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We investigate the properties of chiral operators in N = 2 superconformal theories. In particular, we study
the spectral flow of such models under a one-parameter family of twists generated by the U(1) current, and use
this to deduce various properties of the ring of chiral primary fields. We furthermore investigate under what
conditions a given superconformal theory can be represented as the fixed point of an N = 2 Landau-Ginzburg
theory and show how to determine the superpotential. We also investigate the coset models of Kazama and
Suzuki and find a simple cohomological characterization for the elements of the chiral primary ring. Moreover
we show how some of them can be represented as LG models.
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The conformal models in two dimensions possessing N = 2 world-sheet

supersymmetry form a special class of conformal theories, that is, they com-

prise the only known solutions to string theory at the perturbative level. It

has also recently become clear from the connection between N = 2 theories,

renormalization group flows and singularity (catastrophe) theory [1][2][3] that

the N = 2 theories are, in a sense, the simplest types of conformal theories.

We will first review and extend results of [4][5][6], exhibiting some general

properties that follow from the presence of theN = 2 superconformal symmetry.

In section 2, we establish a deep connection between cohomology rings and the

ring of chiral primary operators. We then use these results to discuss certain

aspects of N = 2 Landau-Ginzburg models that are based on singularity theory.

In particular, we find the conditions for an N = 2 superconformal model to be

representable as the fixed point of a Landau-Ginzburg theory. We next discuss

some aspects of the coset models constructed by Kazama and Suzuki [7]. We

relate the chiral primary states in these models to Affine Lie algebra cohomology

classes represented by harmonic forms and show that (at least) a subclass of the

Kazama-Suzuki models can be represented by Landau-Ginzburg models. We

show that in some cases the corresponding superpotentials have a relation to the

cohomological properties of the coset manifold. In a subsequent paper we will

elaborate on this connection[8]. In the appendix we prove a non-cancellation

theorem needed in the study of chiral rings in coset models.

1. Spectral Flow in N = 2 Superconformal Theories

The N = 2 superconformal algebra has a very rich structure [4][5][6]. Of

particular importance is the anti-commutation relation between the two super-

symmetry generators,

{G−
r , G

+
s } = 2Lr+s − (r − s)Jr+s + (c/3)(r2 − 1/4)δr+s,0 (1.1)

Here, J denotes the U(1) current of the N = 2 algebra. This formula is valid

for both NS and R sectors, the difference between the two being only that in

1

the NS sector r, s run over half-integral values and in the R sector over integral

values. The other non-trivial commutation relations of the N = 2 algebra are:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0

[Ln, G
±
r ] = (

n

2
− r)G±

n+r

[Ln, Jm] = −mJm+n

[Jm, Jn] =
c

3
mδm+n,0

[Jn, G
±
r ] = ±G±

n+r (1.2)

The unitarity constraints for the representations of the N = 2 algebra have

been studied in great detail in [4], and we will review some of this work below.

In this paper, all the models will be assumed to have a type (2, 2) su-

persymmetry, that is, there is an analog of (1.1) and (1.2) for both left- and

right-movers. Some of our remarks will however apply equally well to type

(2, 0) models. We will in addition assume that the left- and right-moving U(1)

charges of each state (qL, qR) satisfy

qL − qR ∈ Z. (1.3)

This condition is not satisfied for all models with (2, 2) supersymmetry. A sim-

ple set of examples where this is not satisfied is provided by the non-Kählerian

models of [7] (corresponding to coset models G/H with rank G > rank H , for

example G = SU(3), H trivial).

Left-chiral states are states in the NS Hilbert space satisfying

G+
−1/2|φ〉 = 0, (1.4)

and anti-chiral states are defined similarly by replacing G+ with G−. Similarly,

for right-chiral states, we replace G with G. (Note that we are using the terms

chiral and anti-chiral in the sense of N = 2 supersymmetry.) Many of the

arguments in this paper are identical for left- and right-movers, and we will
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only concentrate on the left-movers (in particular, we will denote by h only the

left-moving conformal dimension in the following).

Primary chiral states satisfy, in addition to (1.4), the condition

G−
n+1/2

|φ〉 = G+
n+1/2

|φ〉 = 0 for n ≥ 0. (1.5)

Using (1.5) and (1.4) and the N = 2 algebra we deduce that for such states

{G−
1/2, G

+
−1/2}|φ〉 = (2L0 − J0)|φ〉 = 0 . (1.6)

Therefore we conclude that for a primary chiral state the dimension h is one-

half its charge q, i.e., h = q/2. Similarly, for an anti-chiral primary state,

we deduce that h = −q/2. In an unitary theory, {G−
1/2, G

+
−1/2} (as well as

the corresponding anti-chiral version) is a positive operator (because G+
−1/2 =

G−†
1/2), and taking its expectation value for any state in the Hilbert space gives

the inequality h ≥ |q|/2. This inequality is saturated precisely for the primary

chiral and anti-chiral states. One can also go in the opposite direction and show

that the states with h = q/2 are both chiral and primary. To see this, suppose

|φ〉 satisfies h = q/2, which implies that

〈φ|{G−
1/2, G

+
−1/2}|φ〉 = 0 = |G−

1/2|φ〉|2 + |G+
−1/2|φ〉|2.

By positivity of the inner product in the Hilbert space we thus have

G+
−1/2|φ〉 = G−

1/2|φ〉 = 0. (1.7)

To show |φ〉 is primary we will have to show (1.5) is also satisfied. First we

observe that any operator which lowers the L0 eigenvalue, but does not change

the U(1) charge, must annihilate |φ〉 to be consistent with the bound h ≥ |q|/2.

In particular, if Jm denotes the modes of the U(1) current, we must have

Jn|φ〉 = 0 for n > 0. (1.8)

Now we use the N = 2 commutation relation

[Jn, G
±
r ] = ±G±

n+r ,

3

which, combined with (1.7) and (1.8) gives (1.5), as was to be shown.

Now we will show that any NS state |φ〉 with dimension and charge (h, q),

can be decomposed as1

|φ〉 = |φ0〉 +G+
−1/2

|φ1〉 +G−
1/2

|φ2〉 , (1.9)

where |φ0〉 is a primary chiral state, i.e., it satisfies (1.7). To show (1.9) we

consider arbitrary states |ψ1〉 and |ψ2〉, and vary them so as to minimize the

norm

|(|φ〉 −G+
−1/2|ψ1〉 −G−

1/2|ψ2〉)|2 (1.10)

That the minimum exists is obvious, because we can restrict attention to |ψ1〉
and |ψ2〉 in the subsector with dimension and charge(h − 1/2, q − 1) and (h +

1/2, q+ 1) respectively, which for a non-degenerate conformal theory is a finite

subspace of the Hilbert space. Let |φ1〉 and |φ2〉 be the corresponding |ψ1〉 and

|ψ2〉 which minimize (1.10). Let

|φ0〉 = |φ〉 −G+
−1/2|φ1〉 −G−

1/2|φ2〉

Then the statement that (1.10) is minimized by |φ1〉 and |φ2〉 implies that

the norm of |φ0〉 does not change to first order, under arbitrary infinitesimal

deformations

|φ0〉 → |φ0〉 +G+
−1/2|ε1〉 +G−

1/2|ε2〉

which implies that |φ0〉 satisfies (1.7) and is a chiral primary state, which there-

fore establishes the decomposition (1.9).

We now show that if |φ〉 is chiral (not necessarily primary), then one can

take |φ2〉 = 0. If we act on (1.9) by G+
−1/2, using the fact that |φ〉 is chiral we

find that

G+
−1/2G

−
1/2|φ2〉 = 0

Taking the inner product of this state with 〈φ2|, one sees, by the positivity of

the norm, that G−
1/2|φ2〉 is zero and thus does not contribute to the right hand

1 This is the analog of the Hodge decomposition for differential forms. See also the

discussion in section 2.
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side of (1.9). Therefore we may take |φ2〉 to be zero, and |φ〉 can be written in

the form

|φ〉 = |φ0〉 +G+
−1/2|φ1〉 , (1.11)

where |φ0〉 is primary and chiral. We will use this result when we discuss

Landau-Ginzburg models in section 3.

There are also other inequalities that follow from the NS operator algebra

of N = 2 models. For instance, the dimension of a primary chiral field satisfies

h ≤ c

6
. (1.12)

To show this, use the N = 2 algebra relation (1.1) in the particular case

{G−
3/2, G

+
−3/2} = 2L0 − 3J0 + (2c/3)

If we take the expectation value of this positive operator for any chiral primary

state, and use the fact that h = q/2 for such states, we obtain (1.12). We will

show below that there always exists a unique chiral primary state in the theory

which saturates the bound (1.12). This bound has the following fundamental

consequence: since the dimension of primary chiral fields is always less than or

equal to c/6, it follows that in non-degenerate N = 2 conformal theories, for

which the spectrum of L0 is discrete, there is only a finite number of primary

chiral operators.

Now we consider the operator algebra of primary chiral fields. In a general

conformal theory we have to worry about how we define the composite operators

(i.e., how we subtract leading singularities). However, for chiral primary fields

φ and χ, we can chose the naive product, namely

(φχ)(z) = lim
z′→z

φ(z′)χ(z) . (1.13)

This definition is non-singular without any adjustments by factors of (z − z′).

This is so because the U(1) charge of the fields is additive, and the conformal

dimensions satisfy:

hφχ ≥ 1
2
(qφ + qχ) = hφ + hχ . (1.14)

5

Note that the product of two chiral fields is again chiral2 though it need not

be primary. If φχ is itself primary, this inequality becomes an equality and

the singularity in (1.13) (proportional to (z − z′)hφχ−hφ−hχ) is absent. If φχ is

not primary, then the definition (1.13) sets φχ to 0 as z → z′ because of the

inequality (1.14). Since there is only a finite number of primary chiral fields,

(1.13) defines an interesting finite ring3 R of primary chiral operators4 . This

is the same as the usual operator algebra of chiral fields, modulo setting to

zero the descendant chiral fields. We have to be a little more precise: there are

in fact four rings that one can obtain in this way, depending on whether the

left- and right-moving states are chiral or anti-chiral primary states. These four

rings are pairwise conjugate (by charge conjugation). In the following, unless

we state otherwise, we consider one of these four rings. For type (2, 0) models

we obtain only two rings which are conjugate to one another.

We now consider some aspects of the Ramond sector. If we look at the

anticommutator {G−
0 , G

+
0 }, we deduce that h ≥ c/24 for any state in the R

sector (this is true for the N = 1 algebra as well). Equality is achieved only for

states which are annihilated by both G+
0 , G

−
0 . These are precisely the states

which contribute to Witten’s index Tr(−1)F [10].

For theories satisfying (1.3) the operator (−1)F , where F = FL + FR and

FL, FR are left- and right-moving fermion numbers, can be defined in terms of

the U(1) current as

(−1)F = exp
[
iπ(J0 − J0)

]
. (1.15)

The condition (1.3) implies that this is ±1 acting on each state. Furthermore,

(−1)F commutes with all the bosonic operators in the N = 2 algebra, and

anti-commutes with G±.

2 This can be seen by considering the contour integral of G+(z) about a pair of

chiral fields, and noting that the definition of chiral state demands that the contour

integral of G+(z) encircling a chiral field vanishes.
3 The ring is commutative up to ± signs, due to the fact that the ring is defined

before the GSO projection.
4 This is not to be confused with the commutative ring which appears for rational

conformal field theories [9]. In particular the ring we obtain here is nilpotent, which

is not the case for RCFT operator algebra.
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As is well-known [5], one can continuously connect the NS sector to the R

sector by considering sectors in which the U(1) current is twisted. This means

that for a twist parameter θ we consider the Hilbert space Hθ of states which

differ from H0 only in that their U(1) charge is shifted by −c
3 θ. The reason

for this choice of normalization is that J(z)J(z′) ∼ c/3
(z−z′)2 . This mapping is

usually called spectral flow. We will denote the corresponding flow operator by

Uθ

Uθ : H0 → Hθ

For each operator O acting on H0, there is an operator Oθ acting on Hθ:

Oθ = UθOU−1
θ

Under the spectral flow the N = 2 algebra flows to an isomorphic algebra [5]:

UθLnU−1
θ = Ln + θJn +

c

6
θ2δn,0

UθJnU−1
θ = Jn +

c

3
θδn,0

UθG
+
r U−1

θ = G+
r+θ

UθG
−
r U−1

θ = G−
r−θ. (1.16)

and similarly for the right movers.

The important feature of the spectral flow is that for θ ∈ Z + 1/2 it

interpolates between the NS and R sectors, and for θ ∈ Z it take the NS

to NS and R to R. One way to see this is to note that the spectral flow is

modular transform of twisting the time direction by θ, which for half-integral

values corresponds to twisting boundary conditions by (−1)F (note we have

identified left and right spin structures). These modular properties have been

considered in [11].

Consider the effect of flow with θ = 1/2. If we concentrate on the chiral

states of the theory, we see that equation (1.4) goes over to

U1/2G
+
−1/2U−1

1/2U1/2|φ〉 = G+
0 |φ̃〉 = 0 (1.17)
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where |φ̃〉 = U1/2|φ〉 is in Ramond sector. If |φ〉 is also primary, it follows that

(1.5) flows to

G−
n |φ̃〉 = G+

n+1|φ̃〉 = 0 for n ≥ 0

Combined with (1.17) one sees that |φ̃〉 is annihilated by G±
0 . Therefore, under

the flow by θ = 1/2, the chiral primary states flow to the ground states of the

Ramond sector (see Fig.1). Restoring the right-movers we see, from simultane-

ous spectral flow in the left- and right-moving sectors (θL = θR = θ), that there

is a one-to-one correspondence between the ground states of the R sector (for

both left and right sectors) and those primary NS states which are simulta-

neously left- and right-chiral. (This gives an essentially equivalent reason why

non-degenerate conformal theories have only a finite number of primary chiral

states.)

Furthermore, we note that under this left-right symmetric spectral flow,

qL − qR does not change. As a consequence, the index

Tr(−1)F = Tr
R

[
(−1)J0−J0qL0− c

24 qL0− c
24

]
(1.18)

which receives non-vanishing contributions only from the ground state of the

Ramond sector, can be computed in terms of chiral primary states of NS sector

by

Tr(−1)F =
∑
R
exp(iπ(qL − qR)) (1.19)

(The symbol R which denotes the chiral ring, is not to be confused with R

which denotes the Ramond sector). This result can be stated in a more general

form. Conjugating the operators inside the trace in (1.18) by Uθ one obtains:

Tr(−1)F = Tr
Hθ

[
(−1)Jθ

0 −J
θ

0qLθ
0− c

24 qL
θ

0− c
24

]

(Note that Jθ
0 − J

θ

0 = J0 − J0). In particular, setting θ = −1/2, one maps the

Ramond sector to the NS to yield5

Tr(−1)F = Tr
NS

[
(−1)J0−J0qL0− 1

2 J0qL0− 1
2 J0

]
=

∑
R
exp(iπ(qL − qR)). (1.20)

5 For the behavior of Tr(−1)F under asymmetric spectral flow see [12].
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In fact one can do better : the only difference between the charges of the

chiral primary fields and the charges of the ground state of the Ramond sector

is that they are shifted by c/6. Therefore, one can relate the U(1) character

valued degeneracy of the Ramond ground states to the character valued sum

over the ring R in the NS-sector6

Tr
R

[
tJ0 t

J0
]∣∣∣

G
±
0

=G
±
0 =0

= (tt)−c/6 Tr
NS

[
tJ0 t

J0
]∣∣∣

R

= (tt)−c/6P (t, t). (1.21)

Here, t and t can be regarded as independent variables. The relation (1.20)

follows as a special case of (1.21) by setting t = t
−1 = exp(iπ). Due to charge

conjugation invariance of the ground state of the Ramond sector, the relation

(1.21) implies that P (t, t) = TrRtJ0t
J0 satisfies a certain duality property:

P (t, t) = (tt)c/3P (1/t, 1/t). (1.22)

For reasons that will become clear below we will call P (t, t) the Poincaré

polynomial of the conformal theory. The property (1.22) implies in particular

that there exists an unique primary chiral field with the highest possible left

and right charges qL = qR = c
3

and dimensions hL = hR = c
6
. This state is the

‘Poincaré dual’ of the unique primary chiral state with hL = hR = 0 (i.e., the

vacuum). Under spectral flow to the Ramond sector, these two states become

charge conjugates of each other (see Fig.1).

It is clear that if we reversed the direction of the flow, we will get an iso-

morphism between the (anti-chiral, anti-chiral) primary states and the ground

states of the Ramond sector.

Consider, now, the flow from the NS sector to the NS sector with flow

parameter θ = 1. Under this flow, (chiral, chiral) primary states map to the

(anti-chiral, anti-chiral) primary states. In particular, the vacuum, which is

primary and is chiral as well as anti-chiral (i.e., annihilated by G±
−1/2), flows to

an anti-chiral state |ρ〉 = U1|0〉, which by (1.16), satisfies

G+
n+1/2|ρ〉 = G−

n−3/2|ρ〉 = 0 for n ≥ 0. (1.23)

6 These formulas generalize to relations between the full N = 2 characters for all

levels [13] [11] .
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This implies, by setting r = −3/2, s = 3/2 in (1.1) that

(2L0 + 3J0 + 2c/3)|ρ〉 = 0.

Now since |ρ〉 is both anti-chiral and primary we have hρ = −qρ/2 and we

deduce that

hρ = c/6. (1.24)

We see that the vacuum flows precisely to the conjugate of the above-mentioned

chiral primary state with the highest charge (dimension) and thus (1.12) is

saturated for this unique anti-chiral state. The structure of the flow is depicted

in Fig. 1.

To make the spectral flow more transparent it is convenient to bosonize

the U(1) current, by writing

J(z) = i
√
c/3∂φ (1.25)

(and similarly for J). The normalization in (1.25) is fixed by (1.1) and (1.2)

which are, in turn, a consequence of the requirement that G± have ±1 unit of

charge. A state in the theory with charge (qL, qR) can be represented by

OqL,qR = exp[i
√

3/c(qLφL − qRφR)]χ ,

where χ is a neutral operator. The Hilbert space Hθ is obtained by shifting

the φ momentum of any state of H0 by
√

c
3θ. This means that if we have any

state with charge (qL, qR), possibly tensored with other degrees of freedom, it

flows to a state with charge (qL− cθ/3, qR − cθ/3), with φ momenta
√

3/c(qL −
cθ/3, qR − cθ/3), tensored with the same degrees of freedom. Therefore the

spectral flow operator is

Uθ = exp(−iθ
√
c/3(φL − φR)).

In particular we identify the state |ρ〉 as the spectral flow of the vacuum

with θ = −1 with the state of (left-right) momentum
√

c
3 and dimension c/6.
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It follows that it is a state purely in the U(1) sector and expressible in terms of

free bosons:

ρ = exp[i
√
c/3(φL − φR)]. (1.26)

It is clear that the field ρ generates integral units of left-right symmetric spectral

flow.

So far we have been quite general in considering N = 2 superconfor-

mal models. For string applications, we are interested in obtaining a space-

time supersymmetric solution. The prime examples of conformal theories with

N = 2 supersymmetry are σ-models on Calabi-Yau manifolds. Quite generally,

whether or not the conformal theory comes from a σ-model, it was shown in

[6] that the condition for the existence of space-time supersymmetry is the ex-

istence of an N = 2 superconformal algebra with integral left U(1) charges in

the NS sector. This in particular implies that the central charge c must be a

multiple of 3 (because |ρ〉 has charge (c/3, c/3)). Set d = c/3. The integrality

of the U(1) charges allows us to define the (−1)FL and (−1)FR separately in

terms of the currents as

(−1)FL = exp[iπJ0] (−1)FR = exp[−iπJ0] . (1.27)

In such cases we can perform spectral flow for left- and right-movers indepen-

dently. For example, we can set θR = 0 and θL = 1/2. This flows the (R,R)

sector to (NS,R) sector. The corresponding operator can be represented after

bosonizing the U(1) current by

exp[(−i/2)
√
c/3φL] (1.28)

To make this a well-defined operator in the entire theory, (1.28) must be aug-

mented by similar flow operators in the ghost and space-time sectors. This

complete operator is well-defined as a consequence of charge integrality and

imposing the GSO-projection to states with a definite sign of (−1)FL . As such

an operator can be used to construct the supersymmetry charge, it was found

necessary in [6] to impose integrality of the U(1) charges to obtain space-time

supersymmetry.
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For (θL, θR) = (−1, 0), the vacuum flows to a (unique) state in the (chi-

ral,chiral) ring with charge (d, 0) (note that c = 3d). Similarly, by flowing with

(0,−1) we see that there is one and only one (chiral,chiral) state with charge

(0, d). These two states correspond to the local operators ρL = exp[i
√
c/3φL]

and ρR = exp[−i√c/3φR] that generate independent, integral spectral flows in

the left- and right-moving sectors7 . Obviously, ρ = ρL ⊗ ρR.

As we had mentionned before, for a general N = 2 superconformal

model there are four types of rings arising from the various combinations

of chiral and anti-chiral, and left and right. We will denote these rings by

(c, c), (a, a), (c, a), (a, c). They are pairwise conjugate. In certain N = 2 mod-

els, such as Landau-Ginzburg models, one obtains only the (c, c) and its con-

jugate (a, a) ring. For such models, the (a, c) and (c, a) rings are trivial and

consist only of the identity operator. However, for theories with integral U(1)

charges, there is a non-trivial relationship between (c, c) and (a, c). In particu-

lar, with spectral flow by (θL, θR) = (1, 0) starting from the (c, c) elements in

the (NS,NS) sector, we flow to (a, c) elements again in the (NS,NS) sector.

This implies, in particular, that if χ ∈ (c, c) then

exp[−i
√
c/3 φL]χ ∈ (a, c) .

We can define a Poincaré polynomial for (a, c) fields as well, by

P(a,c) = Tr
NS

[
t−J0 t

J0
]∣∣∣

(a,c)

(the sign of the exponent of t is chosen so that we have only positive powers

of t and t). Because of the relation between (c, c) and (a, c), the Poincaré

polynomial of (a, c) is determined in terms of that of (c, c). More precisely, if

P(c,c) =
d∑

p,q=0

bp,qt
pt

q
, (1.29)

7 That these two states must be in the theory (before the GSO projection) should

follow from modular invariance and the fact that ρL and ρR are local with respect to

all fields in the theory.
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where bp,q denotes the number of chiral primary fields with charge (p, q), we

must have

P(a,c) =
d∑

p,q=0

bd−p,qt
pt

q
. (1.30)

In order to illustrate these somewhat abstract ideas we shall consider two

simple examples. The simplest N = 2 superconformal model with c = 1 can be

realized by a free boson φ on a circle with specific radius [14]; this boson can

be identified with that in (1.25). The circle has a radius such that the allowed

winding (momentum) modes are of the form

exp[i(nLφL − nRφR)/
√

12],

with nL − nR = 0 mod 6 (before the GSO projection). The Ramond-sector

corresponds to odd nL, nR. The N = 2 algebra is realized by

G± = exp[±i
√

3φL] G
±

= exp[±i
√

3φR]

J(z) = i
√

1/3∂φ J(z) = −i
√

1/3 ∂φ .

It is easy to see that the only primary chiral states are the vacuum and the

state with (nL, nR) = (2, 2). This state has dimension hL = qL/2 = hR =

qR/2 = 1/6. We denote the field corresponding to this state by x. It has to be

identified with the highest dimension primary chiral field ρ discussed above, as

it saturates the bound h = c/6 = 1/6. The ring structure is very simple:

R = {1, x (subject to x · x = 0)}.

The vanishing equation can be understood by noting that the dimension of the

field x2 (identifiable with the state (nL, nR) = (4, 4)) is 2/3, which is higher than

twice the dimension of x; therefore the naive product of x with itself vanishes,

as discussed before. The ground state of the Ramond sector with left-right

dimension (1/24,1/24) is doubly degenerate, and corresponds to (nL, nR) =

(±1,±1).
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The spectral flow is realized by (nL, nR) → (nL−2θ, nR−2θ). For θ = 1/2,

the chiral primary states flow to the ground states of the R sector:

(0, 0) → (−1,−1)

(2, 2) → (1, 1)

Under a spectral flow by θ = 1, the chiral primary states go to anti-chiral

primary states:

(0, 0) → (−2,−2)

(2, 2) → (0, 0)

Thus, the vacuum flows to the primary anti-chiral state with the highest di-

mension. Finally we note that Tr(−1)F = 2 as follows from (1.19), and the

Poincaré polynomial for this theory is easily seen to be

P (t, t) = 1 + (tt)1/3

The duality (1.22) of the Poincaré polynomial is easily checked in this example.

The (a, c) ring is trivial and consists only of the identity operator. We shall

return to this example when we discuss Landau-Ginzburg models in section 3.

Our second example is the simplest type of superstring compactification,

namely compactification on a two dimensional torus (i.e., one complex dimen-

sion). This theory has central charge c = 3, coming from one complex boson

x (contributing 2) and one complex fermion ψ (contributing 1). The N = 2

superalgebra is realized by

G+(z) = ψ∗∂x

G−(z) = ψ∂x∗

J(z) = ψ∗ψ ,

and similarly for the right movers. It is easy to identify the (left) primary chiral

states as:

|0〉, ψ∗
−1/2|0〉,
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and similarly for the right chiral states and for anti-chiral primary states.

Note that the chiral state above has charge +1 and dimension 1/2 as re-

quired for a primary chiral state. The (chiral, chiral) primary states are

|0〉, ψ∗
−1/2|0〉, ψ

∗
−1/2|0〉, ψ∗

−1/2ψ
∗
−1/2|0〉, and the corresponding (c, c) ring is

R = {1, ψ∗, ψ
∗
, ψ∗ψ

∗} .

The Poincaré polynomial is

P (t, t) = 1 + t+ t + tt = (1 + t)(1 + t). (1.31)

The ring structure is obvious in this example. Also the duality (1.22) of the

Poincaré polynomial is easily checked. The index Tr(−1)F can be computed by

setting t = t = −1 which gives Tr(−1)F = 0. Note that the dimension of the

unique highest chiral field is (1/2, 1/2), as required by our general arguments;

the fields with dimensions (1/2, 0) and (0, 1/2) generate integral flows for the

left and right Hilbert spaces independently. Finally, the (a, c) ring is:

R = {1, ψ, ψ∗
, ψψ

∗} .

In this example the Poincaré polynomial and the ring structure for the (c, c)

and (a, c) primary fields are isomorphic. This is however not true in general.

The ground states of the Ramond sector and its connection with the spec-

tral flow are easy to work out for this example, and we leave it as an instructive

exercise to the reader.

2. Chiral Rings and Cohomology Rings

We now discuss some geometrical aspects of the chiral rings that we have

defined. Quite generally we have defined a ring R of left-right chiral primary

operators, and a natural question arises whether or not this ring has any geomet-

rical significance8. The reader may have noticed that the Poincaré polynomial

8 We have greatly benefited from discussions with B. Greene in preparing this

section.
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for the torus model (1.31) is in fact identical with the complex Poincaré polyno-

mial for the torus. In general, the Poincaré polynomial for a complex manifold

M is defined by

P (t, t) =
d∑

p,q=0

bp,qt
pt

q
,

where d = dimcM is the complex dimension of M and

bp,q = dimHp,q(M)

and Hp,q(M) are the Dolbeault cohomology groups. Moreover, the ring struc-

ture for the superconformal model on the torus is identical with the ring struc-

ture of the Dolbeault cohomology groups of the torus: the primary chiral fields

are in one-to-one correspondence with 1, dz, dz, dz ∧ dz, so that R corresponds

to the cohomology ring {H0,0, H0,1, H1,0, H1,1}. The duality noted in (1.22)

translates precisely to the Poincaré duality of the cohomology groups:

bp,q = bd−p,d−q

In fact, the statements that dimHd,d = dimH0,0 = 1 correspond to something

that we know in the N = 2 theories, namely the uniqueness of the vacuum

and of the field ρ with highest charge (c/3, c/3) = (d, d). Also for Calabi-Yau

manifolds, the statement that dimHd,0 = dimH0,d = 1 has the analogue in

terms of the unique chiral fields ρL and ρR defined in the previous section:

these are precisely the constant (anti-)holomorphic d-form fields that exist on

any Kähler manifold with vanishing first Chern class.

The relationship between cohomology and chiral rings is not an accident.

If we are considering a supersymmetric non-linear σ-model based on a manifold

M , we know from the work of Witten [10] that there is a one-to-one correspon-

dence between the cohomology classes of the manifold and the ground states

of the Ramond sector. This was shown by relating the Ramond states to the

differential forms on M , and the Ramond-Ramond operator to the de-Rham

cohomology of M . Moreover, when M is a Kähler manifold (and thus the σ-

model has N = 2 supersymmetry), the ∂ operator corresponds to G+
0 and ∂
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corresponds to G
+

0 . Since the left-right U(1) currents are of the form ψ∗ψ and

ψ
∗
ψ, respectively, and ψ∗ and ψ

∗
correspond to wedging with holomorphic and

anti-holomorphic differential forms, it follows that the left-right U(1) charges

count the holomorphic and anti-holomorphic degrees of the differential forms

respectively. So we see that in N = 2 superconformal models, where the Ra-

mond ground states are related to the chiral primary fields by spectral flow,

there is a one-to-one correspondence between the harmonic forms that repre-

sent the Dolbeault cohomology of M and the elements of the ring R. This

isomorphism preserves the left-right grading. In particular, this means that the

Poincaré polynomial we defined for the conformal theory (1.21) is equal to the

Poincaré polynomial of Dolbeault cohomology. We can get this isomorphism

more directly by identifying G+
−1/2

and G
+

−1/2 with ∂ and ∂, respectively.

We now have a one-to-one relation between the elements of the chiral al-

gebra and the cohomology classes. Now we recall that the cohomology groups

also possess a ring structure which is compatible with the grading of the forms9.

Given the fact that we have two rings, with the same degeneracies, it is natural

to suspect a relation between the two rings. Of course, the fact that the degen-

eracies are the same, i.e., that the two Poincaré polynomials are the same, does

not imply that the ring structure is the same, i.e., that the operator algebra of

the primary chiral fields is isomorphic to the algebra of the cohomology groups.

It is however natural to conjecture a relation between these two rings. (This is

related to the question of whether the relations between the Yukawa couplings

[15] one finds for the manifold M are unchanged in the conformal theory; see

below.)

If we ignore the higher modes of the string (i.e., ignore the oscillator exci-

tations), the ground states of the Ramond sector (or the chiral primary fields of

the NS sector) can be identified with the cohomology elements of the manifold,

and the vertex operators of chiral primary fields corresponding to harmonic

(p, q) forms can be represented (in the −1 picture) by [16]

bi1,...,ip,j1,...,jq(x
i, x∗i)ψ∗i1 ∧ ... ∧ ψ∗ip ∧ ψ∗j1 ∧ ... ∧ ψ∗jq

,

9 The ring structure for cohomology is defined by wedging representative forms

for each class.
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where the action of ψ∗i, ψ
∗j

are represented on the Hilbert space of differential

forms by wedging with dxi, dxj respectively, and b corresponds to the harmonic

(p, q) form. So for large radii, where the semi-classical treatment is reliable, the

two rings become isomorphic.

This isomorphism is also manifested in the computation of Yukawa cou-

plings. As was shown in [15], these couplings, at large radii, can be computed

from the cohomology algebra of M . On the other hand, when M is, for ex-

ample, a three dimensional Calabi-Yau manifold, one can easily compute the

Yukawa couplings from the structure of the rings of chiral fields [17] [3][18].

For example, the generations corresponding to (1, 1) forms correspond to the

elements of the ring (c, c) with charges (1, 1). This means that they have the

correct dimension (1/2, 1/2) in the −1 picture. If ρ has charges (3, 3) (and thus

is the unique element with that charge), the Yukawa couplings for three fields

of charges (1, 1) x, y, z are proportional (up to normalization) to Cx,y,z, where

xyz = Cx,y,zρ. This is similar for the anti-generations, except that we must

now take elements with charge (−1, 1).

As we decrease the radii, the semi-classical treatment is no longer justi-

fiable. Indeed, it was shown in [19] that for some orbifold models (such as

the Z orbifold), the Yukawa couplings do not follow the cohomology structure

dictated by the manifold, and therefore the ring of primary chiral fields is not

isomorphic with the cohomology ring of the manifold (even after smoothing

out orbifold singularities). It was shown in [20] that quite generally instanton

corrections will affect some of the relations the Yukawa couplings satisfy; in

the language discussed here, this means that these corrections invalidate the

semi-classical isomorphisms of the two rings. So we see that non-linear sigma

models on manifolds which give rise to N = 2 superconformal models can have

a ring structure that is a deformation of the ring structure of the manifold.

Nevertheless we believe that there should be some relation between the ring

defined by the conformal theory, and some intrinsic geometrical properties of

M . In fact, attempts to extend the semi-classical argument just mentioned to

the general case, in which one cannot ignore the oscillator modes, naturally

leads us to consider the cohomology ring of the loop space over M . In this
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setting one would be identifying primary chiral fields with the cohomology ele-

ments of the loop space, and the ring structure (that is, the operator product

algebra) would correspond to wedging differential forms on loop space. It is an

extremely interesting question to settle the exact relation of the ring structure

of a conformal theory, with such a picture.

As discussed in the previous section there are actually two (up to com-

plex conjugation) inequivalent rings of interest: (c, c), (a, c). As was explained

above, for superconformal models coming from compactification on Calabi-Yau

manifolds the (c, c) ring becomes isomorphic to the structure of the cohomology

ring of the manifold in the large radius limit. Of course it should be clear in

general that it is a matter of convention as to which ring we call (a, c) and which

ring we call (c, c) because we can always flip the relative sign of the J and J ,

and change our conventions10. So more precisely we should say that one of the

two rings (c, c) or (a, c) is a deformation of the cohomology ring of the mani-

fold. One of them gives the Poincaré polynomial of the manifold (1.29) and the

other gives a Poincaré polynomial of the form (1.30), which in general differs

from the Poincaré polynomial of the manifold. One would clearly like to have

a geometric interpretation of the other Poincaré polynomial. One possibility

might be that this polynomial is the Poincaré series for (a deformation of) the

cohomology ring of another manifold. This is quite possible in light of the fact

that string propagation on topologically distinct manifolds can be isomorphic.

This happens, for example, for certain orbifolds. If so, there must be another

manifold M̃ for which the betti numbers satisfy:

bM̃p,q = bMd−p,q

One other interesting question that arises is that from the work of Dixon

[21] we know that we can use charge (1, 1) elements of (c, c) and (−1, 1) elements

of (a, c) to deform the conformal theory; these correspond to massless moduli of

the conformal theory. It would be of interest to know whether such deformations

would change the ring structures that we have been discussing. Even though

10 This remark and the following point has been raised in [21].
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they obviously do not change the degeneracies of the ring elements, they do in

general change the ring structure. However, it was shown by [22] that if we

use the moduli corresponding to charge (1, 1) elements of (c, c), the Yukawa

couplings of the (a, c) anti-generations do not change. This implies that at

least some part of the ring structure of (a, c) is unchanged. In fact, one can

easily generalize this result and show that the whole ring structure of (a, c) is

unchanged. This in particular means that the semi-classical analysis at large

radii should suffice to determine the full ring structure of (a, c). It would be

interesting to investigate the geometrical meaning of this. Similarly one can

show that the deformations of the moduli corresponding to the charge (−1, 1)

elements of (a, c) do not change the (c, c) ring structure.

3. N = 2 Landau-Ginzburg Models and Catastrophe Theory

One of the aims of the work [1](see also [3]) was to initiate a classification of

N = 2 superconformal theories by proceeding as follows11: consider a number

of chiral superfields Φi, i = 1, . . . n, with D+Φi = D
+
Φi = 0, and take any

superpotential W (Φi) which has an isolated quasi-homogeneous singularity at

Φi = 0. That is, take a holomorphic function for which

W (λwiΦi) = λdW (Φi) , (3.1)

where we take wi, d to be integers, with no common factors. The notion of an

isolated singularity means that if we set ∂iW (Φj) = 0 for all i, the only solution

is at the origin. In other words, we assume that W has no flat directions near

the origin. (If we allowed for a line of criticality near the origin, we would obtain

11 The renormalization group flows for Landau-Ginzburg models and the impor-

tance of non-renormalization theorems in the context of minimal N = 2 models were

first considered in [23]. In addition in that reference there was a conjectured equiva-

lence of the superpotential of the Landau-Ginzburg models and the defining equation

for certain models of [24]. This conjecture was extended and checked for all models of

[24] by [2] and [3] and was established using the ideas of universality of renormalization

group flows in [2].
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a degenerate conformal theory, similar to string theory on non-compact spaces.)

The basic hypothesis of [1] is that there exists a choice of D-term K(Φi,Φi) for

which the Lagrangian

L =
∫
d2zd4θK(Φi,Φi) + (

∫
d2zd2θ W (Φi) + c.c.) (3.2)

is conformally invariant. The idea is then to use W to define a universality class

of Landau-Ginzburg theories under the renormalization group flow, the fixed

point of which is a conformal theory. Under this flow, the D-term adjusts itself

so that at the fixed point (3.2) is a conformal theory. The simplification for

N = 2 theories (as compared to N = 0, 1 theories) comes from the assumption

that the superpotential does not change during the flow and is thus an invariant

of the flow. This assumption has at best only been proven perturbatively.

However, one also needs a non-perturbative non-renormalization theorem of

N = 2 theories in 2 dimensions and such a theorem has not yet been established.

Nevertheless the conclusions one reaches using the assumption that for every

(isolated) quasi-homogeneous superpotential there exists an N = 2 conformal

theory give further evidence for this hypothesis.

Using the quasi-homogeneity property (3.1), we can read off from the action

(3.2) the U(1) charge of the lowest component of Φi. Since the θ-integrals in the

F -term have (left,right) charges (−1,−1) and because one requires neutrality of

the action, it follows that W has charge (1, 1). As a result, Φi must have charge

qi = wi/d for both its left- and right-moving components. It is easy to see that

for any state qL − qR is always an integer in Landau-Ginzburg models. This

is certainly clear for the field Φi, as it has equal left-right charge. Moreover,

since the most general field is obtained by taking products of Φi with Φi, as

well as products of their (super-)derivatives, it follows that qL − qR is always

an integer (super-derivatives change the charge in integral units). This means

that the condition (1.3) is satisfied and our spectral flow arguments apply to

Landau-Ginzburg models.

The ring R of primary chiral operators is isomorphic to the local ring of

W (Φ): it is simply the space of all monomials of Φi modulo setting to zero
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∂jW (Φi). (The polynomials ∂jW (Φi) correspond, by the equations of motion,

to descendent chiral fields D+D
+

Φj ∼ ∂jW (Φi).) Therefore we have

R =
C[Φi]

[∂jW (Φi)]
. (3.3)

The number of elements of the ring is denoted by μ = dimR and is called the

multiplicity of W .

Since the primary chiral objects have equal left-right charges, it follows

that the Poincaré polynomial is only a function of tt. For convenience we

will replace tt by the variable td, where d is defined in (3.1). The Poincaré

polynomial of the superconformal theory becomes then the Poincaré polynomial

of the corresponding singularity, and has a particularly simple form [25]:

P (t) = Tr
R

[
tdJ0

]
=

n∏
i=1

(1 − td−wi)
(1 − twi)

. (3.4)

One way to see how this formula comes about is to note that if we ignore the

numerator of (3.4), it is the partition function of all the chiral fields with no

restrictions. Each gradient ∂iW (Φj) is a chiral field with charge (d − wi)/d.

Setting to zero the products of a chiral field of this type with all the fields we had

originally would subtract from the partition function the partition function of

the same states but shifted by the charge (d−wi)/d. The factors of (1−td−wi) in

the numerator perform this necessary subtraction for each ∂iW . The condition

that the singularity is isolated guarantees that we do not subtract a state twice,

i.e., that the gradients of W are independent functions near the origin.

Given any set of numbers (d, wi), the condition that the right hand side of

(3.4) be a finite polynomial with positive coefficients gives a necessary condi-

tion for having a Landau-Ginzburg theory with a quasi-homogeneous potential

W (Φi) with Φi of charge wi/d. This condition is however not sufficient as there

are numbers (d, wi) for which (3.4) is a finite positive polynomial, but there

exists no isolated quasi-homogeneous potential with those indices [25].

By l’Hopital’s rule, we deduce, using (3.4) and (1.21), that

Tr(−1)F = P (t = 1) = μ =
n∏

i=1

(d−wi)
wi

=
n∏

i=1

(
1
qi

− 1). (3.5)
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The chiral primary state ρ with the highest charge can be easily identified

using (3.4) by looking at the large t limit of P (t), which gives t
∑

i
d−2wi . So

the charge of ρ is given by
∑

(d− 2wi)/d, and its conformal dimension is

hρ =
n∑

i=1

(
1
2
− qi) ≡ β. (3.6)

In the mathematical literature, β is known as the singularity index of W . From

(1.24) it now follows that

c = 6β = 6
n∑

i=1

(
1
2
− qi). (3.7)

This formula was first proven in [1] by a different method (it was also empirically

noticed in [3] for the minimal N = 2 models and tensor products thereof).

Because of (3.6), one can always write

P (t) =
k∑

p=0

bpt
p , k = 2dβ ,

where bp counts the number of chiral primary fields of charge p/d. Therefore

the ‘betti’ number bd gives the number of continuous moduli of the conformal

theory. These deformations are flat [21] and correspond to adding to the super-

potential the corresponding chiral primary fields12. Note that given numbers

d, wi for which there exists a superpotential of degree d with weights of fields

wi, one knows the general form of the superpotential. Namely we take any

superpotential with these indices, and add to it bd possible deformations due

to massless moduli. Therefore the mere knowledge of the indices d, wi defines

the Landau-Ginzburg theory up to a deformation in its moduli.

Note that the number of moduli is different from what is called modality

m in the mathematical literature; the latter is given by the number of chiral

primary states with charge greater than or equal to one, i.e.,

m =
∑
i≥d

bi .

12 It follows that for c < 3, there cannot be any moduli.
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Poincaré duality takes the usual form:

bp = bk−p .

This follows from (3.4) and is consistent with the general arguments of the first

section (1.22). Finally note that in terms of the Landau-Ginzburg fields Φi, the

field with the highest degree 2β can be written as

ρ = detij

[
∂2W (Φ)
∂Φi∂Φj

]
.

The non-vanishing of the determinant is the condition for the singularity to be

isolated. It is easy to check that ρ defined above has the right charge.

The question arises as to which subset of all N = 2 models can be written

in terms of Landau-Ginzburg models. As we have discussed, the chiral primary

fields in a Landau-Ginzburg theory have all the same sense of chirality for left

and right movers. Moreover qL = qR for all such states. Therefore, theories that

have both non-trivial (c, c) and (a, c) primary states cannot be written in the

canonical Landau-Ginzburg form. Examples for non-Landau-Ginzburg theories

are toroidal compactifications in even dimensions. These theories contain non-

trivial primary fields of both chiralities. This is obvious for our c = 3 example

described in the first section; not only does it have (c, c) and (a, c) fields, but

also the Poincaré polynomial of (c, c) (1.31) is not a function of (tt) only, as

would be the case if qL = qR for all primary chiral fields.

More generally, all theories that have integral left and right U(1) charges

(for example, σ-models on Kähler manifolds with vanishing first Chern class),

allow for left-right asymmetric spectral flow giving rise to chiral primary fields

which have qL = qR. In particular, the operator ρL discussed in section 1 is such

an example. Thus, these theories cannot be represented as Landau-Ginzburg

models. However, orbifolds of Landau-Ginzburg models may well contain both

(c, c) and (a, c) states and thus describe such conformal theories; for instance, it

is known that conformal theories on Calabi-Yau manifolds can be described as

orbifolds of Landau-Ginzburg theories [2][3], and these do have both (c, c) and
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(a, c) states13. If we construct a Calabi-Yau compactification by orbifoldizing a

Landau-Ginzburg model, we will get rid of some elements in the ring (c, c) by

projecting the untwisted sector onto invariant states. However, in general, we

also get new elements in the ring (c, c) coming from the twisted sectors. Prior to

twisting there were no non-trivial elements in (a, c), but after orbifoldizing we

get some non-trivial elements because, as shown in section 2, these correspond

to Kähler deformations that are always present14 . Thus a subring of the (c, c)

states of the Landau-Ginzburg theory forms a subring of (c, c) states of the

Calabi-Yau theory, and this allows us to compute Yukawa couplings of some of

the anti-generations by working entirely in the unorbifoldized Landau-Ginzburg

theory. At any rate, all the relations between Yukawa couplings for three fields

can be determined from the full ring structure of the orbifoldized Landau-

Ginzburg theories, as discussed in section 2.

We have seen that an N = 2 theory arising from a Landau-Ginzburg fixed

point necessarily satisfies:

(i) The theory contains only one conjugate pair ((c, c) and (a, a)) of finite

dimensional chiral rings, and these rings contain only left-right symmetric

fields with qL = qR.

It is therefore tempting to conjecture that this is also a sufficient condition

for an N = 2 theory to correspond to a Landau-Ginzburg theory (3.2). This

turns out not to be true, as some models of [7] satisfy this condition but are

not LG (see sec. 4). However, Landau-Ginzburg theories have some additional

important features:

(ii) All (left-right symmetric) chiral fields are generated by a finite set of chiral

primary fields Φi (and similarly for the anti-chiral fields).

(Note that chiral superderivatives of anti-chiral primary fields can be expressed,

via the equations of motion, in terms of chiral fields.)

13 Toroidal compactification [26] and orbifolds based on them [27] could also be

viewed as orbifolds of Landau-Ginzburg models.
14 Our conventions in this section are opposite to that of section 2, where the (c, c)

corresponded to Kähler deformations.
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(iii) All (left-right symmetric) fields in the theory can be obtained by taking

arbitrary operator products of Φi and Φi.

We now show, by a plausible but not rigorous argument, that any N = 2

theory, for which (i), (ii) and (iii) are true, has a ring structure R isomorphic

to that of a Landau-Ginzburg model. In other words, we show that R is of

the form (3.3). We do this by explicitly finding W . That this is enough to

show the equivalence with a Landau-Ginzburg theory is not obvious, but should

presumably be a consequence of the hypothesis of [1] which implies that the ring

structure of primary chiral fields determines the theory completely. Otherwise

we would have a collection of different fixed points for a given superpotential,

as has been found in theories with fewer supersymmetries [28]

Consider an N = 2 model satisfying the conditions stated above. We

concentrate on the left moving piece of the (c, c) primary fields. Let Φi denote

the holomorphic parts of the independent generators of the primary chiral fields,

and assume that it is normalized so that

Φi(z)Φi(z′) ∼ (z − z′)−2hi + ... (3.8)

We give a naive argument that illustrates the main idea, and subsequently we

fill in some (but not all) of the technical gaps. Consider G+(z). This is a chiral

field, as follows by noting that G+(z)G+(z′) has no singular piece. The state

corresponding to G+ is

G+(0)|0〉 = G+
−3/2|0〉 ,

(This is, in fact, the left-moving part of one of the two dimensional gravitinos.)

Note, however, that G+ is not a primary chiral field, because it does not satisfy

(1.6). Rather, G+ has h = 3/2, q = 1. The assumption that all the chiral fields

must be representable as functions of Φi implies in particular that G+ = W (Φi)

for some function W . Now, by assumption the ring structure R is of the form

R =
C[Φ]
J

,

where J denotes the ideal generated by all polynomials of superfields that vanish

as a consequence of (1.13). Take such a polynomial, f , to which corresponds a
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chiral state |f〉 (the state is chiral because the product of chiral fields is again

chiral). We now use (1.11) to write

|f〉 = G+
−1/2|f1〉 . (3.9)

There can be no chiral primary component, |f0〉, in (3.9) since this would mean

that |f〉 would not belong to J . Now we use the assumption that all fields are

generated by products of Φi and Φj, and since D+Φi = 0, using (3.9) we see

that the ideal J is generated by D+Φi. In other words,

R =
C[Φ]

[D+Φi]
.

Since D+Φi is the leading singularity in G+(z)Φi(z′), and we know that

G+(z) = W (Φ), using (3.8) we see that

D+Φi = ∂iW (Φ) ,

which proves that R has the ring structure of a Landau-Ginzburg theory. Note

that W constructed here has the correct charge to serve as the superpotential

of a Landau-Ginzburg theory. Note also that by the homogeneity property of

W in a LG theory, it is easy to see that it should belong to the ideal J , as is

the case for G+ which is a descendant chiral state.

We now fill in some of the technical gaps in the foregoing argument. There

are two major weakness: one is that we have been somewhat cavalier in our

treatment of operator products. We will show how this might be remedied. The

other weakness is that we should really be considering the left and right-moving

modes at the same time. We will comment on this at the end.

The assumption that all the chiral fields are generated by Φi means that

if we consider arbitrary non-local operators of the type

Fi1,...,in(z1, ..., zn) = Φi1(z1)...Φin(zn) , (3.10)

and define

F λ
i1,...,in

(z1, ..., zn) = Fi1,...,in(λz1 , ..., λzn) ,
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then, in the limit as λ → 0, after rescaling F λ by appropriate negative powers

of λ and dropping the singular terms, we obtain all chiral fields. The power of

λ is always negative, as follows from our discussion following (1.14). Suppose

we are trying to construct a chiral operator Oq
h of charge q and dimension h.

Let F λ denote the appropriate linear combination of the Fi1...in(λz1 , ..., λzn),

such that the finite part of F λ in the limit λ→ 0 yields Oq
h:

Oq
h(0) = lim

λ→0
λ−(h− q

2 )F λ . (3.11)

The power of λ is determined by matching the conformal dimensions on both

sides: since the component fields on the right-hand side are all chiral and pri-

mary, their total dimension is q/2, whereas the dimension of the field on the

left-hand side is h. We have to be a little more precise with the definition (3.11);

sometimes there are more singular terms on the right hand side of (3.11). So

what we mean by ‘lim’ is the λ independent piece of the right hand side. The

serious shortcoming in the definition (3.11) is that the normalization of Oq
h(0)

depends exactly on where we pick the points z1, ..., zn. Presumably some kind

of averaging is needed to get something independent of the precise locations.

From here on, whenever we write an operator F (Φi) as some polynomial

in Φi, we mean that we first point-split all the operators (including operators

raised to some powers) and consider the non-local operators of the type (3.10).

Ultimately we are, of course, only interested in local operators which we get

from F by the procedure indicated in (3.11). With this definition in mind we

now proceed to construct the superpotential W .

Consider again G+(z). As discussed above, since this is a chiral field we

can construct it in terms of Φi, and call the corresponding polynomial W (Φi).

It follows from (3.11) (since the dimension of G+ is 3/2 and its charge 1), that

G+(0) = lim
λ→0

λ−1Wλ(Φi). (3.12)

We showed above that all the descendent chiral fields are generated by D+Φi

(which correspond to chiral non-primary states G+
−1/2|Φi〉). This can be repre-

sented by

D+Φi(0) =
∮
G+(z)Φi(0) ,
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or equivalently, by

D+Φi(0) = lim
λ→0

λG+(λ)Φi(0). (3.13)

Since D+Φi is a chiral field (because (D+)2 = 0), it must, by assumption, be

representable as a function of Φi. Let us call that function Hi. Noting that the

dimension and charge of D+Φi are h = hi + 1/2 and q = −qi + 1 = −2hi + 1,

we must have (using (3.11))

D+Φi = lim
λ→0

λ−2hiHλ
i (3.14)

Now using (3.13), (3.12) and (3.14) it follows that Hi must be in the operator

product of Φi and W (Φ), and it must appear as the term proportional to

λ−2hi . Using the form (3.12) of G+ and the normalization (3.8), we see that

when we bring Φi near15 G+, the correct singularity structure arises when we

take the leading contraction of Φi with Φi, and this leaves us with ∂iW (Φ) in

the operator product. This implies that

Hi = ∂iW (Φ) ,

which completes the argument.

The other weakness in the argument comes from dropping the right mov-

ing piece. This could be remedied by trying to construct G+G
+

from the (c, c)

fields, rather than dropping the right-moving pieces and repeat the above argu-

ment for that case. This however is in general not a left-right symmetric field,

and in general cannot be made from the chiral primary fields. For example if we

have tensor products of two LG models with chiral supersymmetry generators

G+
1 , G

+
2 , then we can construct

G+
1 G

+
1 +G+

2 G
+
2

using chiral primary fields, but not G+G
+

which is

G+
1 G

+

1 +G+
2 G

+

2 +G+
1 G

+

2 +G+
2 G

+

1

15 We must assume that the fields which are used to form G+ are much closer to

each other than to Φi. This, however, does not affect our argument.
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But the argument we gave could be modified to defining W by

[G+G
+

]L−R symmetric = W (Φi)

This fills in some of the technical gaps of our argument. It would be nice if the

foregoing could be made completely rigorous.

To illustrate the identity G+G
+

= W we return to the example considered

in section 1 with c = 1. Recall that in this model the (holomorphic) chiral fields

are generated by

x = exp[
2i(φL − φR)√

12
]

and in particular,

G+G+ = exp[
6i(φL − φR)√

12
] .

Note that G+G+ = x3, which implies that W = x3, in accordance with the

Landau-Ginzburg superpotential found in [1] [3].

4. Kählerian Coset Models

In this section we will discuss some of the results we have found in the study

of chiral rings in the coset models of Kazama and Suzuki [7] and their relation

with Landau-Ginzburg models. We will first briefly review these models, and

then identify the chiral primary fields. Subsequently we discuss a subclass of

these models that can be represented as Landau-Ginzburg theories. We also

discuss the connection of the chiral primary ring in this class of models with

the cohomology ring of coset manifolds. This study of coset models will be

continued (and elaborated) in a subsequent paper [8].

Kazama and Suzuki have studied under what conditions an N = 1 su-

perconformal coset model G/H can have an extra supersymmetry, to give

rise to an N = 2 superconformal model. Their conclusion is very simple: if

rank G = rank H , then the condition needed for N = 2 supersymmetry is

that G/H be a Kähler manifold. This in turn is equivalent to the statement

that H is the centralizer (the little group) of a toroidal subgroup of G. For
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example, if G = SU(m + n) and we take the toroidal subgroup to be a U(1)

with m entries equal to a given phase, and n equal to some other phase, we

obtain H = SU(m) × SU(n) × U(1). If rank G = rank H , these models do

not satisfy the condition qL − qR ∈ Z, unless they are twisted, and we will not

consider such models here. The Kählerian G/H models of [7], where G and H

have equal rank, contain only states that satisfy qL − qR ∈ Z.

For Kählerian spaces, the Lie algebra of G decomposes as

g = h ⊕ t+ ⊕ t−

with t+ and t− forming closed Lie algebras:

[t+, t+] ⊂ t+ [t−, t−] ⊂ t−

Among the Kählerian models, there is a special class which consists of hermitian

symmetric spaces (HSS). This class has the property that the G/H theory

has no extra U(1)’s other than the one implied by the presence of N = 2

superconformal symmetry [7]. For this class, the Lie algebras of t+ (and t−)

are abelian.

The G/H superconformal model can be decomposed as a level k affine

algebra ofG, tensored with a level one affine algebra of SO(dim(G/H)), divided

by a level k+ gG − gH representation of affine H , where gG and gH denote the

dual Coxeter numbers of G and H . For convenience we define d = 1
2dim(G/H).

The affine algebra of SO(2d) at level one will be represented by d complex

fermions ψα, where α runs over all the roots of t+ (with ψ−α = ψ∗α); these

fermions could be thought of as providing a basis for the complex tangent

vectors to G/H .

If we denote the currents of t+ by Jα(z), then the N = 2 chiral supersym-

metry generator is given by

G+(z) = (
2

k + g
)1/2

[ ∑
α∈t+

ψα(z)J−α(z) +
1
2

∑
α,β,γ∈t+

fγ
αβψ

α(z)ψβ (z)ψ−γ(z))
]

where fγ
αβ denote the (suitably normalized) structure constants of t+; G− is

defined to be the complex conjugate of the foregoing expression. Here and in
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the following g will stand for the dual coxeter number of G. If we let Hi(z)

denote the Cartan currents of G, the N = 2 U(1) current is given by

J(z) =
∑

α∈t+

ψα(z)ψ∗α(z) − 1
k + g

∑
α∈t+

[α · (H(z) +
∑

β∈t+

βψβ (z)ψ∗β(z))] (4.1)

We wish to investigate the chiral rings in these models. In particular, this

will allow us to identify some of them with Landau-Ginzburg theories. From

the structure of the coset models of [7], one can see that all the (c, c) states

satisfy qL = qR, and therefore these models have a chance of being represented

by Landau-Ginzburg theories. As discussed in section 1, by spectral flow, there

is a correspondence between primary chiral states and the ground states of

the Ramond sector. As it turns out, it is more convenient to find the ground

states of the Ramond sector and we use this correspondence to simplify our

computations. The ground states of the Ramond sector are defined by

G±
0 |φ〉 = 0, where

G±
0 = (

2
k + g

)1/2

[ ∑
α∈t+

∑
n

ψ±α
n J∓α

−n +
1
2

∑
α,β,γ∈t+

∑
m,n

f±γ
±α±βψ

±α
n ψ±β

m ψ∓γ
−(m+n)

]
.

(4.2)

As discussed in sections 1 and 2, we can think of G+
0 as analogous to ∂ and G−

0

to its adjoint, and in this setup the ground states of the Ramond sector can be

thought of as the non-trivial cohomology elements (represented by ‘harmonic

forms’). In order to find the solutions to (4.2) in the coset models, we first

have to act with G±
0 on the Hilbert space of the superconformal G model, and

find inequivalent solutions to (4.2). Solutions are equivalent if they differ by

an action of H currents. Note that the Hilbert space of the G model in the

Ramond sector consists of representations of the affine G algebra at a given

level k, tensored with the two spinor representations of SO(2d) at level one.

Finding solutions to (4.2) acting on this Hilbert space is not a trivial problem.

As it turns out, the ground states of the G/H model do not necessarily

come from the ground states of the affine G theory. However, we will first

investigate which states among the ground states of the G/H model do come
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from the ground states of the G theory. The ground state of the superconformal

G model consists of a finite dimensional representation of G (which we denote

by its highest weight vector Λ), tensored with the two fundamental spinors of

SO(2d). This state is annihilated by the strictly positive modes of currents and

fermions in (4.2). Therefore to solve (4.2) for these ground states we are left

with the zero mode piece of G±
0 . This truncation is similar to the truncation

which was used in [10] to obtain the ground states of two dimensional models,

and is similar to the semi-classical approximation we discussed in section 2.

Truncating from two to one dimensions means deleting the z dependence from

the operators. In particular we have then

G+ = (
2

k + g
)1/2(

∑
α∈t+

ψαJ−α +
1
2

∑
α,β,γ∈t+

fγ
αβψ

αψβψ−γ) (4.3)

J(z) =
∑

α∈t+

ψαψ∗α − 1
k + g

∑
α∈t+

[α · (H +
∑

β∈t+

βψβψ∗β)] , (4.4)

where we can add the subscript zero to the operators if we wished to emphasize

their connection to the two dimensional model. It is convenient to think of the

spinor representation as obtained by acting with the ψα on the ground state

spinor (taken to be the state |(−1/2, ...,−1/2)〉, where the −1/2’s denote the

SO(2d) spinor weights). We can then think of the ground states of the fermionic

sector as to correspond to the exterior algebra of ψα, which we denote by

∧
t+ .

If we let VΛ denote the finite dimensional vector space that forms the represen-

tation Λ of G, then the finite dimensional Hilbert space corresponding to the

ground states is

H =
∧

t+ ⊗ VΛ .

For non-linear sigma models, the ground state Hilbert space is obtained from the

space of differential forms. Here we can think of ψα as a basis for holomorphic

differential forms, and thus trying to find solutions to G± = 0 is a cohomology

problem. It turns out what we have just defined has been studied extensively
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by mathematicians [29], and is called the Lie algebra cohomology of t+ with

coefficients in the representation Λ of G. The cohomology groups (which are in

one-to-one correspondence with the solutions to G± = 0) are denoted by

H∗(t+, VΛ).

Of course, the cohomology elements form H representations, because both VΛ

and the t+ form representations of H , and to identify the states of the G/H

theory, we have to decompose H∗(t+, VΛ) to representations of the group H

and pick one state for each irreducible representation of H (the symbol H∗

denoting cohomology groups is not to be confused with H denoting the G

subgroup). It turns out that the number of such irreducible representations of

H is independent of which representation Λ of G we choose, and is equal in

number to the ratio of the dimension of the Weyl group of G to that of H :

r =
|W (G)|
|W (H)| . (4.5)

One can show that the number of irreducible H representations in H∗(t+, VΛ)

is greater than or equal to r by employing a simple index argument, which

we will now discuss. On the spin representation of SO(2d) the character of

exp(2πi
∑

α zαψ
αψ∗α) is given by:

1
2

{[ ∏
α∈t+

(eiπzα + e−iπzα)
]

+ ε
[ ∏
α∈t+

(eiπzα − e−iπzα)
]}

, (4.6)

where ε = +1 for the (s) spinor and ε = −1 for the (c) spinor representations.

Now recall that in the embedding of H into SO(2d) the Cartan currents, Hi,

of H are given by

Hi =
∑

β∈t+

βiψβψ∗β

and hence the character of exp(2πiμ ·H) is given by (4.6) with zα = α · μ.

From the Weyl character formula, the character of G in the representation

with highest weight Λ is given by
∑

w∈WG
ε(w)e−2πiμ·[w(Λ+ρG)−ρG]∏

α∈Δ+(G)(1 − e2πiμ·α)
, (4.7)
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where ρG is half of the sum of the positive roots of G and Δ+(G) denotes the

set of positive roots of G. To compute the index of G0 = G+
0 + G−

0 on the

Hilbert space one multiplies (4.7) by the difference of the H characters of the

(s) and (c) representations of SO(2d). This difference of characters contains

only factors of (eiπμ·α − e−iπμ·α) and thus cancels all but the H part of the

denominator of (4.7), to leave one with the following expression for the index:

IΛ(μ) = (−1)d

∑
w∈WG

ε(w)e−2πiμ·[w(Λ+ρG)−ρH ]∏
α∈Δ+(H)(1 − e2πiμ·α)

(4.8)

where we have used
∏

α∈t+
eiπμ·α = e2πiμ·(ρG−ρH ). It is now trivial to write this

as a sum over irreducible H characters since the denominator has the correct

form:

IΛ(μ) = (−1)d
∑

w′∈W(G)/W(H)

ε(w′)χH(Λ′(w′))

where w′ is a coset representative of W (G)/W (H) chosen in such a way that

Λ′(w′) = w′(Λ + ρG) − ρH (4.9)

is a highest weight of an H representation. Note that (4.9) gives one an explicit

list of H representations that contribute to the index. For our present purposes

we only need to observe that there are r such irreducible characters in this

expression. Since a zero mode of G0 is necessarily a simultaneous zero mode

of G+
0 and G−

0 , it follows that the total number of such zero modes is at least

r. The fact that there are precisely r zero modes has been shown in [30]. This

means that in the computation of the H-character valued Euler characteristic,

there are no pairs of H representations that contribute with opposite signs as

to cancel one another. Moreover, each irreducible representation of H that

contributes to the index, appears exactly once.

We can actually do better, and try solving (4.2) without restricting the

solutions to those that come from the ground state of the G theory. If we

denote the Kac-Moody algebra of t+ by t̃+, then the solutions to (4.2) are in

one to one correspondence with the (semi-infinite) cohomology elements of

H∗(̃t+,Λ) .
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To find (at least some of) the non-trivial cohomology elements, we can compute

the H−character valued Euler characteristic of this Hilbert space by doing an

exactly analogous calculation in the complete Kac-Moody algebra, and not

merely in the zero mode sector, by using the Weyl-Kac character formula. The

calculation is almost identical to the one above, except that in the expression

(4.5) one has to use the affine Weyl group, which is the semi-direct product of

the finite dimensional Weyl group with the root lattice16 [31]. This implies that

the right hand side of (4.5) gets an extra factor of |Γr(G)/Γr(H)|, where Γr(G)

and Γr(H) denote the root lattices17 of G and H . This means that there are

some contributions to the ground state of the G/H theory that appear to come

from the excited states of the G theory. This extra factor is, however, trivial in

that it represents a multiple counting of the same physical states of the coset

model. However, before showing this, we first count how many ground states

we get for the G/H theory, i.e., determine what is the dimension of the chiral

ring (modulo state identifications to be discussed below).

From the index computation above it is clear that apriori we get a lower

bound on the number of elements of the chiral ring. The reason why this is

apriori the lower bound is that if two representation of affine H appear with

opposite fermion numbers they would have cancelled from the computation. We

will show in the appendix that this is not the case, and the index computation

gives the full set of ground states of the Ramond sector. This non-cancellation

mirrors the case for the finite dimensional groups mentioned before (similar

extensions do work for the Kac-Moody case [32]).

To count the total number of elements in the ground state of the coset

model, we have to consider the contributions from all allowed representation of

affine G at level k. We have seen above that for each irreducible highest weight

representation of affine G at level k, we get a contribution of

r̂ =
|W (G)|
|W (H)|

∣∣∣∣ Γr(G)
Γr(H)

∣∣∣∣
16 For the non-simply laced groups it is actually the lattice generated by the long

roots.
17 The root lattice of a U(1) factor is defined to be the lattice of its quantized

momenta.

36



states to the ground state of G/H theory. Let Nk
G denote the total number of

irreducible highest weight representations of affine G at level k. For example,

if G = SU(n), then

Nk
G =

(k + n− 1)!
k!(n− 1)!

.

Modulo taking into account the identification of states discussed below (reduc-

ing the number of inequivalent states by a factor 1/|S|), it follows that the

dimension μ of the chiral ring R is given by

μ = Nk
G · |W (G)|

|W (H)| |
Γr(G)
Γr(H)

| . (4.10)

In order to understand these identifications, we digress to review some general

aspects of coset models (see [33]).

In many (but not all) cases the Hilbert space of the G/H models are

obtained from pairs of representations Λ of G and λ of H by decomposing the

former into the latter:

HΛ =
∑

λ

HΛλ ⊗Hλ

The conformal theory of G/H is then obtained by taking the Hilbert space to

be

HG/H =
∑

HΛλ ⊗HΛλ (4.11)

where H denotes the right-moving Hilbert space. This structure for the Hilbert

space is motivated by the requirement of modular invariance: if bΛλ(τ ) denotes

the character of HΛλ, then it is easy to see [34] that

∑
|bΛλ|2 (4.12)

is modular invariant. This description of G/H theories is however incomplete

as we will now discuss.

In general, not all subsectors of the G/H Hilbert space HΛλ are inequiv-

alent. In fact, the symmetries of the extended Dynkin diagrams of G and H

will force certain identifications. At the heart of such identifications is the fact

that if we have a representation Λ of (affine) G at level k, and if we let v to
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correspond to a weight vector of G, which means that exp(2πiv ·H) is in the

center of G, shifting the Cartan momenta by kv will give a new representation

of affineG at level k which we denote by v(Λ). (This fact is well known to math-

ematicians [35], and is discussed in the physics literature in [36].). This is easy

to understand if we recall that twisting a Kac-Moody algebra by exp(2πiv ·H),

where H denotes the Cartan currents, acts trivially on the roots, and therefore

leaves the Kac-Moody algebra unbroken. Therefore, the twisted sector which is

obtained from the original representation by shifting the Cartan momenta by

kv furnishes another representation of the affine G at the same level. This is in

fact very similar to the spectral flow that we discussed for the N = 2 algebra,

where we twisted the U(1) current. If we twist with a parameter θ we twist the

currents of the Kac-Moody algebra and Virasoro algebra according to

Ja
n → Ja

n+θv·a

Hi
n → Hi

n + kθviδn,0

Ln → Ln + θv ·Hn + k(θv)2/2 δn,0 ,

where Ja denotes the currents coming from the roots, and Hi denotes the

Cartan currents. For θ = 1, we see that the moding of the currents is again

integral, and we obtain a new representation of affine G which is related to

the one we started with by a symmetry of the extended Dynkin diagram. This

in fact explains why the extended Dynkin diagram has the center of G as a

symmetry. For example, for the SU(n) Kac-Moody this symmetry is simply the

Zn rotation symmetry of the extended Dynkin diagram. This shift is familiar

from the study of level one simply laced groups where the Hilbert space of

different representations differ only by a shift of the lattice by a weight vector.

Suppose we have a G/H coset model and that G and H have a common

center. We can use the foregoing spectral flow to probe some aspects of the

G/H models [37]. First we note that the existence of a common center implies

selection rules on which pairs (Λ, λ) will appear, because Λ and λ should trans-

form the same way under the common center (similar to the selection rules for

decomposing representations of ordinary Lie groups into representation of its
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subgroups). Secondly, by considering a spectral flow on G andH simultaneously

generated by the common center, we see that decomposing a representation Λ

of G and considering the multiplicities of λ representation of H , is the same

problem as decomposing the v(Λ) representation of G and considering the mul-

tiplicities of v(λ) representation of H . This implies, in particular, that

HΛλ = Hv(Λ)v(λ) (4.13)

The identification (4.13) implies in particular that (4.11) is not a good

definition of the Hilbert space of a conformal theory, as for instance the vacuum

appears with multiplicity more than one, due to (4.13). One could circumvent

this by dividing the Hilbert space by an overall multiplicity to avoid repetitions.

This would still be consistent with the requirement of modular invariance (4.12).

However, if (4.13) has fixed points (i.e., (v(Λ), v(λ)) = (Λ, λ)), this would not

be possible, because not all HΛλ will appear with the same multiplicity. If we

take one representative Hilbert space for each orbit of the action of common

center, we will in these cases destroy modular invariance (4.12). In such cases

the subsectors that are fixed under the action of the common center are not

irreducible representations of the G/H theory [37]. Finding the irreducible

characters that make up the character of the fixed point Hilbert space is a

question which has not been resolved yet, and is of fundamental importance

for a better understanding of G/H theories. In this paper we will concentrate

on the case where there are no fixed points of the common spectral flow. We

intend to study the fixed point cases in [8].

After this long digression, we return to the consideration of the models

of Kazama and Suzuki. First we should note that the G in the preceding

discussion, should be replaced by G×SO(2d). Secondly, it is important to recall

that in the construction of [7] the subgroup H is in fact embedded diagonally

intoG×SO(2d), and therefore if we wish to generate a pureH shift from a given

weight v ofG then v must always be paired with some weight vector ṽ of SO(2d)

in such a way that the pair (v, ṽ) generates a flow that is orthogonal to the

superconformal G/H theory. Let Λ denote a weight of a level k representation
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of the Kac-Moody algebra of G, let Λ̃ be some weight of a level one Kac-

Moody representation of SO(2d), and let λ be some H weight in the affine

H decomposition of the product of the two foregoing representations, then v

generates a flow of the form

Λ → Λ + kθv

λ → λ + (k + gG − gH)θv

Λ̃β → Λ̃β + θ(β · w)

(4.14)

where Λ̃β are the components of Λ̃ in the Cartan subalgebra defined by ψ−βψβ.

In other words, w̃β = (β · w). In (4.14) we have adopted the convention that

gH = 0 for the U(1) pieces of H . One should note that w̃β is always an integer,

and thus w̃ is either a vector weight or a root of SO(2d). This means that

the flow always sends the Ramond sector to the Ramond sector and the Neveu-

Schwarz sector to the Neveu-Schwarz sector. It will change the conjugacy classes

when
∑

β∈t+
β · w is odd.

Let S denote the finite symmetry group of spectral flows which acts on the

⊕HΛλ. It is not too difficult to see that

S =
Γw(G)
Γr(H)

where Γw(G) denotes the dual to the root lattice of G, which is the weight

lattice of G for simply laced groups. This expression for S can be understood

as follows: each element in Γw(G) can be used to define a spectral flow which

identifies states, and the spectral flow is trivial precisely if the element chosen

happens to be on Γr(H) (which is therefore also in Γr(G)). Let us assume

that S has no fixed points when it acts on the labels of G/H theory. Then the

number of inequivalent chiral primary states is given by (4.10) divided by |S|,
which is therefore equal to

μ =
1

|Z(G)| [N
k
G]

|W (G)|
|W (H)| (4.15)

where Z(G) denotes the center of G.
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There is another way to understand the counting (4.15). This is based on

the semi-classical analysis: if we just restrict to states in the ground state of

G which gives rise to ground states of G/H , each of the Nk
g representations of

affine G contributes |W(G)|
|W(H)| , but the center of G causes identifications on this

space by a group Z(G), which reproduces the counting (4.15). Moreover, we can

use this, together with the knowledge of which H representations appear (given

explicitly by (4.9)) to compute the Poincaré polynomial for all the models in

[7](see [8]).

As an example consider the supersymmetric Grassmannian models

SU(m+ n)
SU(m) × SU(n) × U(1)

where SU(m + n) has level k. Then one can show that the U(1) lattice has

spacing18

Δq = (k +m+ n)(m+ n)mn (4.16)

where q is the U(1) charge defined with the normalization of [7]. For this theory

there are two basic weights that generate the common center: (i) a weight v1 of

the fundamental of SU(m+n) which, when projected onto H is a weight of the

fundamental of SU(m) and a singlet of SU(n); and (ii) a fundamental weight

v2 of SU(m+n) which yields a singlet of SU(m) and the complex conjugate of

a fundamental weight of SU(n). The weights v1 and v2 generate transforma-

tions that both cyclically permute, by one step counterclockwise, the extended

Dynkin labels attached to the extended Dynkin diagram of SU(m + n). The

transformation v1 fixes the SU(n) extended Dynkin labels, while cyclically per-

muting, again by one step counterclockwise, the extended SU(m) labels. The

transformation v2 fixes SU(m) and cycles SU(n). From the second equation of

(4.14) one can also see that v1 and v2 change the U(1) charge by

Δ1q = (k +m+ n)n

Δ2q = − (k +m+ n)m

18 If m and n have a common divisor (m,n) one can reduce Δq by (m,n). This is

optional, because we will ultimately mod out by all the symmetries in S so as to only

count inequivalent states. This modding out will automatically include any necessary

reduction in Δq.
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In addition, v1 (respectively, v2) flips the conjugacy classes of SO(2d) when n

(respectively, m) is odd. It is elementary to see that v1 has order (m + n)m

and v2 has order (m+ n)n19, and that they generate an abelian group of order

(m + n)mn. It is straightforward to see that if k,m and n have no overall

common factor then none of the transformations v in this group have a fixed

point when acting on the Hilbert spaces as in (4.13). As a result, in these

circumstances one could then define theG/H theory to be the one whose Hilbert

space consists of exactly one HΛλ from each orbit of the spectral flow group

action. This theory has only one vacuum, and its partition function is certainly

modular invariant as it is simply (4.12) divided by (m+ n)mn.

As explained above, the common center yields selection rules for the labels

of the characters of the superconformal G/H models. In the foregoing example,

the characters will be labelled by an SU(m+n) weight Λ, an SU(m) weight λ1,

an SU(n) weight λ2 and the U(1) charge q. Let nj, j = 1, . . . , (m+ n− 1) be

the Dynkin labels of Λ, and let pj , j = 1, . . . , (m− 1) and rj, j = 1, . . . , (n− 1)

be the Dynkin labels of λ1 and λ2 respectively. Since the representation of

SU(m + n) is level k, the labels nj must satisfy
∑
nj ≤ k, while pj and rj

satisfy
∑
pj ≤ k + n and

∑
rj ≤ k + m. In addition to the fact that q is

identified modulo the lattice spacing (4.16), the selection rules also show that

we must have

q ≡ −m

m+n−1∑
j=1

(jnj) + (m+ n)
m−1∑
j=1

(jpj) + ε
1
2
mn(m + n) modm(m + n)

q ≡ n

m+n−1∑
j=1

(jnj) − (m+ n)
n−1∑
j=1

(jrj) + ε
1
2
mn(m+ n) modn(m+ n)

where ε = 1 in the Ramond sector of the fermions, and ε = 0 in the Neveu-

Schwarz sector.

The dimension of the chiral ring R for the Grassmanian example is easily

computed from (4.15) to be

r =
(n+m+ k − 1)!

n!m!k!
(4.17)

19 Again note that if m,n have common factors, by reducing the periodicity of

U(1) charge by (m, n), the order of these elements will be reduced by (m, n).
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(note that this is an integer because m, n, k have no common divisors). Similar

formulas could be worked out using (4.15) for the other models of Kazama and

Suzuki.

Now we wish to connect some of the Kazama-Suzuki models with Landau-

Ginzburg models. Consider the simplest cases of Kazama-Suzuki models, that

is, the HSS cases. In particular, let us restrict our attention to the subset

characterized by simply laced groups G. We begin by considering the simplest

HSS models: those with level one. It is easily seen that the spectral flow has

no fixed points for level k = 1 HSS simply laced models. The dimension of the

chiral primary ring is easily obtained from (4.15), and is simply

μ =
|W (G)|
|W (H)| .

To identify the chiral primary states it is easy to see, using spectral flow, that we

can always choose the affine representation of G to be the basic one (correspond-

ing to the trivial representation of G in the ground state). In the truncated

theory, i.e., the ‘semi-classical’ analysis, in the Ramond sector the Hilbert space

will be simply
∧

t+ as discussed before. The operator G+ vanishes identically

on this Hilbert space (as Jα = 0 and fγ
αβ = 0). Therefore all we have to do

to find the elements in the G/H ground state is to find the irreducible H rep-

resentations of
∧

t+ for which we know there are |W (G)/W (H)| in number.

One way to describe the H irreducible reps, is to enlarge the Hilbert space by

including the right-mover Hilbert space involvingψ
−α

. These fermions could be

thought of as the anti-holomorphic tangent vectors to G/H . Then the elements

of the G/H theory ground state would be in one to one correspondence with

the H singlets of

HG/H = (
∧

t+

∧
t−)∣∣∣

H singlet

, (4.18)

because this counts exactly the number of H irreps of
∧

t+. However, for G/H

being a symmetric space, the right hand side of (4.18) is identical to the coho-

mology of G/H itself (this result is due to Cartan, and a proof of it is a simple

extension of an argument for the cohomology of groups; see for example [38]).
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Moreover, the elements in (4.18) obviously inherit a ring structure from wedg-

ing the forms, and that is in fact identical to the ring structure of H∗(G/H).

In other words the equality between H∗ and (4.18) respects the ring structures

as well. The cohomology of Kähler manifolds G/H is concentrated in the diag-

onal of the Hodge diamond (i.e., bp,q = 0 unless p = q). Using the form of the

current (4.4) we therefore see that for each element in the cohomology of G/H

of dimension (p, p) we get a chiral primary field of charge 1
g+1 (p, p). However,

as in section 2, it is not necessarily true that this ring, though isomorphic to the

cohomology ring of G/H , is isomorphic to the ring R of the full, untruncated

two dimensional theory. From the foregoing discussion it is clear that R will be

at least a deformation of the cohomology ring. We will return to the relation

between R and the cohomology ring below.

It is not too difficult to identify these theories (HSS simply laced level one)

with Landau-Ginzburg theories. We give the set of generators of primary fields

and their weights in table 1. It is straightforward to check that the relation

(3.7) is indeed satisfied. To prove that a given coset model is indeed a Lan-

dau-Ginzburg model, one would have to obtain the superpotential W which

determines the ring structure by (3.3). This might be possible by arguments

along the lines indicated in the previous section, that is, by identifying W with

G+G
+
. At any rate, W can in principle be found by studying the operator

products of chiral primary fields in the G/H model.

We now return to the question of whether these rings are isomorphic to

the G/H cohomology rings. If this is so, then the cohomology ring of G/H

must itself have the structure (3.3). As can be checked case by case, this is

indeed true for the HSS simply laced manifolds ! (We have however not yet

checked the case where G = E6 or E7; see [8].) Even though the structure of

the cohomology rings for G/H manifolds is well-known to mathematicians [39],

it had not been shown that for simply laced HSS the ring H∗(G/H) can be

expressed in the form (3.3). The cohomology rings of general Kählerian G/H

manifolds cannot always be expressed in this form. For example the cohomology

ring of SU(3)/U(1) × U(1) is not of the form (3.3).
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The fact that for the HSS simply laced spaces the cohomology ring is of the

form C[xi]/dW (xi) does not prove that the superpotential W of a given Landau-

Ginzburg model is identical to the function W that generates the cohomology

ring of G/H . However, in all cases that we have been able to check this is true,

and we conjecture that it is generally true. For example, it is true for all the

HSS manifolds whose g + 1 cohomology vanishes (that is, bg+1 = 0). These

cases correspond to the conformal theories that have no massless moduli, and

thus R can readily be made identical to the cohomology ring of G/H by a field

redefinition. For example, the SU(n+1)/SU(n) = CP n superconformal model

has the chiral ring defined by

R = {1, x, x2, ... subject to xn+1 = 0} .

This is exactly the definition of the cohomology ring of CP n where x corre-

sponds to the generator with degree (1, 1). The ring is that of the type An+1

singularity with W = xn+2, and corresponds to a minimal N = 2 model. A

further example where the isomorphism of R with the cohomology ring of G/H

is obvious is SU(4)/SU(2)×SU(2)×U(1). In this case W can be chosen to be

W = x5
1 − 5x3

1x2 + 5x1x
2
2

where the charges of x1, x2 are 1/5 and 2/5, respectively. Another case is

SO(n + 2)/SO(n) × SO(2) (with n even), for which the superpotential is

W = xn+1
1 + x1x

2
2 .

This corresponds to minimal N = 2 models of type Dn+2.

One of the simplest cases where it is non-trivial to find the exact form of

W is the model SU(5)/SU(3) × SU(2) × U(1). In this case the function that

generates the cohomology ring is given by

W = x6
1 − 6x4

1x2 + 9x2
1x

2
2 − 2x3

2 ,
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the degrees of x1, x2 being (1/6) and (1/3), respectively. The superpotential

for the corresponding Landau-Ginzburg theory could, in principle, differ from

this by the addition of a massless modulus:

W →W + ax3
2 (4.19)

(That there is only one massless modulus can be seen by considering the

Poincaré polynomial: b6 = 1; put differently, though there are four monomials

of degree one, three possible changes of variables corresponding to rescaling x1

and x2 and to x2 → x2 + bx2
1 leave only one monomial as modulus.) One way

to find whether a is zero or not is to use the OPE in the coset model. This

is not a trivial computation. However, we use a different strategy in this case.

The reason is that the model represented by (4.19) is exactly solvable for all

values of a, and corresponds to a Z6 orbifold of a two dimensional torus [2][3].

For a = 0 one can easily finds that the left-momenta of the torus is given by

PL =
1√
3
(n1 + n2ω)

where ω is a third root of unity and n1 and n2 are integers. (the right mo-

menta can be computed from the requirement of evenness and self-duality of

the Lorentzian lattice [26]). When we twist this torus by a Z6 we obtain a

theory with 50 conformal blocks [40] (before GSO projection). The left dimen-

sion of all the fields can be computed, and all are a multiple of 1/12. Now we

can compare these with the coset SU(5)/SU(3) × SU(2)×U(1) model at level

one. It is easy to check that the number of blocks is again 50, and the dimen-

sions are those of the toroidal orbifold. This proves that in this non-trivial case

a = 0, and the W which generates the cohomology ring of the coset manifold

is isomorphic to the superpotential for the conformal theory.

As an aside, we note that (see [8] for details) that the cohomology of

SU(m+n)/SU(m)×SU (n)×U(1) can be generated by m elements x1, ..., xm,
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and W = zn+m+1
1 + ...+ zn+m+1

n , where W is to be expressed in terms of xi

using the relation that xi are elementary symmetric polynomials of zl, i.e.,20

xi =
∑

1≤l1<l2<...<li≤n

zl1zl2 ...zli

The superpotential W for the superconformal model on SU(m+ n)/SU(m) ×
SU(n) × U(1), if not exactly equal to the above function, will in general be a

deformation of it by the addition of massless moduli.

So far we have been concentrating on the simply laced HSS models at level

one. Before leaving the level one case, it will be useful for us to make the

following observation: for the HSS models, the Dynkin diagram of the group

H can be obtained by deleting one of the nodes (with Dynkin number one) of

the group G and replacing it by the U(1). Now, consider the representation

Ξ of G which corresponds to putting a one on this node, and zero elsewhere.

This representation has the same dimension as the cohomology ring of G/H .

Moreover, if we choose ρG to be half of the sum of positive roots of G, the

grading of Ξ with respect to the U(1) charge ρG ·H is isomorphic to the grad-

ing of the cohomology of G/H (after an overall shift). This fact is known to

mathematicians [41].

To see how this works recall that the Poincaré polynomial of the cohomol-

ogy ring is defined by

P (t) =
∑

k

bkt
k

where bk = bk,k are the Betti numbers. For any coset manifold G/H with

rankG = rankH = l (we need not assume that G/H is a HSS), P (t) is given

by [42]

P (t) =
l∏

j=1

(1 − tdj(G))
(1 − tdj(H))

(4.20)

where dj(G) and dj(H) are the degrees of the Casimirs of G and H respectively,

with the convention that that for a U(1) factor the corresponding dj is equal

to 1.

20 This form for W was developed during conversations with J. Bernstein and sim-

plifies an earlier description of W that we had obtained.
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On the other hand consider the character of the group element h =

t−ρG·H = e−2πiνρG·H evaluated in some representation of G with highest weight

Λ. Using the Weyl character formula one obtains:

χΛ(h) ≡ Tr
Λ

[
h
]

=
∑

w∈W ε(w)e−2πiνρG·[w(Λ+ρG)−ρG]∏
α∈Δ+(G)(1 − e2πiνα·ρG)

=
∑

w∈W ε(w)e−2πiν[w(ρG)−ρG]·[Λ+ρG ]∏
α∈Δ+(G)(1 − e2πiνα·ρG)

= t−Λ·ρG

∏
α∈Δ+(G)

(1 − tα·(Λ+ρG))
(1 − tα·ρG)

For the representation discussed above, and for a HSS we have α · Ξ = 0 when

α ∈ h and α · Ξ = ±1 when α ∈ t±. Hence

χΞ(h) = t−Ξ·ρG

∏
α∈t+

(1 − tα·ρG+1)
(1 − tα·ρG)

Consider the function

PG(t) =
∏

α∈Δ+(G)

(1 − tα·ρG+1)
(1 − tα·ρG)

and observe that χΞ(h) = t−Ξ·ρGPG(t)/PH(t). For a group G, let bj be the

number of positive roots such that α · ρG = j. Recall that b1 = l, the rank of

G, and bg∗−1 = 1 and bj = 0 for j ≥ g∗ (where g∗ is the Coxeter number of G).

It was shown in [43] that bj − bj+1 = nj where nj is the number of Casimirs of

degree j + 1. Using this one sees that

PG(t) =
g∗−1∏
j=1

[
(1 − tj+1)
(1 − tj)

]bj

=
1

(1 − t)l

l∏
j=1

(1 − tdj(G))

From this and (4.20) it now follows that

P (t) = tΞ·ρG χΞ(h).
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Thus, in the simply laced HSS cases we can think of the chiral primary states

(shifted to the Ramond sector) as to transform according to a G representation

Ξ, with their N = 2 charges proportional to the U(1) charges ρG · H of that

representation. Indeed one might expect that these fields transform as a repre-

sentation of G as is the case for solutions of the Dirac equation on homogenous

spaces.

There is an alternative way to describe the representation Ξ which suggests

further generalizations: each representation ofH gives rise to a vector bundle on

G/H of the same dimension [44]. Consider the one dimensional representation

of H corresponding to the deleted dot (which is a representation of the U(1)

piece of H). This gives rise to a line bundle L on G/H whose holomorphic

sections, by the Borel-Weil-Bott theorem, form precisely the G representation

Ξ we discussed above. This line bundle has a first Chern class which is in fact

the Kähler class of G/H (for the HSS, b1,1 = 1). This in fact has the smell

of geometric quantization, and suggests that there may be a way to quantize

the primary chiral fields in this theory, in such a way that the phase space is

G/H itself, and the Chern class under discussion is the symplectic form for

the corresponding quantization. This is similar to what was observed in [45]

in quantizing the chiral (in the 2d holomorphic sense) modes of WZW on a

Riemann surface in terms of the phase space which was the moduli of flat

connections on the Riemann surface. Here we are not dealing with chirality

only in the 2-d holomorphic sense, but also in the supersymmetric sense (i.e.,

in the sense of complex structure of G/H). Nevertheless the structure is so

similar that one is tempted to conjecture that there is a geometric quantization

for primary chiral fields of G/H theory.

From these observations, we can easily make a guess for what the primary

chiral fields should be for arbitrary level k for HSS: simply put a k on the deleted

node and zero elsewhere. This defines a G representation Ξ(k), whose highest

weight is given by k times the highest weight of Ξ. Our guess is therefore

that the ground states in the Ramond sector of the G/H model at level k

are given by Ξ(k), with U(1) charges proportional to ρG. That is, we expect
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that the Poincaré polynomial is proportional to χΞ(k) , and in particular that

dimR = dimΞ(k).

The motivation to put a k in front of the node comes from the observation

that the representation Ξ(k) corresponds to the holomorphic sections of L⊗k.

This has a Chern class k times the k = 1 case. This is precisely the structure of

quantization observed in [45] where for finding the chiral fields for level k, one

takes the k-fold tensor product of the line bundle which quantizes the k = 1

case and finds its holomorphic sections.

Now we come to the tough question: is our guess correct? Before comparing

these guessed Poincaré polynomials with those that describe the spectra of the

coset models, one can check that they do have the structure (3.4). More striking

is the fact that for appropriate choices of generators, which follows from the

Poincaré polynomial, the relation (3.7) indeed reproduces the correct central

charges. This is a very non-trivial check and at first sight suggests that the

HSS theories, for all levels, are Landau-Ginzburg models. The number of Lan-

dau-Ginzburg fields (generators) suggested by this picture is equal to d, the

complex dimension of G/H . We have tabulated the Poincaré polynomials in

question in table 2. We included there also the non-simply laced cases, as the

central charges come out correct also for these cases.

Now we check whether these actually come from the superconformal models

of [7]. There is one series with higher k which is easily seen to agree with our

guess: It corresponds to SU(n + 1)/SU(n) × U(1) at level k (this model has

been independently considered in [24])21. Using (4.17) we see that dimR is

given by

μ =
(n + k)!
n!k!

which is indeed the same as the dimension of the k-fold symmetric tensor prod-

uct of the fundamental representation of SU(n + 1). Moreover, one can check

that the U(1) charges of the N = 2 algebra are proportional to the action of

ρG ·H on this representation.

21 These models are related by a duality noted in [7] to SU(n+k)/SU(n)×SU(k)×
U(1) at level one, which we discussed before.
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How about the other coset models ? We first have to check whether the

number of chiral primary states in a given theory is equal to dimΞ(k). It turns

out that the guessed dimension is in general bigger than (4.15) which was found

to be the dimension of chiral primary states in a coset model. For example, if we

consider SU(5)/SU(3) × SU(2) × U(1) at level 2, the index computation gives

30 states, and the dimension that we guessed suggests 50 states (corresponding

to (0200) representation of SU(5)). Moreover, by explicit computation one can

confirm that there are only 30 chiral primary states and the Poincaré polynomial

in this case is given by

P (t) = 1 + 2t2 + 2t3 + 4t4 + 3t5 + 6t6 + 3t7 + 4t8 + 2t9 + 2t10 + t12

and it is easy to see that this does not correspond to a Landau-Ginzburg theory

(i.e., it cannot be of the form (3.4)). This gives an example of a left-right

symmetric N = 2 model which has primary chiral ring elements with qL = qR,

and yet it is not a Landau-Ginzburg theory.

It is surprising that most Kazama-Suzuki models as they stand do not

correspond to Landau-Ginzburg models. However, in view of the fact that our

guessed Poincaré polynomials seem to describe consistent Landau-Ginzburg

models with central charges equal to those of the coset models, we are tempted

to conjecture that there should exist modifications of the coset models (such

as their orbifolds) which lead to agreement with our conjecture and which do

correspond to Landau-Ginzburg models. We will discuss these issues further in

[8].

At any rate, it would be nice if one can give a geometrical interpretation

to the ring structures that appear in coset models at arbitrary k, similar to the

case k = 1 for simply laced HSS. It could be that for each k, there is a manifold

Mk, whose cohomology ring has the same gradation as that of the conformal

model, and that its ring structure is equal to, or a deformation of, that of the

conformal model. The manifold Mk is presumably some manifold embedded in

the loop space of G/H , and it should be an interesting question to unravel its

geometry in relation to the coset conformal models.
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Also one might try to find a geometric quantization that counts the number
of chiral primary fields in the Kazama-Suzuki models for all k. If such a picture

exists, the computation of the dimension (4.15) of chiral rings suggests that the

dimension of the corresponding symplectic manifold should be the rank of G.

Admittedly we have condensed a lot of information in this section. This

is mainly because of the combination of the rich structure of Kählerian coset

spaces and N = 2 superconformal algebra. More discussion on some of the
points discussed here, together with a discussion on some other aspects of KS

models will appear elsewhere [8].

5. Conclusions

We have studied some general properties of N = 2 superconformal models
which follow entirely from the N = 2 superconformal algebra. In particular,

we have discussed the existence of certain finite (nilpotent) rings which resem-

ble cohomology rings of manifolds (and which, in some cases, are isomorphic

to them). The U(1) spectral flow of N = 2 models was used as a powerful

technique to deduce certain properties of these rings.

Moreover, we discussed N = 2 Landau-Ginzburg models in view of these
general results and gave another proof of the relation between central charge

and the charges of the superfields found in [1]. We also investigated under

what conditions an N = 2 model has a ring structure isomorphic to that of a

Landau-Ginzburg model. We did this by identifying the superpotential with

G+G
+
, the chiral 2d gravitino field.

We also studied some aspects of coset models with N = 2 supersymmetry.
We find that they have a rich and beautiful structure and some of them are

Landau-Ginzburg models. This connection has given rise to a whole class of

mathematical questions, which we believe are quite interesting in their own

right.

Acknowledgements: We would like to thank J. Bagger, J. Bernstein, R.

52



Bott, J. Distler, M. Douglas, S. Giddings, B. Greene, M. Grisaru, J. Harris, V.

Kac, B. Kostant, S. Kumar, W. Schmid, E. Shpiz, I. Singer, H. Sonoda, and

E. Witten for valuable discussions. The research of W.L. is supported by the

U.S. Department of Energy under contract No. DE-AC0381-ER 40050, that of

C.V. by NSF contract PHY-87-14654, and that of N.W. is supported in part by

the NSF under grant No. 87-08447, and also by a fellowship from the Alfred

P. Sloan foundation. W.L. is indebted to the Mathematics Department of MIT

for hospitality.

Appendix A. 1

53

References

[1] C. Vafa and N.P. Warner, Phys. Lett. B 218 (1989) 51.
[2] B. Greene, C. Vafa and N.P. Warner, Calabi-Yau manifolds and Renormal-

ization Group Flows, Harvard preprint HUTP-88/A047.
[3] E. Martinec, Algebraic Geometry and Effective Lagrangians, Chicago

preprint EFI 88-76.
[4] W. Boucher, D. Friedan and A. Kent, Phys. Lett. 172B (1986) 316.
[5] A. Schwimmer and N. Seiberg, Phys. Lett. 184B (1987) 191.
[6] D. Friedan, A. Kent, S. Shenker and E. Witten, unpublished; A. Sen Nucl.

Phys. B 278 (1986) 289; Nucl. Phys. B 284 (1987) 423; T. Banks, L.J.
Dixon, D. Friedan and E. Martinec, Nucl. Phys. B 299 (1988) 613.

[7] Y. Kazama and H. Suzuki, New N=2 Superconformal Field Theories and
Superstring Compactification, Tokyo preprint UT-Komaba 88-8,88-12.

[8] W. Lerche, C. Vafa and N.P. Warner, in preparation.
[9] E. Verlinde, Nucl. Phys. B300 (1988) 360.

[10] E. Witten, Nucl. Phys. B202 (1982) 253.
[11] T. Eguchi, H. Ooguri, A. Taormina and S.-K. Yang, Superconformal Alge-

bras and String Compactification on Manifolds with SU(n) Holonomy, U.
Tokyo preprint, UT-536.

[12] W. Lerche and N.P. Warner, Phys. Lett. 205B (1988) 471.
[13] T. Eguchi and A. Taormina, Phys. Lett. 210B (1988) 125.
[14] G. Waterson, Phys. Lett. 171B (1986) 77.
[15] A. Strominger and E.Witten, Commun. Math. Phys. 101 (1985) 341 ;

A. Strominger, Phys. Rev. Lett. 55 (1985) 2547 .
[16] R. Rohm and E. Witten, Ann. Phys. 170 (1986) 454.
[17] P. Candelas, Nucl. Phys. B 298 (1988) 458 .
[18] D. Gepner, Scalar Field Theory and Superstring Compactification, Prince-

ton preprint PUPT-1115.
[19] S. Hamidi and C. Vafa, Nucl. Phys. B279 (1987) 465; L. Dixon, D. Friedan,

E. Martinec and S. Shenker, Nucl. Phys. B282 (1987) 13.
[20] X. Wen and E. Witten, Phys. Lett. 166B (1986) 397;

M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nucl. Phys. B278 (1986)
769; Nucl. Phys. B289 (1987) 319 .

[21] L. Dixon,Some World-Sheet Properties of Superstring Compactifications,
on Orbifolds and otherwise, Princeton preprint PUPT-1074.

[22] J. Distler and B. Greene, Nucl Phys B309 (1988) 295.

54



[23] D. Kastor, E. Martinec and S. Shenker, EFI preprint 88-31.
[24] D. Gepner, Princeton preprint, PUPT-1066.
[25] V.I. Arnold, Singularity Theory, London Mathematical Lecture Notes Se-

ries: 53, Cambridge University Press (1981); V.I. Arnold, S.M. Gusein-Zade
and A.N. Varchenko, Singularities of Differentiable Maps, volumes 1 and
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Figure Captions

Fig. 1. In this figure it is shown that starting from the NS sector (a), the
chiral primary states flow to the ground states of R sector (b) with
flow parameter θ = 1/2. Flow by an additional θ = 1/2 will take the
ground state of the Ramond sector to the anti-chiral primary states of
the NS sector (c). The effect of the flow on charges of states is simply
to shift them.
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