(t) =

=
∑

0≤m1≤...m4≤m

(−1)s Fa0...am1
bam2+1...am3

cam4+1...am(t) ∂iF
b
am1+1...am2

(t) ∂jF
c
am3+1...am4

(t)

(sign: s = ãm1+1 + . . .+ ãm3)

These equations relate the bulk prepotential F(t) to
the disk correlation functions Fa1...am(t)!
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topological Cardy relation

factorize cylinder diagram:

∂iFa0...anη
ij∂jFb0...bm =

=
∑

0≤n1≤n2≤n

0≤m1≤m2≤m

(−1)s+c̃1+c̃2 ωc1d1 ωc2d2 Fa0...an1d1bm1+1...bm2
c2an2+1...an Fb0...bm1

c1an1+1...an2d2bm2+1...bm

This powerful and important relation too relates bulk
with boundary correlators
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Summary: TFT consistency relations

(WDVV) ∂i∂j∂mF ηmn ∂n∂k∂lF = ∂i∂k∂mF ηmn ∂n∂j∂lF

(A∞)

m∑
k, j = 0

k ≤ j

(−)ã1+...+ãk Fa0
a1...akcaj+1...am F

c
ak+1...aj = 0

(Crossing) ∂i∂j∂kF ηkl ∂lFa0a1...am =

=
∑

0≤m1≤...m4≤m

(−)ãm1+1+...+ãm3Fa0...am1bam2+1...am3cam4+1...am ∂iF
b
am1+1...am2

∂jF
c
am3+1...am4

(Cardy) ∂iFa0...an η
ij ∂jFb0...bm =

=
∑

0 ≤ n1 ≤ n2 ≤ n
0 ≤ m1 ≤ m2 ≤ m

(−)s+c̃1+c̃2 ωc1d1 ωc2d2 Fa0...an1d1bm1+1...bm2c2an2+1...an Fb0...bm1c1an1+1...an2d2bm2+1...bm

These form an in general infinite system of algebraic and
differential equations ... can we ever hope to solve them
explicitly ?
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Example: B-branes in topological minimal models

boundary Landau-Ginzburg action:

S ∼

∫
D2

d2zd2θ WLG(x)+

∫
∂D2

dτdθ ΠJ(x) ,
(
DΠ = E(x)

)
(Warner, Kapustin, BHLS)

BRST operator/SUSY charge: Q =

(
0 J

E 0

)
The action is supersymmetric iff:

WLG =
1

2
Q2 = JE.

Consider first undeformed theory (parameter k=”level”):

the bulk sector is governed by

WLG(x) =
xk+2

k+ 2
, k ≥ 1

the B-type D0-branes M` are given by the polynomial
matrix factorizations of WLG:

J(x) = x`+1 , E(x) =
xk−`+1

k+ 2
, ` = −1,0, . . . ,

[
k

2

]
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Physical spectrum: Q-cohomology

boundary preserving physical fields (Hom(M`,M`)): com-
posed of x, ω = even/odd generators of boundary co-
homology with relations

x`+1 = 0, ω2 = xk−2`

fields parameters Q-exact

φi = {1, x, . . . , xk} {tk+2, tk+1, . . . t2} ∂xWLG ∼ 0

φa = {1, x, . . . , x`} {ξ(k+2)/2, . . . , ξ(k+2)/2−`} gcd(J, E) ∼ 0

ψa = ω ⊗ {1, x, . . . , x`} {s`+1, s`, . . . , s1} gcd(J, E) ∼ 0

(def. parameters s grassmann even, ξ odd def params)

boundary changing fields (Hom(M`1,M`2)) between two
branes M`1 and M`2:

fields parameters Q-exact

φ`1,`2a = β`1,`2 ⊗ {1, x, . . . , x`12} {ξ`1,`2a } gcd(Ji,Ei) ∼ 0

ψ`1,`2a = ω`1,`2 ⊗ {1, x, . . . , x`12} {s`1,`2a } gcd(Ji,Ei) ∼ 0

(`12 ≡ min(`1, `2))



Kontsevich’s triangulated category CW

The Landau-Ginzburg model provides a concrete phys-
ical realization of Kontsevich’s proposal for a certain
Z2 graded derived category (worked out by Orlov, Ka-
pustin, BHLS)

...the objects correspond to our branes M`:

M`
∼=
(
P (`)

1

J (`)
//

P (`)
0

E(`)
oo

)
(graded modules P0, P1 ∼ C[x])

...the morphisms correspond precisely to the boundary
LG fields introduced above:

M`1

��

∼=

(
P (`1)

1

φ
`1 ,`2
α

��

ψ
`1,`2
α

��

J (`1)
//

P (`1)
0

)
φ
`1 ,`2
α

��

ψ
`1,`2
α

��

E(`1)
oo

M`2

(
P (`2)

1

J (`2)
//

P (`2)
0

)
E(`2)
oo

All maps J, E, φ, ψ have an explicit realization in terms
of Landau-Ginzburg quantities (boundary potential, per-
turbations)
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Deforming the theory

infinitesimal perturbations:

δWLG(x) = −

k∑
i=0

tk+2−ix
i

δJ(x) = −
∑̀
a=0

u`+1−ax
a

δE(x) = −xk−2`

(∑̀
a=0

u`+1−ax
a

)
Effects:

• The supersymmetry is generically broken, since
WLG 6= JE. It can be restored on submanifolds of
the t, u parameters space.

• The spectrum of topological boundary fields is gener-
ically truncated, since
deg(gcd(J, E)) < deg(J).

• Branes M` can decay/bind to other ones.
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Applying the consistency constraints

... only a finite number of polynomials equations.

All correlation functions for the minimal model are uniquely
determined once the constraint equations are imposed !
(The A∞ relations by themselves do not suffice.)

Concise result:

W(s, t) =

∮
WLG(x, t) log det J(x, s)

where flat bulk LG potential (DVV):

WLG(t) =
xk+2

k+ 2
−

k∑
i=0

gk+2−i(t) x
i

and where (for a pair of branes M`1, M`2):

J =

 x`1+1 −
∑`1

α=0 s
[11]
`1+1−αx

α −
∑`12

γ=0 s
[12]
1

2
(`1+`2)+1−γ

xγ

−
∑`21

γ=0 s
[21]
1

2
(`1+`2)+1−γ

xγ x`2+1 −
∑`2

α=0 s
[22]
`2+1−αx

α


...makes direct contact to the categorial description !
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NB: Superpotential can also be rewritten as

W(s, t) = TrV (X(s), t)

where

∂xV (x, t) = WLG(x, t)

X(s) = diag(x1(s), ...x`1+`2+2(s))

det J(x, s) =
∏

(x− xi(s))

...Kontsevich matrix model !
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Properties of deformation space

Matrix factorization ←→ crit. locus of W(s, t)

E(x, s, t) = WLG(x, t)/J(x, s)

If we require this to be polynomial (E− = 0), then (v.v.):

∂sW(s, t) =

∮
Tr [E(x, s, t)∂sJ(x, s)] = 0

This allows to systematically and exactly study compos-
ite brane formation (”tachyon condensation”, ”bound-
ary flows”)

C0

M0 ⊕M2

M−1 ⊕M3

M1 ⊕M1

Physical realization of cone construction:

triangle : M`1
s //M`2

//C(s) //M`1[1]

cone : C(s) =
(
P

(`1)
1 ⊕ P (`2)

1

J(s)
//

P (`1)
0 ⊕ P (`2)

0
E(s)
oo

)
anti-brane (shift functor): swap J, E

M`[1] =
(
P (`)

0

−E(`)
//

P (`)
1

−J (`)
oo

)
∼= Mk−` .
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The topological LG model is a nice (the sim-

plest?) toy lab for studying D-brane cate-

gories !
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