Overview of Part II

- Study "homological mirror symmetry" between A- and B-type of topological D-branes
- Matrix factorizations and D-branes on elliptic curve
- Practical application: effective superpotential for intersecting brane configurations
- Fun with instanton geometry

Motivation

Superpotential ~ closed paths in quiver

$$
\begin{aligned}
\mathcal{W}_{e f f}=T_{a} T_{b} T_{c} \underbrace{\left\langle\Psi_{A B}^{a} \Psi_{B C}^{b} \Psi_{C A}^{c}\right\rangle}_{C_{a b c}(t, u)}+T_{a} T_{b} T_{c} T_{d} \underbrace{\left\langle\Psi_{A B}^{a} \Psi_{B C}^{b} \Psi_{C D}^{c} \Psi_{D A}^{d}\right\rangle}_{C_{a b c d}(t, u)}
\end{aligned}+\ldots
$$

Relation with Part I

How to compute $W_{\text {eff }}$?

Have seen that all TFT operators (~maps in category language) can be given an explicit matrix representation

Important ingredient: moduli dependence of all quantities

Make use of LG formulation of B-type branes in terms of matrix factorizations, in combination with mirror symmetry

Recap mirror symmetry

- For "every" Calabi-Yau X, there exists a mirror Y such that the Kähler and complex structure sectors are exchanged.

Accordingly, it exchanges the topological A-model (which depends on Kahler moduli only), with the topological B-model (depending on complex structure moduli only).

The physical meaning of mirror symmetry is:
Type IIA strings compactified on X are indistinguishable from Type IIB strings compactified on the mirror Y

Why is mirror symmetry useful?

- Mirror symmetry also maps even dimensional, holomorphic cycles into the lagrangian 3-cycles

Type IIA string Type IIB string

$$
\begin{array}{cc}
\begin{array}{l}
\text { size of 2-cycles } \\
\text { governed by Kahler param } t_{i}
\end{array} & \begin{array}{l}
\text { size of 3-cycles } \\
\text { governed by CS param }
\end{array} \\
\int_{\Gamma_{i}^{2 k}}\left(\omega_{1,1}^{X}\right)^{k}+\ldots & =\int_{\Gamma_{a}^{3}} \Omega_{3,0}^{Y} \\
\sim t^{k}+\mathcal{O}\left(e^{-t}\right) & \sim(\ln z)^{k}+\mathcal{O}(z) \\
\text { corrected } & \text { exact }
\end{array}
$$

... Do exact computation in topological B-model (LG-model), and via mirror symmetry this will give non-perturbative information about the A-model (sigma-model).

Homological mirror symmetry

- Mirror symmetry acts between full categories descr. A- and B-branes!
A-Model
B-Model

DI branes on (p, q) cycles
... Fukaya category of lagrangian cycles
$\left(N_{2}, N_{0}\right)=\left(r, c_{1}\right)$ of "gauge bundle"
... derived category of coherent sheaves

- There is much more to categories than just some diagrams with dots and arrows:
Besides RR charges $(p, q)=\left(r, c_{1}\right)$, keep information about the moduli (eg positions) u of the branes

TFT correlation functions

Disk amplitude for intersecting branes $C_{a b c}\left(\tau ; u_{A}, u_{B}, u_{C}\right)=\left\langle\Psi_{A B}^{a} \Psi_{B C}^{b} \Psi_{C A}^{c}\right\rangle$

A-Model

B-Model
(Landau-Ginzburg model)
localizes on constant maps: classical

Fukaya products

$$
\begin{aligned}
C_{a b c} & \sim e^{-S_{\text {Inst }}} \\
S_{\text {Inst. }} & \sim \text { Area }
\end{aligned}
$$

4-................ Massey products
$\lambda_{m}\left(\Psi^{\otimes m}\right)=\Psi_{a_{0}} C_{a_{1} \ldots a_{m}}^{a_{0}}$ mirror symmetry

D-branes on the elliptic curve

- Simplest Calabi-Yau: the cubic torus
compl str modulus \downarrow

$$
T_{2}: \quad W_{L G} \equiv x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+a(\tau) x_{1} x_{2} x_{3}=0
$$

- B-type D-branes are composites of D2, D0 branes, characterized by $\left(N_{2}, N_{0} ; u\right)=\left(\operatorname{rank}(V), c_{1}(V) ; u\right)$
... these are mirror to A-type D1-branes with wrapping numbers $(p, q)=\left(N_{2}, N_{0}\right)$
- The "short diagonals" S_{A} are related to 2×2 factorizations, while the "long diagonals" L_{A} are described by 3×3 factorizations
$\left(N_{2}, N_{0}\right)_{L_{A}}=\{(2,1),(-1,1),(-1,-2)\}$

3×3 matrix factorization

- Simplest are the factorizations corresponding to the long diagonals L_{i}
$J_{i}=\left(\begin{array}{ccc}\alpha_{1}^{(i)} x_{1} & \alpha_{2}^{(i)} x_{3} & \alpha_{3}^{(i)} x_{2} \\ \alpha_{3}^{(i)} x_{3} & \alpha_{1}^{(i)} x_{2} & \alpha_{2}^{(i)} x_{1} \\ \alpha_{2}^{(i)} x_{2} & \alpha_{3}^{(i)} x_{1} & \alpha_{1}^{(i)} x_{3}\end{array}\right)$

These satisfy $J_{i} E_{i}=E_{i} J_{i}=W_{L G} 1$ if the parameters satisfy the cubic equation themselves:
$W_{L G}\left(\alpha_{i}\right) \equiv \alpha_{1}{ }^{3}+\alpha_{2}{ }^{3}+\alpha_{3}{ }^{3}+a(\tau) \alpha_{1} \alpha_{2} \alpha_{3}=0$
Thus the parameters parametrize the (jacobian) torus and can be represented by theta-sections:
$\alpha_{\ell}^{(i)} \sim \Theta\left[\left.\frac{1-\ell-\frac{1}{3}-\frac{1}{2}}{} \right\rvert\, 3 u_{i}, 3 \tau\right]$
$\boldsymbol{u}, \tau_{\text {...flat coordinates of }}$ open/closed moduli space (Kahler moduli in mirror A-model)

Sections, bundles and matrices

- D-brane = bundle, sheaf $\mathrm{V}: \quad\left(\mathrm{N}_{2}, \mathrm{~N}_{0} ; \mathrm{u}\right)=\left(\mathrm{r}(\mathrm{V}), \mathrm{c}_{\mathrm{l}}(\mathrm{V}) ; \mathrm{u}\right)$

How are these data encoded in the matrix factorization?
Associate bundles \mathcal{E} with E,J (~bundles on "constituent branes")

$$
\begin{aligned}
\operatorname{det} E & =W^{r} & \mathcal{E}_{E}^{(r)} & =\operatorname{ker} E \\
\operatorname{det} J & =W^{n-r} & \mathcal{E}_{J}^{(n-r)} & =\operatorname{ker} J
\end{aligned}
$$

Rougly, the Chern classes of \mathcal{E}_{J} determine $\left(\mathrm{N}_{2}, \mathrm{~N}_{0} ; \mathbf{u}\right)$

- Example: 3×3 factorization

$$
\begin{array}{ll}
\operatorname{det} E=W & \text { line bundle } \\
\operatorname{det} J=W^{2} & \text { rank2 vector } \\
& \text { bundle } \\
\text { study transition function: }\left(\mathrm{r}, \mathrm{c}_{\mathrm{I}}\right)=(2,-3)
\end{array}
$$

Back to 3×3 : open string BRST cohomology

Solving for the BRST cohomology yields explicit t, u-moduli dependent matrix valued maps, eg ($a=1,2,3$):

- $q=$ I marginal operators corr. to brane locations
$\operatorname{Ext}\left(\mathcal{L}_{A}, \mathcal{L}_{A}\right): \Omega_{A}=\partial_{u_{A}} Q\left(u_{A}\right)$
- $\mathrm{q}=1 / 3$ tachyon operators
$\operatorname{Ext}\left(\mathcal{L}_{A}, \mathcal{L}_{B}\right): \quad \Psi_{A B}^{(a)}=\left(\begin{array}{cc}0 & F_{A B}^{(a)} \\ G_{A B}^{(a)} & 0\end{array}\right)$

and $\zeta_{\ell} \sim \Theta\left[\left.\frac{1-\ell}{3}-\frac{1}{2}-\frac{1}{2} \right\rvert\, 3 u_{2}-3 u_{1}, 3 \tau\right]$

Superpotential on brane intersection I

- Compute 3-point disk correlators = Yukawa couplings $\Psi_{A B}^{a}$
$\mathcal{W}_{e f f}=T_{a} T_{b} T_{c} \underbrace{\left\langle\Psi_{A B}^{a} \Psi_{B C}^{b} \Psi_{C A}^{c}\right\rangle}_{C_{a b c}\left(\tau, u_{i}\right)}+\ldots$

$C_{a b c}\left(\tau, u_{1}, u_{2}, u_{3}\right)=\left\langle\Psi_{13}^{a}\left(u_{1}, u_{3}\right) \Psi_{32}^{b}\left(u_{3}, u_{2}\right) \Psi_{21}^{c}\left(u_{2}, u_{1}\right)\right\rangle$
Use super-residue formula (from localization in LG model) for our matrix-valued, moduli-dependent operators:

$$
=\frac{1}{2 \pi i} \oint \mathrm{~S} t r\left[\left(\frac{d Q}{d W}\right)^{\otimes \wedge 3} \Psi_{13}^{(a)} \Psi_{32}^{(b)} \Psi_{21}^{(c)}\right]
$$

Superpotential on brane intersection II

- Make heavy use of theta-function identities such as the addition formula:

$$
\theta_{a}\left[u_{1}\right] \cdot \theta_{b}\left[u_{2}\right]=\sum \theta_{a-b+c}\left[u_{1}-u_{2}\right] \theta_{a+b+c}\left[u_{1}+u_{2}\right]
$$

(math: expresses product in Fukaya-category)

- Final result: theta functions

$$
\begin{aligned}
& C_{111}(\tau, \xi)= e^{6 \pi i \xi_{1} \xi_{2}} q^{3 \xi_{2}^{2} / 2} \sum_{m} q^{3 m^{2} / 2} e^{6 \pi i m \xi} \\
& C_{123}(\tau, \xi)=e^{6 \pi i \xi_{1} \xi_{2}} q^{3 \xi_{2}^{2} / 2} \sum_{m}^{m(m+1 / 3)^{2} / 2} e^{6 \pi i(m+1 / 3) \xi} \\
& C_{132}(\tau, \xi)=e^{6 \pi i \xi_{1} \xi_{2}} q^{3 \xi_{2}^{2} / 2} \sum_{m}^{m} q^{3(m-1 / 3)^{2} / 2} e^{6 \pi i(m-1 / 3) \xi} \\
&\left(\xi \equiv u_{1}+u_{2}+u_{3}=\xi_{1}+\tau \xi_{2}\right)
\end{aligned}
$$

What's the interpretation of the q-series?

The topological A-Model: instantons

- Interpretation of q-series: In A model mirror language, these are contributions from triangular disk instantons whose world-sheets are bounded by the three D1-branes:

$$
C_{a b c} \sim e^{-S_{\mathrm{inst}}} \sim q^{\Delta_{a b c}}+\ldots .
$$

(the u-dependence corresponds to position and Wilson line moduli)
Count maps: $\boldsymbol{\Sigma} \rightarrow \boldsymbol{T}_{\mathbf{2}}$

Complete effective potential (long diag branes)

$\mathcal{W}_{\mathrm{eff}}(\tau, u, T)=\sum_{N=1}^{6} \underset{\text { tachyons }}{T^{\left(a_{1}\right)} \ldots T^{\left(a_{N}\right)}} C_{a_{1}, \ldots, a_{N}}^{(N)}\left(\tau, u_{1}, \ldots, u_{N}\right)$

- B-model: difficult to compute higher

N -point Massey products with $\mathrm{N}>3$!
For (flat) elliptic curve, A-model is simpler....

- Generically, N-point functions get contributions from N -gonal instantons

General structure:

indefinite theta-functions summing over all lattice translates, positive areas

$$
\sum_{m, n}^{\prime} q^{m n} \equiv\left(\sum_{m, n>0}-\sum_{m, n<0}\right) q^{m n}
$$

Polygons and instantons

$\mathrm{N}=4$: trapezoids

$$
\begin{aligned}
& \text { trapezoids } \\
& \begin{array}{l}
\mathcal{T}_{a b \bar{c} \bar{d}}\left(\tau, u_{i}\right)=\delta_{a+b, \bar{c}+\bar{d}}^{(3)} \Theta_{\text {trap }}\left[\begin{array}{c}
{[b-\bar{c}]_{3}} \\
{[\bar{d}-\bar{c}+3 / 2]_{3}}
\end{array}\right]\left(3 \tau \mid 3\left(u_{1}+u_{2}+u_{4}\right), 3\left(u_{1}-u_{3}\right)\right) \\
\quad \Theta_{\text {trap }}\left[\begin{array}{l}
a \\
b
\end{array}\right](3 \tau \mid 3 u, 3 v)=\sum_{m, n}^{\prime} q^{\frac{1}{6}(a+3 n)(a+3 n+2(b+3 m))} e^{2 \pi i((a+3 n)(u-1 / 6)+(b+3 m) v)}
\end{array} .
\end{aligned}
$$

$\mathrm{N}=4$: parallelograms
$\mathcal{P}_{a \bar{b} c \bar{d}}\left(\tau, u_{i}\right)=\delta_{a+c, \bar{b}+\bar{d}}^{(3)} \Theta_{\text {para }}\left[\begin{array}{c}{[c-\bar{b}]_{3}} \\ {[\bar{d}-c]_{3}}\end{array}\right]\left(3 \tau \mid 3\left(u_{1}-u_{3}\right), 3\left(u_{4}-u_{2}\right)\right)$

$$
\Theta_{p a r a}\left[\begin{array}{l}
a \\
b
\end{array}\right](3 \tau \mid 3 u, 3 v) \equiv \sum_{m, n}^{\prime} q^{\frac{1}{3}(a+3 n)(b+3 m)} e^{2 \pi i((b+3 m) u+(a+3 n) v)}
$$

$\mathrm{N}=5$: pentagons

$\Theta_{\text {penta }}\left[\begin{array}{l}a \\ b \\ c\end{array}\right](3 \tau \mid 3 u, 3 v, 3 w) \equiv \sum_{m, n, k}{ }^{\prime} q^{\frac{1}{3}\left(a_{>}+3(n+k)\right)\left(b_{>}+3(m+k)\right)-\frac{1}{6}(c+3 k)^{2}} e^{2 \pi i\left(\left(a_{>}+3(n+k)\right) u+(b>+3(m+k)) v+(c+3 k)(w-1 / 6)\right)}$
$\mathrm{N}=6$: hexagons
$\left(3 \tau \mid 3\left(u_{5}-u_{2}\right), 3\left(u_{1}-u_{4}\right), 3\left(u_{3}+u_{2}+u_{4}\right), 3\left(-u_{6}-u_{1}-u_{5}\right)\right)$

$$
\sum_{m, n, k, l}^{\prime \prime}=\sum_{m, n \geq 0}^{\infty} \sum_{k \geq 0}^{<k_{\max }} \sum_{l \geq 0}^{<l_{\max }}-\sum_{m, n \leq-1}^{-\infty} \sum_{k \leq-1}^{>k_{\min }} \sum_{l \leq-1}^{>l_{\min }}
$$

Global properties of open string moduli space

- Indefinite theta-fcts: singularities due to colliding branes

> eg., rewrite trapezoidal function in terms of Appel function:

$$
\Theta_{\text {trap }}\left[\begin{array}{c}
a \\
b
\end{array}\right](3 \tau \mid 3 u, 3 v)=e^{2 \pi i v b} \sum_{n \in Z} \frac{q^{\frac{1}{6}(a+3 n)(a+2 b+3 n)} e^{2 \pi i(a+3 n)(u-1 / 6)}}{1-q^{a+3 n} e^{6 \pi i v}}
$$

- analytic continuation

Area becomes negative: resum instantons in terms of different geometry
"instanton flop"

Global properties of open string moduli space

- monodromy

$$
\begin{aligned}
\Theta_{\text {trap }}\left[\begin{array}{l}
a \\
b
\end{array}\right](3 \tau \mid 3(u \pm \tau), 3 v)=e^{\mp 6 \pi i v} \Theta_{\text {trap }}\left[\begin{array}{c}
a \\
b
\end{array}\right](3 \tau \mid 3 u, 3 v) \\
\mp e^{-2 \pi i\left(u-\frac{1}{6}\right)\left(b-\frac{3}{2} \pm \frac{3}{2}\right)} e^{2 \pi i v\left(b-\frac{3}{2} \mp \frac{3}{2}\right)} q^{-\frac{1}{6}\left(b-\frac{3}{2} \pm \frac{3}{2}\right)^{2}} \Theta\left[\begin{array}{c}
a+b \\
-3 / 2
\end{array}\right](3 \tau \mid 3 u)
\end{aligned}
$$

induces "homotopy transformation", modular anomaly of eff action (compensate by non-lin field redef)

Open/closed top. string consistency conditions

- How can we be sure that these expressions are correct?

Make use of Q -closedness and factorization constraints

These lead to A_{∞} relations for correlators resp. Fukaya products:

$$
\begin{gathered}
\sum_{\substack{k_{j, j}=0 \\
k \leq j}}^{m}(-1)^{\tilde{a}_{1}+\ldots+\tilde{a}_{k}} \lambda_{m-j+k}\left(\psi_{a_{1}} \ldots \psi_{a_{k}}, \lambda_{j-k}\left(\psi_{a_{k+1}} \ldots \psi_{a_{j}}\right), \psi_{a_{j+1}} \ldots \psi_{a_{m}}\right)=0 \\
\lambda_{m}\left(\Psi_{a_{1}} \ldots \Psi_{a_{m}}\right) \equiv \Psi_{a_{0}} C^{a_{0}}
\end{gathered}
$$

....here: simple interpretation in terms of instanton geometry:

$$
\sum \mathcal{P}_{a_{1} \bar{c} a_{4} \bar{a}_{5}} \Delta_{c a_{2} a_{3}}+\sum \mathcal{T}_{a_{1} a_{2} \bar{c} \bar{a}_{5}} \Delta_{c a_{3} a_{4}}+\sum \Delta_{a_{1} a_{2} c} \mathcal{T}_{\bar{c} a_{3} a_{4} \bar{a}_{5}}=0
$$

Quantum A_{∞} relation for the annulus

- There are analogous factorization relations in higher genus, eg:

$$
\begin{aligned}
& = \pm a_{1} *^{x_{1}} \times a_{2} \pm a_{2} x^{x^{*}} \times a_{1} \\
& \sum_{c, d}\left((-)^{\tilde{a}_{1}+\tilde{d} \tilde{a}_{2}} C_{a_{1} c a_{2}}^{0,1} \eta^{c d} C_{d \mid b_{1}}^{0,2}+(-)^{\tilde{a}_{1}+\tilde{a}_{2}} C_{a_{1} a_{2} c}^{0,1} \eta^{c d} C_{d \mid b_{1}}^{0,2}\right) \\
& \stackrel{c}{=} \sum_{c, d}\left((-)^{\tilde{a}_{1}+\tilde{b}_{1}\left(\tilde{d}+\tilde{a}_{2}\right)} \eta^{c d} C_{a_{1} c b_{1} d a_{2}}^{0,1}+(-)^{\tilde{a}_{1}+\tilde{a}_{2}+\tilde{b}_{1} \tilde{d}_{d}} \eta^{c d} C_{a_{1} a_{2} c b_{1} d}^{0,1}\right)
\end{aligned}
$$

- In concrete case, it boils down to an identity between disk and and annulus correlators:

$$
\begin{aligned}
\partial_{u_{3}} \mathcal{A}_{\Omega \mid} & \equiv \partial_{u_{3}} \sum^{\prime}{ }^{\prime} q^{n m} e^{6 \pi i n\left(u_{1}-u_{3}\right)} \\
& =\sum_{c=1}^{3 n \neq 0, m} \partial_{u_{3}} \mathcal{P}_{a \bar{c} c \bar{a}}
\end{aligned}
$$

This maps disk and annulus instantons into each other!

Conclusions and Outlook

- math: Cat of matrix factorizations $\longleftrightarrow D(\operatorname{Coh}(M))$ phyz: Boundary LG theory \longleftrightarrow Open string topological CFT
- Represent all quantities in a quiver diagram (objects and maps) by explicit moduli-dependent, matrix-valued operators
- Combined with mirror symmetry this allows to explicitly compute instanton-corrected superpotentials (in particular, for intersecting brane configs).
- Generalization to $M=$ CY 3-folds, eg quintic:

