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Overview of Part |

® Motivation: study non-perturbative phenomena
(quantum geometry of D-branes)

® Properties of open string TFT (A« relations)

® New approach: boundary LG theory ....translates abstract
mathematical notions into concrete physical terms

® Example computations: minimal models

® Effective superpotential from obstruction theory




Motivation: D-brane worlds

Typical brane + flux configuration on a Calabi-Yau space

=
closed string (bulk) moduli t

open string (brane location + bundle) moduli u

3+1 dim world volume with effective N=1 SUSY theory

What is the exact effective superpotential, the vacuum states, etc ?

Weff(¢7 t7 U’) =7

Quantum geometry of D-branes

Classical geometry ("branes wrapping p-cycles", gauge
bundle configurations on top of them) makes sense
only at weak coupling/large radius:

“Gepner point”
(CFT description)

Quantum corrected geometry:
(instanton) corrections wipe out
notions of classical geometry

....well developed techniques (mirror symmetry)
for non-intersecting branes only !

and mostly for non-compact geometries.




The Derived Category Db(Coh(M))

Mathematicians (Kontsevich) tell us that the proper mathematical
language for describing B-branes is the (bounded) derived category
(of coherent sheaves on CY)

What does it mean for physicists ?
® treats branes and anti-branes on equal footing

e more general than cohomology/ K-theory (RR charges)

e keeps track of brane positions
robust under continuous deformations (want: moduli dependence),

C
e describes bound state formation/tachyon condensation V \

(triangulated category) A

B

...we will to translate this language to one that is more familiar to physicists:
boundary Landau-Ginzburg theory
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The category of topological D-branes

e objects: D  «<—— boundary conditions, D-branes

e morphisms (maps): {2, ¥ <—— boundary preserving/changing
open string vertex operators

DAO

D

9.0

Dp OQ Qg UA/\/wc'wld-sheet
with boundary

Quiver
diagram

YaB

Recap closed string TFT: (twisted) N=2 SCFT

e A typical correlator on S; looks like: oD
o

Ciji(t) = 04,0404, Fer (t) D oD
P

Generating function (N=2 prepotential):
(ti = deformation params, moduli)

, )
:Feff (tw ua) = < etl fD i >
= Z ti ...ti, C',;l.__,;n (t)
WDVWV equations from factorization:

CijmN""Crri = Cirmn™ " Chrji

>—< = I governed by “N=2 special geometry”




Open string TFT: (twisted) N=2 boundary SCFT

v
AB D

Dy 0f(I> fQB

e A typical disk correlator looks like:

e Generating function (N=I superpotential): NG 'f‘I)
(ti = bulk, u, = boundary deformation params) cA \J:%e
, @ . &) D
West (ti,1a) = <et7, Jo ®7 pere [op %6 > C
= Zuam-nuagtin---tilBao....am;il...in(t)
where:
Bugwapitrotn® = (WagWa, o, P [0 [w®) [a® . [2)
S N ) -
Sequence of t-dependent cyclic “prepotentials”: Faraa(l)
q P y P P ) fa1azaa (t)
..in general not integrable wrto u Fayazazaa(t)
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Open/closed top. string consistency conditions |

® Boundary TFT: Q-closedness and factorization
<[Q,\II\II\II/G_\I'.../G_\II]> =0

Contact terms from {Q, G~} = 0,

2 Q ) Q (Q} Q} -
lead to “Ax relations” for correlators

S (—1)EFF N (ay - Dans Nj— e (Bangs - - Yay)s Pagys - - - Pam) = O

k,j=0
k<5

Am(¥a,-Wa,,) = Wa,Bg? , “higher products” \,,, : H®™ — H

Kontsevich: D-branes indeed form a cyclic A« category

....but there is more.




Open/closed top. string consistency conditions |l

e Beyond A.. we have extra constraints, involving bulk operator insertions

...they deform BZ° = — Bg° (t)

(deformation theory:“Hochschild complex”)
e Bulk-boundary crossing symmetry:
Yo
bi

;5 =:I:bzc:

Ym

aiajakf(t) TIM 01 F apas...am (t) =

:Z (_1)5 fao...amlbam2+1...am3cam4+1...am (t) aifbam1+1...am2 (t) ijcam3+1...am4 (t)
0<my<...mag<m

Open/closed top. string consistency conditions |l

e Annulus factorization

Z<(_)51+Ja2 ]_—2;1%2 ,”cd ]:3|,2b1 + (_)al+a2 F0,1 ncd 70,2 )

ajazcCc dl b]_
c,d
— _ (_1,1+61(d_+5,2) cd 0,1 _ 61+62+l_71(i cd 0,1
- Z(( ) n falcbldaz—i_( ) n falazcbld)
c,d




Summary: open/closed factorization axioms

WDVV: Fijmn™ Frrt = FiremM™" Fujt

Aco: Z(_l)&l_‘_“'-i_&kTM—j-Fk("pal o tays Tj—k("l’ak-p i wﬂ«j)7 Yaj g ee- Ya,,) =0

k<j

Crossing: 9:9;0,.F (t) 1™ 01 F agas...am (t) =

= Z (_1)3 fag‘..amlbam2+1...am3cam4+1...am(t) 8i-rbam1+1.‘.am2 (t) 8jfcam3+1...am4 (t)
0<m;<...mg<m

. a la 0,2 a a s 0,2
Annulus: Z((_)al-i‘daz ]:3;1CG2 ’I’[Cd ‘Fdl ” + (_)al+a2 FO.1 . ncd ]:dl b1)

aiaz
c,d

— Z((_)ﬁ1+51(d_+ﬁz)ncd70’1 4 (_)&1+ﬁ2+l_71¢incdf0,1 )

aicbidas ajazcbid
c,d

®This is an (in general) infinite system of differential and algebraic equations...
can we ever hope to (recursively) solve them explicitly for a given model ?

Apart from spectrum, we need extra input,
in particular the three-point functions.... = Landau-Ginzburg theory

Recap: topological Landau-Ginzburg models

e Consider bulk d=2 LG model with N=(2,2) supersymmetries:

Sre = /dzzd04K(:c,zE) + /d2d92 Wira(x) + cc.

® If Wi = quasi-homogeneous holomorphic superpotential
WL(;(SinBi) = SWLG (LBZ)

then in the IR, theory flows to a superconformal fixed point (SCFT)
entirely determined by the singularity type of WG !

CN—2 = 32(1 —2q;)

e Upon topologically twisting, the theory turns into a TFT with
a finite dimensional Hilbert space

The spectrum of physical operators, the chiral ring, is
represented as polynomial ring modulo the eqs of motion:

R = Clx;]/0:;WLa
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Recap: topological minimal models

e The simplest theories are the (twisted) N=2 minimal models
They can be realized by LG models with
Api1: Wig = k12
Dy: Wig = "1 + z125°
E¢: Wig =z:° + x2* (“simple singularities”
E;: Wie = x1° + x122° of ADE type)
Es: Wig = x:® + z5°

e We will focus on Ax+1 models for which

R = Clz]/z* = {1,z,22%,...,2"}
3k
o — —  (central charge
CN=2 k12 ( ge)

Landau-Ginzburg description of B-type D-branes

e Consider bulk LG model with superpotential:

/ d?2d0tdO0~ Wig(x) + cc.
X

B-type SUSY variations induce boundary (“Warner”)-term:
/ d?2d0Td0~ (Qy +Q_)Wig = / d?2d0Tdo~ (070, +0~0_YWig
b )

= / dodf WLG
ox

e Restore SUSY by adding boundary fermions IT = (7 4 67¢)
(-.not quite chiral: DIT = E(x)|sx )

via a boundary potential: §S = / dodO 11 J(x)
)5

Condition for SUSY: {J(w)E(w) = Wie(x) }

16




Matrix factorizations

® BRST operator: Q(z) = J(z) + 7 E(x) = ( J(m)>

E(x)

thus SUSY condition implies a matrix factorization of W:

[ Q(z) - Q(x) = Wia(x)1 }

Total BRST operator @ = @ + Qpuik

then squares to zero: Q2 = 0

® Generalization for n LG fields: need N=2" boundary fermions, and

INxN Enxn = Enxn-:JInxn = WiglnxnN

Anti- and trivial branes

e anti-brane D[1] = D is described by swapping E,

QD:(E J)’ DZ(—J _E>

e trival brane is described by |=1, E=W and vice versa;
has trivial open string vacuum Q= 1
w

We can thus always mod out such trivial brane/brane pairs,
matrices are taken only up to such (1,W) pieces




Physical interpretation

e N... Chan-Paton labels of space-filling DD pairs

Boundary potentials J,E form a tachyon profile that describes condensation
to given B-type D-brane configuration in IR limit

J(x,u) = H(a:—uz')

® Geometrically: Maps J,E are sections of certain bundles
Ker ), Ker E encode bundle data of branes: (rci,..;u)
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Open string spectrum

® Physical open string spectrum is determined by the cohomology of
the BRST operator:

DAQQA [Qa; Q4] = 0, Q4 #[Qa,A]

boundary preserving

Ui Qa¥ap — (=) ¥ aQs = 0

Vs boundary changing

Ps OQQB @Q@B,2B] = 0, QB # [QB,A]

... all ingredients to form a nice category!

20




Kontsevich’s category Cw

The LG model provides a concrete physical realization of a certain
triangulated Z>-graded category Cw : all maps have explicit LG representatives

e objects: “complexes” (~composites of DD branes):
J®

D, = (Pl(e) — Po(e)), JOE® — w

E

e maps (boundary Q-cohomology):
J 1)
D,, < ) S P(el)>
27,42

Do

09,8 £q,8
Yo Pt

IR
X

ej/ J2) B ’
<P1( 2) S o éz)>

E¢2)
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Kontsevich’s category Cw

Category of Matrix factorizations is isomorphic
to D(Coh(M)), the derived category of coherent

sheaveson M =
i - [
category of B-type D-branes! [Orlov]
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Simplest example: boundary Ai+1 minimal models

e Bulk superpotential:

1 pkt2

Wie (.CE) = %1z

DO0-branes D, are described by all the possible polynomial factorizations:

Dy: J(x) =2z, E(x) = = k=1 ¢ = —1,0,...,[k/2]
(I >[k/2]: anti-branes)
This precisely matches results obtained in BCFT !

® Same is true for the open string spectrum, described by matrices that
belong to the non-trivial cohomology of the BRST operator:

1
Qe = ( L k41 ) U {Qe, ¥} =0, ¥ #{QA}

k+2
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Physical spectrum: Q-cohomology

e Boundary preserving physical fields € ~ Hom(Dy, Dy):
x, w = even/odd generators of boundary ring

fields deformation parameters Q-exact

¢; = {1,z,...,z*} {tit2,tht1s.--ta} Wi ~0
¢ = {1,z,...,2} {V(k+2)/25+ + + s V(kt2)/2—2} | gcd(J, E) ~ 0
Yo =w®{1,z,..., 2%} | {wer1,up,...,us} ged(J,E) ~ 0

e Boundary changing fields Wy, ¢, ~Ext(Dy,, Dg,) betw. Dy, and Dy,:

fields parameters | Q-exact
it = gt @ {1, ..., a2} | {oll} | ged(Js, Ei) ~ 0
,(pﬁhfz = whtz & {13 Lyeooy welz} {U’l[fl’ezl} ng(']’ia Ez) ~ 0

(£12 = min(él, £2))
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Deforming the minimal models

Consider infinitesimal perturbations:

k

Wira(z) = _Ztk:—}-Z—imi
1=0
Y,

oJ(x) = —Zue+1_am"’
a=0

£
SE(x) = -z % (Z ue+1—awa>
a=0

® Spoils factorization, so SUSY will be broken;
may be restored along sub-loci.

Generic effects:

e Along those, branes can condense (“boundary flow”);
open string spectrum truncates

e Starting from several branes,
composites (T bound states”) may be formed via tachyon condensation

25

“Bound State” formation via tachyon condensation

e Switch on boundary changing deformation of 2-brane system,

J(u) = (J(t;l Uz12>

2

—1 [ Je u¥i2 _ (Jes O
v <o J, )V = Lo a4,

2

Rediagonalizing

yields new factorization, ie, new brane(s)

26




“Bound State” formation via tachyon condensation

e Example: brane/anti-brane annihilation D, @ D,

QP Qr_ePuYyp_p =

attl u
pk—t+1
ph—t+1 g, pk—2¢
21
This rotates to:
rk+2
1
1
2k+2

which describes D_; @ Dy41 = two copies of the trivial brane

® |n general, reproduce boundary flow patterns known from BCFT:

-0
Dy, @ Dy, “25 Dytjy1 @ Dy_jq
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Toy model for the “cone” construction

® Geometrical interpretation:
Je, u¥
J('U/) — 21 12
0 Je,
u=20 direct sum of branes, reducible bundle
u # 0  “extension” of reducible bundle by ¥
e Physical realization of the “cone” construction:

triangle: D, g Dy, —— C’(u) —> Dy, [1]

J(uw)
cone: C(u) = (Pl(el) o P — P @ pit) )

E(u)
C
N\
A u

28




Deformation theory

® LG model provides prototype for dealing with off-shell physics, ie.,
effective potentials encoding obstructions t

® Wanted: compute effective potential W
whose critical locus reproduces SUSY deformations

e Consider perturbation
Q = Qo +9Q =Qo + u;¥;
Factorization will be generically spoiled

Q2 — W = {Qo,uiq’i} +’U/iuj{l1’ia‘11j}

=0

29

Massey products

correct in higher order by using an “inverse” BRST operator:

6Q = Uz\I"L — Q+{'U,1\I"L,UJ‘IIJ} Q+ : Hemact — Hunphys
Problem shifted to next order: .... just keep on iterating

6Q = w;¥; — QT A (TO™)
i “Massey products”

Ao(U1, W) = (U1, T2} /\
As(W1, Ua, ¥3) = Ao(¥1, QT A2(F2, U3)} + A2(QT A2 (T, U5), ¥3)

A -2/
These are precisely the higher products -

that solve the A relations!

Graphical expansion = “homological perturbation theory”,
string field theory
30




The obstruction potential

® however: iteration fails whenever \,,, € Coh: — X\, # { Q, QT }

then deformation is obstructed at m-th order:
Q2(u) —W = fo(u)A,, #0

The obstructions can be integrated to an effective potential:

Q*(u) =W = > 9uWers(w)Am

[ matrix factorization locus = critical locus of effective superpotential! j

... allows to systematically map out vacuum manifold and study
composite formation (“topol. tachyon condensation”) along it

nnnnn
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Example: minimal model A4 with a single brane D)

2
. T
Factorization: W = 1,5 Qo = ( 3 )
5 tx

Cohomology: by =1, d, = x1

1 x
W= () w7

Second order Massey products:

A2(Po,¥y) = —1®;  in cohomology, so: 2(1) = —1iug?
A2(T1,¥y) = —z22%®,
A2(¥o, ¥1) = —22°P

Choose: Q+A2(‘I’1,‘I’1) = ( 1)

Q+)\2(\Il0, v,) = ( > and go on with iteration

[N
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Example: minimal model A4 with a single brane D,

Non-zero third order Massey products:

A3(¥q,¥q,¥y) = —1P; in cohomology,so: fél) = —tu;’ug

A3(¥q, ¥y, ¥) = —12P

Choose: QT A3(¥,, ¥y, W) = (_l ) and go on with iteration
5

Non-zero fourth order Massey products are both in cohomology:

A (U1, ¥,¥,,¥,) = 1P, il) = tuy?

(0) 3
4 = —U1 Ug

Ag(U1,01,¥,,¥9) = —P

Non-zero fifth (and final) order Massey product is in cohomology:

(0) _ 3,,.5
5 = —sw1

>\5(\I’13 lIlla lI’la \Illa \Ill) == _%(I)O
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Effective potential

Sum all contributions up:  £(%) 1 (—ugui® + 3us®)
P = 1(uo* +uous® —ur?)

e Deformed Q:
Q = Qo+u;¥; — QT A (TE™)

_ 2 —uix — ug + u1?
= 3 2 3
(—x® — u1x® — uoxr — 2upuy + uq

squares into:  Q%*(u) — W = f@&, + M,
So factorization is preserved if f) = 8,, Weyss(u) =0

® Integrate relations to potential:

[We”(u) = 3 (3w® — wowr® + 3uo’uf + juo®) ]
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Tomorrow in Part Il:

Include moduli,
combine with mirror symmetry

Application to elliptic curve
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