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Motivation:  Weak Gravity Conjectures

Overview

Examples in 6d
Non-perturbative elliptic genera from geometry (F-theory)

Tensionless emergent strings

Holomorphic anomalies

Four dimensions:   4-folds with fluxes G

Modularity of flux-induced elliptic genera

Novel kind of elliptic holomorphic anomalies

Relative Gromow-Witten invariants NG

Quasi-Jacobi forms

http://arxiv.org/abs/arXiv:1803.10333
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  Mirror symmetry of CY 4-folds with U(1) gauge symmetry, fluxes G4:

determines relative Gromov-Witten invariants, N[C0,G4](n,r)

non-perturbative elliptic genera for 4d N=1 
strings  (eg. het. with NS5-branes)

4d elliptic genera have surprisingly rich features as compared to 6d:

involve quasi-modular and quasi-Jacobi forms

novel elliptic holomorphic anomaly equations,

Physics applications:  anomaly cancellation,  WGC conjectures for chiral 
N=1 supersymmetric theories in 4d, elliptic holomorphic anomalies

Main results
LLLW ‘20

expose hidden higher dimensional sector

http://arxiv.org/abs/arXiv:1803.10333
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Motivation:  Weak Gravity Conjectures & Co

  

GW invariants,
modular properties of
elliptic genera,
quasi-Jacobi forms

Study mathematical underpinnig of (interrelated) WGC-type conjectures:

degeneration 
geometry of CY 
manifolds

No global symmetries in QG

Infinite distances in moduli space: asymptotically massless towers
(either KK-modes: decompactification, or tensionless strings)

Superextremal states exist into which extremal black holes can decay

As so often, physical consistency requirements turn out to be
guaranteed by mathematical properties

focus

AH-MNV ’07, ….
Review: P ‘20

http://arxiv.org/abs/arXiv:1803.10333


Large distance limit in moduli space
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What happens if we dial appropriate parameters to go to weak gauge 
coupling while not decoupling gravity?

Relevant piece of local geometry:  submanifold B2

want to keep gravity:

weak coupling:    

implies a certain unique dual curve shrinks: 



Asymptotically tensionless heterotic strings
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Upshot:   vanishing gauge coupling implies that a solitonic string becomes
tensionless… so the effective field theory approximation breaks down!

While this picture seems naive, there are powerful mathematical theorems 
behind the possible large distance degenerations of Calabi-Yau spaces
that guarantee this outcome.

Tensionless higher dimensional branes, or multiple strings, or
potential so far unknown weakly coupled theories of quantum gravities 
do not appear as dominant d.o.f!               (Emergent string conjecture)

Infinite tower of charged 
particles with asymptotically 
vanishing mass gap,
as posited by the WGC

Can we possibly run into surprises of some sort?

GPV ’18, CGV ’18,
LLW ’19, GRH ’19,
G,M…

AH-MNV ’07 + many

LLW ’19



Setup:  solitonic strings in F-theory
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Recap:
Type IIB strings on a non-perturbative 7-brane geometry

… define formally a d=12-2k dim “F-theory’’ compactification on 
elliptically fibered Calabi-Yau k-folds, Xk

Example in 6d:      F-theory on 3-fold X3

Shrink at finite distance: strongly coupled non-critical strings

Cannot shrink at finite distance in moduli space

D3-brane wrapped around 
2-cycle C0 yields a solitonic string

Solitonic heterotic strings

What happens if C0 shrinks to zero volume?

V ’96, MV ’96,…

}



Elliptic genus of heterotic strings
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Elliptic genus = loop space index = RR partition function

Encodes protected, largely deformation invariant subsector of spectrum, and 
underlies Green-Schwarz anomaly cancellation

Consider 2-dim (0,2)-sigma model, refined by a single left-moving U(1) charge Q(*)          

Zell is naively a meromorphic function of                                          where
𝜏 is the complex structure of toroidal world-sheet, and z the U(1) field strength

    (*)Zero modes cancelled; note Q here NOT R-symmetry!

Generic expansion:  n= excitation level, 
r= U(1) charge , 
N(n,r)= degeneracies

SW ’86, W ’87

It has distinguished modular transformation properties: for heterotic strings in
d dimensions, it has modular weight 



Elliptic genus of the emergent 6d heterotic string
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Use duality with M-theory and mirror symmetry on elliptic X3 to 
compute relative degeneracies NC0(n,r) via:

F-theory on M-theory on 
BPS string on S1: BPS particle in 5d:

Wrapping number w=1, 
KK momentum n,
U(1) charge r

M2 brane wrapped on

modular parameter 𝜏,
background gauge field z 

𝜏 = Kähler parameter of E𝜏,
z = Kähler parameter of Cf

For primitive C0 (w=1), the 3-fold 
relative, genus zero BPS invariants 
NC0(n,r) coincide with the GW 
invariants, and thus:

KlMV ’96,
HIKoLV ’13,
HKlLV ’14,
……..index degeneracies N(n,r) relative BPS invariants NC0(n,r)

4d N=2 prepot

}

6d het string ell genus



Elliptic genus as Jacobi form
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(almost )

Ell. genera as partition functions are expected to behave well under modular transf.

When refined by an extra U(1), they should be “Jacobi forms” KYY ’93,  EZ’95,
 DMZ ’12, …

    (*)b=“height pairing”: geom. definition of U(1) 

Het. strings:  modular weight                          and index(*)                      

Defining properties: modularity and double periodicity

Ring of relevant Jacobi forms with given w and m is finitely generated: 

Need to determine just a finite number of GW invariants N(n,r) to find exact ell genus!

   (standard defs; see lit.)

SW, W…



Example:   elliptic genus of K3
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Consider F-theory on CY3 on  
certain elliptic fibration over Hirzebruch surface F1 with extra U(1).

Shrinking C0 leads to emergent heterotic string on K3 surface (index m=2):

For z→0 / 𝜉→1  this reproduces the well-known expression:

20 x Euler number 𝜒 = 24
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Ell genus is a Jacobi form…as such it has automatically a theta-expansion:

Theta-fct =  partition function of a free 2d boson, with built-in relation between
charge and excitation numbers:

Distinguish:

States fall in “spectral flow” orbits characterized by discriminant:

Holomorphic Jacobi forms:

Weak Jacobi forms:

Jacobi cusp forms:

Spectral flow property of Jacobi forms

EZ ’95, DMZ’14

�� �� �� �� �

�

�

��

��

�



Superextremality from Jacobi Forms
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As basic WG conjecture states that there must exist (generally a lattice of) 
superextremal states in order for black holes be able to decay and so
avoid massive remnants (related to “gravity must be the weakest force”)

AH-MNV ’07, ….

The Jacobi property implies the following structure of the U(1) 
charge/mass string spectrum encoded in the elliptic genus:(*)

� �� �� �� �� �� �� �-� ∝ ��

�

�

��

��

���� Maximal superextremal states,
no smooth horizon BH

Extremal states, 
asymptote to black holes

The underlying mathematics of 
elliptic fibrations is consistent with 
expectations from quantum gravity!

Note: holomorphic Jacobi forms here, 
no polar states with             ; unlike spinning strings

    (*)Refers to our example with m=2 
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Quasi-modularity from non-perturbative transitions
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as z→0 this now turns into

Other example: consider F-theory on CY3 which is a
certain elliptic fibration over the del Pezzo surface dP2 with extra U(1).

Again leads to an emergent dual heterotic string on K3 surface, 
however without a fully perturbative world-sheet description (NS5 brane defect):

small instanton/NS5 brane
transition

Modified index reflects extra massless tensor multiplet and hypermultiplets



Holomorphic vs modular anomalies
We see that in general the quasi-modular form E2 appears, which displays
a modular anomaly:

As is well known, the lack of modularity can be repaired by considering the 
modular, but only``almost’’-holomorphic variant:

Physical interpretation:  zero modes due to a non-compact branch in the 
geometry provide the non-holomorphic modular completion and render the
physical partition function invariant.

The holomorphic anomaly detects the source of this phenomenon: 

Reflects that het. string = bound state of two “E-strings”,  each with 

MNVW ‘98,
HLV ’14, ….

M2 branes. One may also wonder whether it is possible to
recover the partition function of heterotic strings from that
of E-strings. The fact that E-strings recombine to give
heterotic strings strongly suggests that this should be
possible, and in this paper we indeed show that this can
be done at least up to n ¼ 2 E-strings. The basic idea is to
view the theory of n M2 branes on R × T2, in the limit
where the area of the T2 (on which the elliptic genus does
not depend) is small, as a

quantum mechanical system on R. Under this reduction the
states in the Hilbert space of n M2 branes are labelled by
Young diagrams of size n [1,24], and M5 branes as well as
M9 planes intersecting the M2 branes on T2 can be
interpreted as operators or states in this quantum mechani-
cal system. We call them domain wall operators/states due
to their interpretation in the world volume theory of M2
branes. In a previous paper [1] we computed the contri-
bution of M5 brane domain walls to this quantum
mechanical system. Here, using low genus results from
topological strings for up to two E-strings, and using the
known M5 brane domain wall, we determine the exact M9
domain wall wave function for up to two M2 branes. We
then deduce a closed formula for the elliptic genus of two
E-strings, which from the viewpoint of topological string
theory provides an all-genus A-model amplitude for up to
two E-strings. We also test our M9 domain wall expressions
by checking whether the left and right walls combine
correctly into the elliptic genus of up to two heterotic
strings, and remarkably we find that they do (up to taking
into account a symmetrization which the heterotic string
enjoys and which is broken in the E-string background by
the M5 brane).
The organization of this paper is as follows. In Sec. II we

present the M2-M5-M9 configurations corresponding
to the heterotic, E- and M-strings. In Sec. III we review
the computation of the M-string elliptic genus in terms of
M5 domain wall operators and the resulting partition
function for two M5 branes. In Sec. IV we obtain the
elliptic genus of heterotic strings by using the Hecke
transform. We then proceed in Sec. V to outline the series
of string dualities which relate the E-string theory to the

topological string on the half-K3 Calabi–Yau 3-fold.
Finally, in Sec. VI we determine the M9 domain wall
operator for up to two strings and use it to compute the
elliptic genus of E- and heterotic strings.

II. M2 BRANES ON T2 ×R AND
BOUNDARY CONDITIONS

In this section we review possible boundary conditions
for M2 branes together with the preserved supersymme-
tries. To do this we consider M-theory on T2 ×R9 and take
the M2 branes to wrap the T2 and extend along one of the
directions of R9, so that their world volume is given by
T2 ×R. We choose coordinates XI; I ¼ 0; 1; 2;…; 10, and
parametrize the torus by X0; X1 and take the direction along
which the M2 branes are extended to be X6. We obtain
different boundary conditions by letting the M2 branes end
on M5 branes or M9 planes. This can be done in various
combinations which we describe here.

A. M9-M9

Here the relevant setup is the one of Hořava and Witten
[23]. We compactify M-theory on T2 ×R8 × S1=Z2 where
the Z2 acts as an orbifold action,

X6 ↦ −X6; ð2:1Þ

together with a suitable action on the fields. At the two
fixed points of the orbifold action, X6 ¼ 0 and X6 ¼ π, one
has two fixed planes which we denote as M9 planes and are
here of the topology T2 ×R8; the situation is illustrated
in Fig. 1.
In the limit where the size of S1=Z2 goes to zero, the

M2 branes give rise to heterotic strings charged under an
E8 × E8 current algebra, with each E8 coming from oneM9
plane [23]. Next, we want to look at the preserved super-
symmetries on these strings. Each brane type projects out
half of the 32 supercharges as

FIG. 1. M2 branes suspended between M9 planes corresponding
to the heterotic string. The world volumes of the M2 branes and
M9 planes share a common T2 which is suppressed in the picture.
The directions orthogonal to the torus are represented as the
separation X6 and the quaternionic subspaces X2345 and X78910.

BABAK HAGHIGHAT, GUGLIELMO LOCKHART, AND CUMRUN VAFA PHYSICAL REVIEW D 90, 126012 (2014)

126012-2

SW ‘87



Elliptic genera for 4d  N=1 supersymmetric theories 
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Consider F-theory on 4-fold X4 =CY4,  where a suitable curve C0 shrinks

For chiral theory:  need non-zero background 4-flux 

(genus 0) Gromov-Witten invariants on CY4 are intrinsically defined in relation to G4

Elliptic genus has modular weight w= -1:  vanishes unless nonzero U(1) field z

We find: 

[Modified anomaly cancellation mechanism reflecting “hidden” 6d structure]

Consistent with WGC, but more subtle

[Novel kinds of non-perturbative strings, like 4d E-strings] 

Intriguing interrelationships between flux backgrounds, modular properties of ell genus,
and novel holomorphic anomalies



Fluxes and Gromov-Witten Invariants on CY4
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Genus g GW invariants on Xk count stable holomorphic maps
with n fixed punctures pi, subject to certain incidence relations.

The virtual dimension of moduli space is:

Thus for X4 the invariants for g=0 need at least one insertion.
Loosely speaking: invariants are pinned to, and thus labelled by the flux.
No invariants for g>1!

Type IIA on X4 Type IIA on Y4

[F:  2d N=2 pre-/superpotential]

Invariants              are computable via mirror symmetry for 4-folds: M ’96,  KLRY ’97,
KP ’07, …



Modularity of flux sectors
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HMY ’15, CKS ’17,
LLLW ‘20

F-theory on elliptic 4-folds X4 imposes additional structure:
- not all fluxes can be lifted from 2d Type IIA to 4d F-theory
- partition functions will have different modular weights depending on the flux 

sector

Choose suitable eigenbasis of fluxes adapted to modularity:

The subscript denotes the modular weight w of the partition function:

Only the “-1” fluxes can be straightforwardly lifted to 4d, where their partition 
functions then play the role of elliptic genus.  The definition of
crucially involves the U(1) gauge symmetry.

The other fluxes just determine 2d superpotentials for Type IIA comp. on X4



Anomalous modularity of 4d elliptic genus
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one finds that in general

spoils modularity and double periodicity!

Derivatives break local symmetries:

Computing ell genera,  given                                          and                    

Induce connection terms:

1/z pole of E1 cancels!



Quasi-Jacobi vs. almost holomorphic Jacobi forms
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Thus we see that 4d ell genera lie in the ring

Modularity and periodicity can be restored by substituting

This leads to “almost holo/meromorphic” Jacobi forms: L’09, O’12, 
OP ’17-19

If             transforms as Jacobi form, then                    is per def. quasi-Jacobi  

The physical 4d elliptic genera are such almost holomorphic Jacobi forms



Elliptic holomorphic anomalies
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The novel feature is that anti-holomorphic derivatives act been different flux 
sectors, for example we have observed that 

A modular ell genus is obtained by replacing

and so we obtain the elliptic holomorphic anomaly equation:

OP’17-’19, LLLW ‘20This and variants can be mathematically derived as general property of 
relative GW invariants of elliptic 4-folds, CY4

Eg. in 2d:



Algebra of anomalies
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2d prepot

2d prepot

2d prepot,
4d elliptic genus

[4d prepot
6d ell genus?]



 Holomorphic anomaly à la BCOV for 4-folds
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So far this was a mathematical observation. 
It can also be derived in 2d TCFT on 4-folds with fluxes.

BCOV ‘93

The novel feature is a contact term of an anti-holom. operator insertion with
the flux vertex operator.  It gives rise to a gravitational descendant invariant:

LLLW ‘20

splitting of reducible curve new for 4-folds

Encodes both modular and elliptic anomalies



Physical interpretation in space-time ?
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As mentioned before, the well-known quadratic “splitting term” 
detects non-holom. zero modes in the binding of two E-strings into a 
heterotic string:

Is there a similar meaning of the linear term that underlies the extra 
linear part of the holom. anomaly?

Indeed (for favorable geometries) the extra term the of holomorphic 
anomaly eqn. can be interpreted as elliptic genus                   of  Y3 .
Its modular weight is w=-2, as is appropriate for a 6d theory.

Conjecture:  non-holom. zero modes arise when het. string meets an NS5 brane
(dualized flux). This component of the moduli space is given by a certain 3-fold,  
Y3 !"X4.

Anomaly cancellation: there are extra massless fields originating from a “hidden” 
6d sector, which modifies the naive perturbative GS mechanism in 4d.  This non-
perturbative modification precisely accounts for the extra derivative piece!

LLLW ‘20

MNVW ‘ 98,
HLV ’14, ….

} }}}



Back to WGC:
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Odd modular weight: anti-symm in z;
no maximally superextremal states,
no fully populated charge lattice(*)

Restores maximally superextremal states,
and completes charge lattice

no
 la
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    (*)Caveats: possible cancellations in index; quantum corr 
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  Elliptic genera in 4d have surprisingly complex features:

• U(1) is essential;  weight -1 quasi-Jacobi forms

• Non-perturbative versions can be 
obtained via duality to F-Theory on 4-
folds with background 4-fluxes, in 
combination with mirror symmetry
The degeneracies map to 4-fold GW invariants relative to 
curves C0 and fluxes, G4

Summary

• Parts of the ell. genera are given by z-derivatives of 
partition functions corresponding to weight -2 flux 
sectors;  formally 6d elliptic genera

• The modular anomalies induced by the derivatives can 
be associated with a novel kind of elliptic holomorphic 
anomalies

Physics applications:  compatible with WGC, non-pert anomaly cancellation

http://arxiv.org/abs/arXiv:1803.10333

