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Overview

® Motivation: Weak Gravity Conjectures
Tensionless emergent strings

® Non-perturbative elliptic genera from geometry (F-theory)
Examples in 6d

Holomorphic anomalies

® Four dimensions: 4-folds with fluxes G
Relative Gromow-Witten invariants Ng

® Modularity of flux-induced elliptic genera
Quasi-Jacobi forms
Novel kind of elliptic holomorphic anomalies


http://arxiv.org/abs/arXiv:1803.10333

Main results

LLLWV 20

® Mirror symmetry of CY 4-folds with U(l) gauge symmetry, fluxes Ga:
determines relative Gromov-Witten invariants, Njco,c4j(n,r)

—— non-perturbative elliptic genera for 4d N=|
strings (eg. het. with NS5-branes)

A [COa G4](Tv Z) — _qu Z Ncy,a, (n7 r)qnér
n>0

® 4d elliptic genera have surprisingly rich features as compared to 6d:
Z7,2) = Z_1(1,2) + 0,Z_5(1,2)

involve quasi-modular and quasi-Jacobi forms FEo(7), E1(T, 2)

—— = novel elliptic holomorphic anomaly equations,
expose hidden higher dimensional sector

® Physics applications: anomaly cancellation, WGC conjectures for chiral
N=1| supersymmetric theories in 4d, elliptic holomorphic anomalies
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Motivation: Weak Gravity Conjectures & Co

AH-MNV 07, ....

Review: P 20

Study mathematical underpinnig of (interrelated) WGC-type conje;:tures:

f

-

As so often, physical consistency requirements turn out to be
guaranteed by mathematical properties

e No global symmetries in QG

>

degeneration
geometry of CY
manifolds

Infinite distances in moduli space: asymptotically massless towers
(either KK-modes: decompactification, or tensionless strings)

e Superextremal states exist into which extremal black holes can decay

focus

>

GW invariants,
modular properties of
elliptic genera,
quasi-Jacobi forms


http://arxiv.org/abs/arXiv:1803.10333

Large distance limit in moduli space

e What happens if we dial appropriate parameters to go to weak gauge
coupling while not decoupling gravity!?

® Relevant piece of local geometry: submanifold B

want to keep gravity: M ;ll ~ Vol(B3) = const
weak coupling:  g* ~ 1/Vol(S3) — 0

implies a certain unique dual curve shrinks: V()l(C’O) — 0




Asymptotically tensionless heterotic strings

® Upshot: vanishing gauge coupling implies that a solitonic string becomes
tensionless... so the effective field theory approximation breaks down!

mzA

Infinite tower of charged

particles with asymptotically

vanishing mass gap,

as posited by the WGC AH-MNV ’07 + many

g —0

® While this picture seems naive, there are powerful mathematical theorems
behind the possible large distance degenerations of Calabi-Yau spaces

that guarantee this outcome. GPV’18,CGV I8,
LLW ’19, GRH '[9,
e Can we possibly run into surprises of some sort? GM...

Tensionless higher dimensional branes, or multiple strings, or
potential so far unknown weakly coupled theories of quantum gravities

do not appear as dominant d.o.f! (Emergent string conjecture) WS



Setup: solitonic strings in F-theory

o Recap: V’96, MV ’96,...
Type |lIB strings on a non-perturbative 7-brane geometry
... define formally a d=12-2k dim “F-theory” compactification on
elliptically fibered Calabi-Yau k-folds, Xy
@ :ET D3-brane wrapped around
Xk< ' 2-cycle Co yields a solitonic string
Co  What happens if Co shrinks to zero volume?

grane

e Example in 6d:  F-theory on 3-fold X3

Co - Co < 0 : Shrink at finite distance: strongly coupled non-critical strings
Co - Cy > 0 : Cannot shrink at finite distance in moduli space

Co - Cp = 0 : Solitonic hete;otic strings



Elliptic genus of heterotic strings

e Elliptic genus = loop space index = RR partition function SW ’86,WV '87

Encodes protected, largely deformation invariant subsector of spectrum, and
underlies Green-Schwarz anomaly cancellation

® Consider 2-dim (0,2)-sigma model, refined by a single left-moving U(1) charge Q)
Zell (T, Z) — TI'RR [(_1)FRF;g/2(d_2)qLO qion}

® Zell is naively a meromorphic function of ¢ = e*™7, ¢ = e*™"* where
T is the complex structure of toroidal world-sheet, and z the U(1) field strength

- ‘e r7zell _ Eo § T ¢T
Generic expansion: Z (T, Z) — —q N(n7 r)q 6 n= excitation level,
n>0,r r= U(l) charge,
N(n,r)= degeneracies

e [t has distinguished modular transformation properties: for heterotic strings in
d dimensions, it has modular weight w =1 — d/2

Eo=—-1/2Co - Kp,_, = —1 8 (Zero modes cancelled; note Q here NOT R-symmetry!



Elliptic genus of the emergent 6d heterotic string

® Use duality with M-theory and mirror symmetry on elliptic X3 to
compute relative degeneracies Nco(n,r) via:

F-theory on R*! x St
BPS string on S!:

Wrapping number w=1,
KK momentum n,

r
M-theory on R%:! @ @
Cy o L

BPS particle in 5d: X/

Co
M2 brane wrapped on \ Bne

U(l) charge r <> Cnr=wCo+nk:+rC;

modular parameter T,
background gauge field z

index degeneracies N(n,r)

® For primitive Co (w=1), the 3-fold
relative, genus zero BPS invariants
Nc.(n,r) coincide with the GW
invariants, and thus:

9

T = Kahler parameter of E, KIMV ’96,
z = Kahler parameter of Cs HIKoLV "1 3,
HKILV 4,

relative BPS invariants Nc.(n,r)

Z(1,2) = —q"° Fe, (1, 2)

6d het string ell genus  4d N=2 prepot



Elliptic genus as Jacobi form

(almost )

® Ell. genera as partition functions are expected to behave well under modular transf.

SW,W...
When refined by an extra U(l), they should be “|Jacobi forms” KYY '93, EZ'95,

oll DMZ’12, ...
Z(1,2) = Puwm(T,2)

Defining properties: modularity and double periodicity

at + b z i meC 2
w1 = C d)Pe " er+a* ., o (T, 2
P (2, 2 (cr +d) P (7:2)

—2mwim(z2T4+2Xz))

Puwm (Tyz2 + AT +p) = e Pwm(Ty2) A p €L

Het. strings: modular weight w = 1 — d/2 and index®® m = 1/2Cp - b € N

® Ring of relevant Jacobi forms with given w and m is finitely generated:

J
R = Q {Eéla Ee,p—2,1,9-1,2, 900,1} (standard defs; see lit.)

Need to determine just a finite number of GW invariants N(n,r) to find exact ell genus!

10 (b="height pairing”: gecom. definition of U(I)



Example: elliptic genus of K3

Consider F-theory on CY3 on
certain elliptic fibration over Hirzebruch surface FI with extra U(l).

Shrinking Co leads to emergent heterotic string on K3 surface (index m=2):

ll,K
Fco(my2) = —q Ziz,z 3(7'9 z)

1 7
= (‘5’34(7)2136(7)90—2,1(7» 2)* + 55 Ba(1) 0-2.1(7, )00, (7, 2)

5 1
+ 4—32E§ (T)p—2,1(75 2)po,1(7,2) — 5E4(T)E6(T)903,1(T’ z))

= —2+ (288 + 96¢T1) g + O(q?)
For z—0 / £—1 this reproduces the well-known expression:

E.E 2
z¢y3%(T,0) = 2 :246 (1) = o~ 180 — 282888q + ...

™~

20 x Euler number y = 24




Spectral flow property of Jacobi forms

e Ell genus is a Jacobi form...as such it has automatically a theta-expansion:

Pwm(Tyz) = Y he(T) O (T, 2) EZ '95,DMZ’ 14
LETL/2MmZ

= >, ) cnr)gre

n>0 r2<4mn

Theta-fct = partition function of a free 2d boson, with built-in relation between

charge and excitation numbers: )
9m,e(7', Z) — Z q(£—|—2mn) /4m€£—|—2mn

"
States fall in “spectral flow” orbits characterized by discriminant: A = 4mn — r

c(n,r) = C(A,r) R

e Distinguish: T sitessessses
secessoeseeseessece

_Goavessessssenannesss

——— Holomorphic Jacobi forms: c(n,r) = 0 unless A >0 luesaessee::

’
,000000000000000000
4
/. 000000000000000000

Weak Jacobi forms: ¢(n,7) = 0 unless n > 0 ' esessssssssseseses o
000000000100000..000 2 5 ..04.0 n

Jacobi cusp forms: c¢(n,r) = 0 unless A >0
12



lattice

Superextremality from Jacobi Forms

® As basic WG conjecture states that there must exist (generally a lattice of)
superextremal states in order for black holes be able to decay andso ., v\ 707
avoid massive remnants (related to “gravity must be the weakest force”)

® The Jacobi property implies the following structure of the U(l)
charge/mass string spectrum encoded in the elliptic genus:()

-
-
-
-
-
-
-
-

G A=4mn — q «<— A = 0 Maximal superextremal states,
16

,v\ no smooth horizon BH
2 il A = 4mmn Extremal states,

asymptote to black holes

Sy Aa>0 ( )
NEy The underlying mathematics of
elliptic fibrations is consistent with
s 10 153 5 30 35 "T«M™ | expectations from quantum gravity!
_ J

® Note: holomorphic Jacobi forms here,

no polar states with A < 0 ; unlike spinning strings
13 ()Refers to our example with m=2



Quasi-modularity from non-perturbative transitions

e Other example: consider F-theory on CY3 which is a
certain elliptic fibration over the del Pezzo surface dP; with extra U(I).

Again leads to an emergent dual heterotic string on K3 surface,
however without a fully perturbative world-sheet description (NS5 brane defect):

:FCO (7'7 z) = —q Ze”’K3(Ta Z)
_q( 23 op 2, 1 19 28
T o2A\ T 1728t 47021 T g a0 T g Te P -2,100,1 T pgg A T6¥0,
1 1 1
FEo(——— E22 ey _ _— E2,? )
+Es( 1728 690_2,14-864 4L6P—-2,1¥0,1 1728 4900,1)

as z—0 this now turns into

ZE3(1,0) = ZeWE3 () + 12124 (}%E‘lz ~ E4E@) (7)
_ 2 — 265968q + small instanton/NS5 brane
q transition

® Modified index reflects extra massless tensor multiplet and hypermultiplets

| 4



Holomorphic vs modular anomalies

® We see that in general the quasi-modular form E; appears, which displays
a modular anomaly:

o (aT—I—b
ct +d

) = (et +d)*Ex(7) — 6;ic(m' + d)

® As is well known, the lack of modularity can be repaired by considering the

modular, but only “almost”-holomorphic variant: SW'87

Ex(1) = Ea(7) —
wlmT

Physical interpretation: zero modes due to a hon-compact branch in the
geometry provide the non-holomorphic modular completion and render the
physical partition function invariant.

MNVW ‘98,
HWV:' 14, 1 1. [
® The holomorphic anomaly detects the source of this phenomenon:
0, = 27 0 -~ .1 7%= L T
Zell,KS — (ImT)2__Zell,K3 — (E4)2(T)
8E2 3 oT 12?724

1 «¢ . LX) . ]_
Reflects that het. string = bound state of two “E-strings”, each with Z¢»% ~ — E,(r)
n



Elliptic genera for 4d N=1 supersymmetric theories

® Consider F-theory on 4-fold X4 =CY4, where a suitable curve Co shrinks

For chiral theory: need non-zero background 4-flux G4 € H??(X,)

e (genus 0) Gromov-Witten invariants on CY4 are intrinsically defined in relation to G4

Zili,*[COv G4](Ta Z) — —QEO Z NCn,r;G4qn£r
n>0,r
® Elliptic genus has modular weight w= -1|: vanishes unless nonzero U(I) field z

Fya) V\NVW@""B'"
® We find: .

Intriguing interrelationships between flux backgrounds, modular properties of ell genus,
and novel holomorphic anomalies

Consistent with WGC, but more subtle

'Modified anomaly cancellation mechanism reflecting “hidden” 6d structure]

'Novel kinds of non-perturbative strings, like 4d E-strings]

16



Fluxes and Gromov-Witten Invariants on CY4

® Genus g GW invariants on Xk count stable holomorphic maps ¥, — C C Hy (X, Z)
with n fixed punctures p;, subject to certain incidence relations.

The virtual dimension of moduli space is:
dimyirt,cMgn(Xg,C) = (K—3)(1 —g)+n

Thus for X4 the invariants for g=0 need at least one insertion.
Loosely speaking: invariants are pinned to, and thus labelled by the flux.
No invariants for g>|!

. . . M 96, KLRY ’97,
® |nvariants NC;G4 are computable via mirror symmetry for 4-folds: KP 07

G4 c HZ,Z(X4) — H292 (X4) @ H2,2 (X4) @ H2,2 (X4)

hor vert rest
Type llA on X4 Type A on Y4
Fo = / GZOT N Qx <> Fg= Z NIB;Gze'rt Liz(qlg)
X

BEH2(Ya)
[F: 2d N=2 pre-/superpotential]
17



Modularity of flux sectors

® F-theory on elliptic 4-folds X4 imposes additional structure:
- not all fluxes can be lifted from 2d Type |IA to 4d F-theory
- partition functions will have different modular weights depending on the flux

sector HMY 15, CKS 17,

Choose suitable eigenbasis of fluxes adapted to modularity: LLLW 20

H,.. (X4, R) = H3 (X4, R) U HY (X4, R) U H™, (X4, R)

The subscript denotes the modular weight w of the partition function:
ZwmlGs"(1,2) = =@ Y Ny (n,1)q"¢", Gy € HLA (X4, R)

® Only the “-1” fluxes can be straightforwardly lifted to 4d, where thelr partition
functions then play the role of elliptic genus. The definition of I—I( 1)
crucially involves the U(l) gauge symmetry.

The other fluxes just determine 2d superpotentials for Type [IA comp. on X4

|18



Anomalous modularity of 4d elliptic genus

e Computing ell genera, givenC,, ., = Cy + nE, + r C; and Gfl_l) “ H(z’_zl)(X4, R)

e —1 n &r
ZN uCo, Gy V1(1,2) = —¢™ Y N c-n(n,m)q¢
n>0
one finds that in general

_ ~ _ o _
Z | [Co, G V(1. 2) = Z_1,m[Co, Gy V1(1,2) + £ agz_z,m[co,ai D(r, 2)

—1,m
T

spoils modularity and double periodicity!

® Derivatives break local symmetries:

Dw,m _ 1
€8€ Pw,m — Promt2 - 2m Eq Pw,m (‘585 = z—ﬂ.iaz>
©Y—1,2
Qawam 1 Sa’w,m 2 w
qaq@w,m — + I El T I ( EZ ‘|‘ mE12> Sow,m
P—2,1 $Y—-1,2 12

Induce connection terms: E5(7) = qd,log n**(7), Ei(7,2) = £8¢ log 041 (T, 2)

5 |/z pole of E| cancels!



Quasi-Jacobi vs. almost holomorphic Jacobi forms

® Thus we see that 4d ell genera lie in the ring

‘P* « € RP =Q [Ez, By, Eg; By p_1,2,0_2,1, 900,1} /{90—1,2, 90—2,1}

Modularity and periodicity can be restored by substituting

~ 1
Ez(T) —)Ez(T) :Ez(T)—24I/, vV =
S8mlmT
~ Imz
Ei(1,2z) > E1(1,2) = E1(1,2) + a =
ImTt
® This leads to “almost holo/meromorphic” Jacobi forms: '09, 0’12,
i /1 j OP’17-19
mz
®(1,2) = (&3) (7, 2
(r2) = 3 02 (i) ()

If ® (T, z) transforms as Jacobi form, then (©:0) (T, z) is per def. quasi-Jacobi

— The physical 4d elliptic genera are such almost holomorphic Jacobi forms
7By, B, )

20



Elliptic holomorphic anomalies

® The novel feature is that anti-holomorphic derivatives act been different flux
sectors, for example we have observed that

—1,m

Zell [C’O,G( 1)] Z_lm[C’O,G( 1)] + £ £Z_z m[COaG( 2)]

A modular ell genus 2_1,m(E1, E,, ...) is obtained by replacing

£O0E — 1,Vz=i,(6z 4Tim o) (a Imz)

271 271 ImT

and so we obtain the elliptic holomorphic anomaly equation:

d _ ~ _
L7 1Co, GV = Z_gm[Co, GS ]

1
do 1T

® This and variants can be mathematically derived as general property of OP'I7-19, LLLW 20
relative GWV invariants of elliptic 4-folds, CY4

d ~ ~ _ 1
Eg in 2d: Ezﬂ,m [007 Gg(lo)] — Z—Z,m [CO? Gé(l 2)] (V = )

SmImT

21



Algebra of anomalies

non—transversal flux in H (20’)2(Y4, R) :

2d prepot

transversal U(1) flux in H>?, (Y4, R) :

(=1)
2d prepot,

4d elliptic genus

non—transversal flux in H (2;22) (Ys,R) :

2d prepot

[4d prepot
é6d ell genus?]

22




Holomorphic anomaly a la BCOV for 4-folds

COV ‘93

e So far this was a mathematical observation.
It can also be derived in 2d TCFT on 4-folds with fluxes. LLLW 20

The novel feature is a contact term of an anti-holom. operator insertion with
the flux vertex operator. It gives rise to a gravitational descendant invariant:

1 ‘ S
—5:9iFac, = (5 Z Fa3j1Cp, Tb|Cp, — Tab </ Uiz)ﬁbj)Cﬁ
Cp,+Cp, )

Ly l
5@ :Za @+

a Cg Cg, C's, a Cj

splitting of reducible curve new for 4-folds

® Encodes both modular and elliptic anomalies

73 (ng) — 8590dz‘l)



Physical interpretation in space-time !

e As mentioned before, the well-known quadratic “splitting term”
detects non-holom. zero modes in the binding of two E-strings intoa MNnyw ‘98,

heterotic string: _ . Es\*? HLV 14, ....
& 8, 2(r) ~ (T‘;)
n
e Is there a similar meaning of the linear term that underlies the extra
LLLWV 20

linear part of the holom. anomaly?

81—--7:(;(0),03 — Z :F.G(O)?C,Bl ~7:-G(—2),CB2 =+ .7:@(—2),06
Cp, +Cp,=Cp
Conjecture: non-holom. zero modes arise when het. string meets an NS5 brane
(dualized flux). This component of the moduli space is given by a certain 3-fold,

Y3 C Xa. @E

Indeed (for favorable geometries) the extra term the of holomorphic .,
anomaly eqn. can be interpreted as elliptic genus Z_5 ,,,|Y3]of Y3. «~>{

Its modular weight is w=-2, as is appropriate for a 6d theory. o]

e Anomaly cancellation: there are extra massless fields originating from a “hidden”
6d sector, which modifies the naive perturbative GS mechanism in 4d. This non-

perturbative modification precisely accounts for the extra derivative piece!
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no lattice

Back to WGC:

Zill,m — Z—l,m + BzZ—Z,m

— I

Odd modular weight: anti-symm in z;  Restores maximally superextremal states,
no maximally superextremal states, and completes charge lattice
no fully populated charge lattice(")

Fully modular Flux derivative Flux
lal lq]

B e

,,,,,, ° °

,,,,, ° ° °

o ° ° °

r [ ] [ ) [ ) [ ]

10+ ° ° ° ° °

r [ ) [ ) [ ] [ ) [ ] [ ]

r [ ] [ ] [ ] [ ] [ ] [ ]

r [ ] [ ] [ ] [ ] [ ] [ ]

r [} [ ) [ ) [ ] [ ) [ ) [ ]

5—/ ° ° ° ° ° ° ° °

‘/ [ ] [ ] [ ) [ ) [ ] [ ) [ ] [ ]

[ ] [ ] [ ) [ ] [ ] [ ) [ ) [ ] [ ] [ ] [ )

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
- | L) R Coo Co _ NP/(@8r)
"1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 =p-1 "1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 =p-1

()Caveats: possible cancellations in index; quantum corr
25



Summary

® Elliptic genera in
o

4d have surprisingly complex features:
U(l) is essential; weight -1 quasi-Jacobi forms

Non-perturbative versions can be
obtained via duality to F-Theory on 4-
folds with background 4-fluxes, in
combination with mirror symmetry

The degeneracies map to 4-fold GWV invariants relative to
curves Cop and fluxes, G4

Parts of the ell. genera are given by z-derivatives of
partition functions corresponding to weight -2 flux
sectors; formally 6d elliptic genera

The modular anomalies induced by the derivatives can
be associated with a novel kind of elliptic holomorphic
anomalies

® Physics applications: compatible with WGC, non-pert anomaly cancellation
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