D-Branes and Matrix Factorizations I

- Part I: Introduction, boundary LG models,

D-branes in minimal models, deformations
hep-th/02 10296 Kapustin, Li
hep-th/0305I33 Brunner, Herbst,WL, Scheuner
hep-th/0402IIO Herbst, Lazaroiu, WL
hep-th/0604I89 Knapp, Omer

- Part II: homological mirror symmetry, D-branes on elliptic curve, eff potential from instantons
hep-th/0408243 Brunner, Herbst,WL,Walcher
hep-th/05I2208 Govindarajan, Jockers,WL,Warner
hep-th/0603085 Herbst,WL, Nemeschansky Prior work by Kontsevich, Polishchuk,Zaslow
Further introductory/review/background material
hep-th/0403166 Aspinwall
hep-th/0011017 Douglas
hep-th/0409204 Hori, Walcher hep-th/0010269, 0107162 Lazaroiu
W.Lerche, Cargese 06/2006

Motivation: D-brane worlds

Typical brane + flux configuration on a Calabi-Yau space

closed string (bulk) moduli t
open string (brane location + bundle) moduli u

3+I dim world volume with effective $\mathrm{N}=\mathrm{I}$ SUSY theory

What is the exact effective superpotential, the vacuum states, etc ?

$$
\mathcal{W}_{\mathrm{eff}}(\Phi, t, u)=?
$$

Quantum geometry of D-branes

Classical geometry ("branes wrapping p-cycles", gauge bundle configurations on top of them) makes sense only at weak coupling/large radius:

....well developed techniques (mirror symmetry)
for non-intersecting branes only !
and mostly for non-compact geometries.

The Derived Category $\mathrm{Db}(\mathrm{Coh}(\mathrm{M})$)

Mathematicians (Kontsevich) tell us that the proper mathematical language for describing B-branes is the (bounded) derived category (of coherent sheaves on CY)

What does it mean for physicists ?

- treats branes and anti-branes on equal footing
- more general than cohomology/ K-theory (RR charges)

- keeps track of brane positions
robust under continuous deformations (want: moduli dependence),
- describes bound state formation/tachyon condensation (triangulated category)

...we will to translate this language to one that is more familiar to physicists: boundary Landau-Ginzburg theory

Roadmap

The category of topological D-branes

- objects: $\mathcal{D} \longleftrightarrow$ boundary conditions, D-branes
\bullet morphisms (maps): $\boldsymbol{\Omega}, \boldsymbol{\Psi} \longleftrightarrow$ boundary preserving/changing open string vertex operators

Quiver diagram

Recap closed string TFT: (twisted) N=2 SCFT

- A typical correlator on S_{2} looks like:

$$
C_{i j k}(t)=\partial_{t_{i}} \partial_{t_{j}} \partial_{t_{k}} \mathcal{F}_{\mathrm{eff}}(t)
$$

Generating function ($\mathrm{N}=2$ prepotential):
($\mathrm{t}_{\mathrm{i}}=$ deformation params, moduli)

$$
\begin{aligned}
\mathcal{F}_{\mathrm{eff}}\left(t_{i}, u_{a}\right) & =\left\langle e^{t_{i} \int_{D} \Phi_{i}^{(2)}}\right\rangle \\
& =\sum t_{i_{n}} \ldots t_{i_{1}} C_{i_{1} \ldots i_{n}}(t)
\end{aligned}
$$

WDVV equations from factorization:

Open string TFT: (twisted) N=2 boundary SCFT

- A typical disk correlator looks like:
- Generating function ($\mathrm{N}=\mathrm{I}$ superpotential): ($\mathrm{t}_{\mathrm{i}}=$ bulk, $\mathrm{u}_{\mathrm{a}}=$ boundary deformation params)

$$
\begin{aligned}
\mathcal{W}_{\mathrm{eff}}\left(t_{i}, u_{a}\right) & =\left\langle e^{t_{i} \int_{D} \Phi_{i}^{(2)}} P e^{u_{a} \int_{\partial D} \Psi_{a}^{(1)}}\right\rangle \\
& =\sum u_{a_{m}} \ldots u_{a_{0}} t_{i_{n}} \ldots t_{i_{1}} B_{a_{0} \ldots a_{m} ; i_{1} \ldots i_{n}}(t)
\end{aligned}
$$

where:

$$
\begin{gathered}
B_{a_{0} \ldots a_{m} ; t_{1} \ldots t_{n}}(t)=\left\langle\Psi_{a_{0}} \Psi_{a_{1}} \Psi_{a_{2}} P \int \Psi_{a_{3}}^{(1)} \ldots \int \Psi_{a_{m}}^{(1)} \int \Phi_{i_{1}}^{(2)} \ldots \int \Phi_{i_{n}}^{(2)}\right\rangle \\
=\partial_{t_{i_{n}}} \ldots \partial_{t_{i_{1}}} \mathcal{F}_{a_{1} \ldots . a_{n}}(t) \\
\text { Sequence of t-dependent cyclic "prepotentials": } \\
\text {..in general not integrable wrto u }
\end{gathered}\left\{\begin{array}{c}
\mathcal{F}_{a_{1}}(t) \\
\mathcal{F}_{a_{1} a_{2}}(t) \\
\mathcal{F}_{a_{1} a_{2} a_{3}}(t) \\
\mathcal{F}_{a_{1} a_{2} a_{3} a_{4}}(t) \\
\vdots
\end{array}\right] .
$$

Open/closed top. string consistency conditions I

- Boundary TFT: Q-closedness and factorization

$$
\left\langle\left[Q, \Psi \Psi \Psi \int G^{-} \Psi \ldots \int G^{-} \Psi\right]\right\rangle \stackrel{!}{=} 0
$$

$$
\text { Contact terms from }\left\{Q, G^{-}\right\}=\partial_{x}
$$

Q.

lead to " A_{∞} relations" for correlators

$$
\begin{aligned}
& \sum_{\substack{k, j=0 \\
k \leq j}}^{m}(-1)^{\tilde{a}_{1}+\ldots+\tilde{a}_{k}} \lambda_{m-j+k}\left(\psi_{a_{1}} \ldots \psi_{a_{k}}, \lambda_{j-k}\left(\psi_{a_{k+1}} \ldots \psi_{a_{j}}\right), \psi_{a_{j+1}} \ldots \psi_{a_{m}}\right)=0 \\
& \quad \lambda_{m}\left(\Psi_{a_{1}} \ldots \Psi_{a_{m}}\right) \equiv \Psi_{a_{0}} B_{a_{1} \ldots a_{m}}^{a_{0}} \quad \text { "higher products" } \lambda_{m}: \mathcal{H}^{\otimes m} \rightarrow \mathcal{H}
\end{aligned}
$$

Kontsevich: D-branes indeed form a cyclic A_{∞} categorybut there is more.

Open/closed top. string consistency conditions II

- Beyond A_{∞} we have extra constraints, involving bulk operator insertions
\ldots. .they deform $B_{a_{1} \ldots a_{m}}^{a_{0}} \rightarrow B_{a_{1} \ldots a_{m}}^{a_{0}}(t)$
(deformation theory:"Hochschild complex")
- Bulk-boundary crossing symmetry:

$\partial_{i} \partial_{j} \partial_{k} \mathcal{F}(t) \eta^{k l} \partial_{l} \mathcal{F}_{a_{0} a_{1} \ldots a_{m}}(t)=$
$=\sum_{m_{1} \leq \ldots m_{4} \leq m}(-1)^{s} \mathcal{F}_{a_{0} \ldots a_{m_{1}} b a_{m_{2}+1} \ldots a_{m_{3}} c a_{m_{4}+1} \ldots a_{m}}(t) \partial_{i} \mathcal{F}_{a_{m_{1}+1} \ldots a_{m_{2}}}(t) \partial_{j} \mathcal{F}^{c}{ }_{a_{m_{3}+1} \ldots a_{m_{4}}}(t)$

Open/closed top. string consistency conditions III

- Annulus factorization

$$
\begin{gathered}
\text { Q } \\
=\sum_{c, d}\left((-)^{\bar{a}_{1}+\bar{d}_{2}} \mathcal{F}_{a_{1} c a_{2}}^{0,1} \eta^{c d} \mathcal{F}_{d \mid b_{1}}^{0,2}+(-)^{\bar{a}_{1}+\bar{a}_{2}} \mathcal{F}_{a_{1} a_{2} c}^{0,1} \eta^{c d} \mathcal{F}_{d \mid b_{1}}^{0,2}\right) \\
=\sum_{c, d}^{a_{1}}\left((-)^{\bar{a}_{1}+\bar{b}_{1}\left(\bar{d}+\bar{a}_{2}\right)} \eta^{c d} \mathcal{F}_{a_{1} c b_{1} d a_{2}}^{0,1}+(-)^{\bar{a}_{1}+\bar{a}_{2}+\bar{b}_{1} \bar{d}} \eta^{c d} \mathcal{F}_{a_{1} a_{2} c b_{1} d}^{0,1}\right)
\end{gathered}
$$

Summary: open/closed factorization axioms

WDVV: $\mathcal{F}_{i j m} \eta^{m n} \mathcal{F}_{n k l}=\mathcal{F}_{i k m} \eta^{m n} \mathcal{F}_{n j l}$
$\mathrm{A}_{\infty}: \sum_{\substack{k_{k}, j=0 \\ k \leq j}}^{m}(-1)^{\tilde{a}_{1}+\ldots+\tilde{a}_{k}} r_{m-j+k}\left(\psi_{a_{1}} \ldots \psi_{a_{k}}, r_{j-k}\left(\psi_{a_{k+1}} \ldots \psi_{a_{j}}\right), \psi_{a_{j+1}} \ldots \psi_{a_{m}}\right)=0$
Crossing: $\partial_{i} \partial_{j} \partial_{k} \mathcal{F}(t) \eta^{k l} \partial_{l} \mathcal{F}_{a_{0} a_{1} \ldots a_{m}}(t)=$

$$
=\sum_{\mathbf{0} \leq m_{1} \leq \ldots m_{4} \leq m}(-1)^{s} \mathcal{F}_{a_{0} \ldots a_{m_{1}} b a_{m_{2}+1} \ldots a_{m_{3}} c a_{m_{4}+1} \ldots a_{m}}(t) \partial_{i} \mathcal{F}_{a_{m_{1}+1}}{ }^{\ldots} a_{m_{2}}(t) \partial_{j} \mathcal{F}_{a_{m_{3}}+\ldots a_{m_{4}}}(t)
$$

Annulus: $\sum_{c, d}\left((-)^{\bar{a}_{1}+\bar{d} \bar{a}_{2}} \mathcal{F}_{a_{1} c a_{2}}^{0,1} \eta^{c d} \mathcal{F}_{d \mid b_{1}}^{0,2}+(-)^{\bar{a}_{1}+\bar{a}_{2}} \mathcal{F}_{a_{1} a_{2} c}^{0,1} \eta^{c d} \mathcal{F}_{d \mid b_{1}}^{0,2}\right)$

$$
=\sum_{c, d}\left((-)^{\bar{a}_{1}+\bar{b}_{1}\left(\bar{d}+\bar{a}_{2}\right)} \eta^{c d} \mathcal{F}_{a_{1} c b_{1} d a_{2}}^{0,1}+(-)^{\bar{a}_{1}+\bar{a}_{2}+\bar{b}_{1} \bar{d}} \eta^{c d} \mathcal{F}_{a_{1} a_{2} c b_{1} d}^{0,1}\right)
$$

- This is an (in general) infinite system of differential and algebraic equations... can we ever hope to (recursively) solve them explicitly for a given model ?
Apart from spectrum, we need extra input, in particular the three-point functions.... $\quad \Rightarrow$ Landau-Ginzburg theory

Recap: topological Landau-Ginzburg models

- Consider bulk d=2 LG model with $\mathrm{N}=(2,2)$ supersymmetries:

$$
S_{L G}=\int d^{2} z d \theta^{4} K(x, \bar{x})+\int d^{2} d \theta^{2} W_{L G}(x)+\mathrm{cc}
$$

- If $W_{\mathrm{LG}}=$ quasi-homogeneous holomorphic superpotential

$$
W_{L G}\left(s^{q_{i}} x_{i}\right)=s W_{L G}\left(x_{i}\right)
$$

then in the IR, theory flows to a superconformal fixed point (SCFT) entirely determined by the singularity type of W_{LG} !

$$
c_{N=2}=3 \sum\left(1-2 q_{i}\right)
$$

- Upon topologically twisting, the theory turns into a TFT with a finite dimensional Hilbert space

The spectrum of physical operators, the chiral ring, is represented as polynomial ring modulo the eqs of motion:

$$
\mathcal{R} \cong C\left[x_{i}\right] / \partial_{i} W_{L G}
$$

Recap: topological minimal models

- The simplest theories are the (twisted) $\mathrm{N}=2$ minimal models

They can be realized by LG models with

$$
\begin{aligned}
A_{k+1}: & W_{L G}=x^{k+2} \\
D_{k}: & W_{L G}=x_{1}{ }^{k-1}+x_{1} x_{2}{ }^{2} \\
E_{6}: & W_{L G}=x_{1}{ }^{3}+x_{2}{ }^{4} \quad \text { ("simple singularities" } \\
E_{7}: & W_{L G}=x_{1}{ }^{3}+x_{1} x_{2}{ }^{3} \quad \text { of ADE type) } \\
E_{8}: & W_{L G}=x_{1}{ }^{3}+x_{2}{ }^{5} \quad
\end{aligned}
$$

- We will focus on A_{k+1} models for which

$$
\begin{aligned}
\mathcal{R} \cong C[x] / x^{k+1} & =\left\{1, x, x^{2}, \ldots, x^{k}\right\} \\
c_{N=2} & =\frac{3 k}{k+2} \quad \text { (central charge) }
\end{aligned}
$$

Landau-Ginzburg description of B-type D-branes

- Consider bulk LG model with superpotential:
$\int_{\Sigma} d^{2} z d \theta^{+} d \theta^{-} W_{L G}(x)+\mathrm{cc}$.
B-type SUSY variations induce boundary ("Warner")-term:

$$
\begin{aligned}
\int_{\Sigma} d^{2} z d \theta^{+} d \theta^{-}\left(\bar{Q}_{+}+\bar{Q}_{-}\right) W_{L G} & =\int_{\Sigma} d^{2} z d \theta^{+} d \theta^{-}\left(\theta^{+} \partial_{+}+\theta^{-} \partial_{-}\right) W_{L G} \\
& =\int_{\partial \Sigma} d \sigma d \theta W_{L G}
\end{aligned}
$$

- Restore SUSY by adding boundary fermions $\Pi=\left(\pi+\theta^{+} \ell\right)$

$$
\text { (... not quite chiral: } \left.\bar{D} \Pi=\left.E(x)\right|_{\partial \Sigma}\right)
$$

via a boundary potential: $\quad \delta S=\int_{\partial \Sigma} d \sigma d \theta \Pi J(x)$
Condition for SUSY:

$$
J(x) E(x)=W_{L G}(x)
$$

Matrix factorizations

- BRST operator: $Q(x)=\pi J(x)+\bar{\pi} E(x)=\left(\begin{array}{cc} & J(x) \\ E(x) & \end{array}\right)$ thus SUSY condition implies a matrix factorization of W:

$$
Q(x) \cdot Q(x)=W_{L G}(x) 1
$$

Total BRST operator $\mathcal{Q}=Q+Q_{b u l k}$ then squares to zero: $\mathcal{Q}^{2}=0$

- Generalization for n LG fields: need $\mathrm{N}=2^{\mathrm{n}}$ boundary fermions, and

$$
J_{N \times N} \cdot E_{N \times N}=E_{N \times N} \cdot J_{N \times N}=W_{L G} \mathbf{1}_{N \times N}
$$

Anti- and trivial branes

- anti-brane $D[1] \equiv \bar{D}$ is described by swapping E, J

$$
Q_{D}=\left(\begin{array}{ll}
& J \\
E &
\end{array}\right), Q_{\bar{D}}=\left(\begin{array}{cc}
-J & -E \\
-J &
\end{array}\right.
$$

- trival brane is described by $\mathrm{J}=\mathrm{I}, \mathrm{E}=\mathrm{W}$ and vice versa;
has trivial open string vacuum

$$
Q=\left(\begin{array}{ll}
& 1 \\
W &
\end{array}\right)
$$

We can thus always mod out such trivial brane/brane pairs, matrices are taken only up to such (I, W) pieces

Physical interpretation

- N... Chan-Paton labels of space-filling $\bar{D} \bar{D}$ pairs

Boundary potentials J,E form a tachyon profile that describes condensation to given B-type D-brane configuration in IR limit

- Geometrically: Maps J,E are sections of certain bundles Ker J, Ker E encode bundle data of branes: (r,cı,..; u)

Open string spectrum

- Physical open string spectrum is determined by the cohomology of the BRST operator:

$$
\begin{gathered}
\mathcal{D}_{A} \Omega_{\Omega_{A}} \quad\left[Q_{A}, \Omega_{A}\right]=0, \quad \Omega_{A} \neq\left[Q_{A}, \Lambda\right] \\
\text { boundary preserving }
\end{gathered}
$$

... all ingredients to form a nice category!

Kontsevich's category Cw

The LG model provides a concrete physical realization of a certain triangulated Z_{2}-graded category Cw : all maps have explicit LG representatives

- objects: "complexes" (~composites of D \bar{D} branes):

$$
D_{\ell} \cong\left(P_{1}^{(\ell)} \underset{E^{(\ell)}}{\stackrel{J^{(\ell)}}{\rightleftarrows}} P_{0}^{(\ell)}\right), \quad J^{(\ell)} E^{(\ell)}=W
$$

- maps (boundary Q-cohomology):

Kontsevich's category Cw

Category of Matrix factorizations is isomorphic to $D(\operatorname{Coh}(M)$), the derived category of coherent sheaves on $M=$ category of B-type D-branes!

Simplest example: boundary $\mathrm{A}_{\mathrm{k}+1}$ minimal models

- Bulk superpotential:

$$
W_{L G}(x)=\frac{1}{k+2} x^{k+2}
$$

D0-branes D_{l} are described by all the possible polynomial factorizations:
$D_{\ell}: \quad J(x)=x^{\ell+1}, \quad E(x)=\frac{1}{k+2} x^{k-\ell+1}, \quad \ell=-1,0, \ldots,[k / 2]$
($1>[k / 2]$: anti-branes)
This precisely matches results obtained in BCFT !

- Same is true for the open string spectrum, described by matrices that belong to the non-trivial cohomology of the BRST operator:

$$
Q_{\ell}=\left(\begin{array}{cc}
\frac{1}{k+2} x^{k-\ell+1} & x^{\ell+1}
\end{array}\right) \quad \Psi:\left\{Q_{\ell}, \Psi\right\}=0, \quad \Psi \neq\left\{Q_{\ell}, \Lambda\right\}
$$

Physical spectrum: Q-cohomology

- Boundary preserving physical fields $\mathcal{E} \sim \operatorname{Hom}\left(\boldsymbol{D}_{\boldsymbol{\ell}}, \boldsymbol{D}_{\ell}\right)$: $\boldsymbol{x}, \boldsymbol{\omega}=$ even/odd generators of boundary ring

fields	deformation parameters	Q -exact
$\phi_{i}=\left\{1, x, \ldots, x^{k}\right\}$	$\left\{t_{k+2}, t_{k+1}, \ldots t_{2}\right\}$	$\partial_{x} W_{L G} \sim 0$
$\phi_{a}=\left\{1, x, \ldots, x^{\ell}\right\}$	$\left\{v_{(k+2) / 2}, \ldots, v_{(k+2) / 2-\ell}\right\}$	$\operatorname{gcd}(J, E) \sim 0$
$\psi_{a}=\omega \otimes\left\{1, x, \ldots, x^{\ell}\right\}$	$\left\{u_{\ell+1}, u_{\ell}, \ldots, u_{1}\right\}$	$\operatorname{gcd}(J, E) \sim 0$

- Boundary changing fields $\boldsymbol{\Psi}_{\ell_{1}, \ell_{2}} \sim \operatorname{Ext}\left(\boldsymbol{D}_{\ell_{1}}, \boldsymbol{D}_{\ell_{2}}\right)$ betw. $\boldsymbol{D}_{\ell_{1}}$ and $\boldsymbol{D}_{\ell_{2}}$:

fields	parameters	Q-exact
$\phi_{a}^{\ell_{1}, \ell_{2}}=\beta^{\ell_{1}, \ell_{2}} \otimes\left\{1, x, \ldots, x^{\ell_{12}}\right\}$	$\left\{v_{a}^{\left.\ell_{1}, \ell_{2}\right]}\right\}$	$\operatorname{gcd}\left(J_{i}, E_{i}\right) \sim 0$
$\psi_{a}^{\ell_{1}, \ell_{2}}=\omega^{\ell_{1}, \ell_{2}} \otimes\left\{1, x, \ldots, x^{\ell_{12}}\right\}$	$\left\{u_{a}^{\left.\ell_{1}, \ell_{2}\right]}\right\}$	$\operatorname{gcd}\left(J_{i}, E_{i}\right) \sim 0$

$\left(\ell_{12} \equiv \min \left(\ell_{1}, \ell_{2}\right)\right)$

Deforming the minimal models

Consider infinitesimal perturbations:

$$
\begin{aligned}
\delta W_{L G}(x) & =-\sum_{i=0}^{k} t_{k+2-i} x^{i} \\
\delta J(x) & =-\sum_{a=0}^{\ell} u_{\ell+1-a} x^{a}
\end{aligned}
$$

Generic effects: $\quad \delta E(x)=-x^{k-2 \ell}\left(\sum_{a=0}^{\ell} u_{\ell+1-a} x^{a}\right)$

- Spoils factorization, so SUSY will be broken; may be restored along sub-loci.

- Along those, branes can condense ("boundary flow"); open string spectrum truncates
- Starting from several branes, composites ("bound states") may be formed via tachyon condensation

"Bound State" formation via tachyon condensation

- Switch on boundary changing deformation of 2-brane system,

$$
J(u)=\left(\begin{array}{cc}
J_{\ell_{1}} & u \Psi_{12} \\
0 & J_{\ell_{2}}
\end{array}\right)
$$

Rediagonalizing

$$
U^{-1}\left(\begin{array}{cc}
J_{\ell_{1}} & u \Psi_{12} \\
0 & J_{\ell_{2}}
\end{array}\right) V=\left(\begin{array}{cc}
J_{\ell_{3}} & 0 \\
0 & J_{\ell_{4}}
\end{array}\right)
$$

yields new factorization, ie, new brane(s)

"Bound State" formation via tachyon condensation

- Example: brane/anti-brane annihilation $D_{\ell} \oplus \bar{D}_{\boldsymbol{\ell}}$
$Q_{\ell} \oplus Q_{k-\ell} \oplus u \Psi_{\ell, k-\ell}=$

This rotates to:

$$
\left(\begin{array}{cccc}
& & x^{\ell+1} & u \\
x^{k-\ell+1} & -u x^{k-2 \ell} & & x^{k-\ell+1} \\
& x^{\ell+1} & &
\end{array}\right)
$$

$$
\left(\begin{array}{llll}
& & x^{k+2} & \\
& & & 1 \\
1 & & & \\
& x^{k+2} & &
\end{array}\right)
$$

which describes $D_{-1} \oplus D_{k+1}=$ two copies of the trivial brane

- In general, reproduce boundary flow patterns known from BCFT:

$$
D_{\ell_{1}} \oplus D_{\ell_{2}} \xrightarrow{u_{12} \neq 0} D_{\ell+j+1} \oplus D_{\ell-j-1}
$$

Toy model for the "cone" construction

- Geometrical interpretation:

$$
J(u)=\left(\begin{array}{cc}
J_{\ell_{1}} & u \Psi_{12} \\
0 & J_{\ell_{2}}
\end{array}\right)
$$

$\boldsymbol{u}=\mathbf{0} \quad$ direct sum of branes, reducible bundle $u \neq 0 \quad$ "extension" of reducible bundle by Ψ

- Physical realization of the "cone" construction: triangle: $\quad D_{\ell_{1}} \xrightarrow{\Psi_{12}} D_{\ell_{2}} \longrightarrow C(u) \longrightarrow D_{\ell_{1}}[1]$

$$
\text { cone: } \quad C(u)=\left(P_{1}^{\left(\ell_{1}\right)} \oplus P_{1}^{\left(\ell_{2}\right)} \underset{E(u)}{\stackrel{J(u)}{\rightleftarrows}} P_{0}^{\left(\ell_{1}\right)} \oplus P_{0}^{\left(\ell_{2}\right)}\right)
$$

Deformation theory

- LG model provides prototype for dealing with off-shell physics, ie., effective potentials encoding obstructions
- Wanted: compute effective potential W
 whose critical locus reproduces SUSY deformations
- Consider perturbation

$$
Q=Q_{0}+\delta Q=Q_{0}+u_{i} \Psi_{i}
$$

Factorization will be generically spoiled

$$
Q^{2}-W=\underbrace{\left\{Q_{0}, u_{i} \Psi_{i}\right\}}_{=0}+u_{i} u_{j}\left\{\Psi_{i}, \Psi_{j}\right\}
$$

Massey products

correct in higher order by using an "inverse" BRST operator:
$\delta Q=u_{i} \Psi_{i}-Q^{+}\left\{u_{i} \Psi_{i}, u_{j} \Psi_{j}\right\} \quad Q^{+}: \mathcal{H}_{\text {exact }} \rightarrow \mathcal{H}_{\text {unphys }}$
Problem shifted to next order: just keep on iterating

$$
\delta Q=u_{i} \Psi_{i}-Q^{+} \sum_{m} \lambda_{m}\left(\Psi^{\otimes m}\right)
$$

$\lambda_{2}\left(\Psi_{1}, \Psi_{2}\right)=\left\{\Psi_{1}, \Psi_{2}\right\}$
$\lambda_{3}\left(\Psi_{1}, \Psi_{2}, \Psi_{3}\right)=\lambda_{2}\left(\Psi_{1}, Q^{+} \lambda_{2}\left(\Psi_{2}, \Psi_{3}\right)\right\}+\lambda_{2}\left(Q^{+} \lambda_{2}\left(\Psi_{1}, \Psi_{2}\right), \Psi_{3}\right)$
These are precisely the higher products
 that solve the A_{∞} relations!

$$
\begin{aligned}
& \text { Graphical expansion = "homological perturbation theory", } \\
& \text { string field theory }
\end{aligned}
$$

The obstruction potential

- however: iteration fails whenever $\lambda_{m} \in \mathrm{Coh}: \rightarrow \lambda_{m} \neq\left\{Q, Q^{+} *\right\}$ then deformation is obstructed at m -th order:

$$
Q^{2}(u)-W=f_{m}(u) \lambda_{m} \neq 0
$$

The obstructions can be integrated to an effective potential:

$$
Q^{2}(u)-W=\sum \partial_{u_{i}} \mathcal{W}_{e f f}(u) \lambda_{m}
$$

matrix factorization locus $=$ critical locus of effective superpotential!
... allows to systematically map out vacuum manifold and study composite formation ("topol. tachyon condensation") along it

Example: minimal model A_{4} with a single brane D_{1}

Factorization: $\quad W=\frac{1}{5} x^{5} \quad Q_{0}=\left({ }_{\frac{1}{5} x^{3}} x^{2}\right)$
Cohomology: $\quad \Phi_{0}=1, \quad \Phi_{2}=x 1$

$$
\Psi_{0}=\left(\begin{array}{cc}
& 1 \\
-\frac{1}{5} x &
\end{array}\right) \quad \Psi_{1}=x \Psi_{0}=\left({ }_{-\frac{1}{5} x^{2}} \begin{array}{l}
x
\end{array}\right)
$$

Second order Massey products:
$\lambda_{2}\left(\Psi_{0}, \Psi_{0}\right)=-\frac{1}{5} \Phi_{1} \quad$ in cohomology, so: $f_{2}^{(1)}=-\frac{1}{5} u_{0}{ }^{2}$
$\lambda_{2}\left(\Psi_{1}, \Psi_{1}\right)=-\frac{2}{5} x^{2} \Phi_{0}$
$\lambda_{2}\left(\Psi_{0}, \Psi_{1}\right)=-\frac{1}{5} x^{3} \Phi_{0}$
Choose: $Q^{+} \lambda_{2}\left(\Psi_{1}, \Psi_{1}\right)=(1)$
$Q^{+} \lambda_{2}\left(\Psi_{0}, \Psi_{1}\right)=\left(\begin{array}{c}\frac{2}{5}\end{array}\right)$ and go on with iteration

Example: minimal model A_{4} with a single brane $D_{\text {I }}$

Non-zero third order Massey products:
$\lambda_{3}\left(\Psi_{1}, \Psi_{1}, \Psi_{0}\right)=-\frac{1}{5} \Phi_{1}$ in cohomology, so: $f_{3}^{(1)}=-\frac{1}{5} u_{1}^{2} u_{0}$
$\lambda_{3}\left(\Psi_{1}, \Psi_{1}, \Psi_{1}\right)=-\frac{1}{5} x^{2} \Phi_{0}$
Choose: $Q^{+} \lambda_{3}\left(\Psi_{1}, \Psi_{1}, \Psi_{1}\right)=\left(\begin{array}{c} \\ -\frac{1}{5}\end{array}\right)$ and go on with iteration
Non-zero fourth order Massey products are both in cohomology:
$\lambda_{4}\left(\Psi_{1}, \Psi_{1}, \Psi_{1}, \Psi_{1}\right)=\frac{1}{5} \Phi_{1}$
$f_{4}^{(1)}={ }_{\frac{1}{5}} u_{1}{ }^{4}$
$\lambda_{4}\left(\Psi_{1}, \Psi_{1}, \Psi_{1}, \Psi_{0}\right)=-\Phi_{0}$
$f_{4}^{(0)}=-u_{1}{ }^{3} u_{0}$

Non-zero fifth (and final) order Massey product is in cohomology:
$\lambda_{5}\left(\Psi_{1}, \Psi_{1}, \Psi_{1}, \Psi_{1}, \Psi_{1}\right)=-\frac{3}{5} \Phi_{0}$

$$
f_{5}^{(0)}=-\frac{3}{5} u_{1}{ }^{5}
$$

Effective potential

Sum all contributions up: $f^{(0)}=\frac{1}{5}\left(-u_{0} u_{1}{ }^{3}+3 u_{1}{ }^{5}\right)$

$$
f^{(1)}=\frac{1}{5}\left(u_{0}^{4}+u_{0} u_{1}^{2}-u_{1}^{4}\right)
$$

- Deformed Q:

$$
\left.\begin{array}{rl}
Q & =Q_{0}+u_{i} \Psi_{i}-Q^{+} \sum_{m} \lambda_{m}\left(\Psi^{\otimes m}\right) \\
& =\left(\begin{array}{c}
\frac{1}{5}\left(-x^{3}-u_{1} x^{2}-u_{0} x-2 u_{0} u_{1}+u_{1}^{3}\right.
\end{array} x^{2}-u_{1} x-u_{0}+u_{1}^{2}\right.
\end{array}\right)
$$

squares into: $\quad Q^{2}(u)-W=f^{(0)} \Phi_{0}+f^{(1)} \Phi_{1}$
So factorization is preserved if $f^{(i)}=\partial_{u_{i}} \mathcal{W}_{\text {eff }}(u)=0$

- Integrate relations to potential:

$$
\mathcal{W}_{e f f}(u)=\frac{1}{5}\left(\frac{1}{3} u_{1}^{6}-u_{0} u_{1}^{4}+\frac{1}{2} u_{0}^{2} u_{1}^{2}+\frac{1}{3} u_{0}^{3}\right)
$$

Tomorrow in Part II:

Include moduli,
combine with mirror symmetry
Application to elliptic curve

