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® Motivation: quantum geometry of general D-brane configurations
® Recap: closed string mirror symmetry

® LG models: contact terms vs. flat coordinates
® Open string = homological mirror symmetry

® Matrix factorizations and their deformations

® Open string mirror map from super-residue pairings AN

/
/

® Example: elliptic curve
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Physics of intersecting brane geometries

® Phenomenological interest:

® Chiral fermions

® Exponentially suppressed Yukawa'’s

® Open string mirror symmetry is by far not as well
developed as for closed strings!

So far, mostly non-generic (toric/non-compact, non-intersecting) brane
configurations were considered; almost nothing has ever been computed
for intersecting branes eg. on Calabi-Yau threefolds!



Application: effective superpotential for quivers

boundary changing operator
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Quiver diagram Disk world sheet in TCFT

F-term superpotential ~ closed paths in quiver
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space-time fields, T
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moduli ~ const + O(e_ta e )

instanton corrections = open GW invariants: how to compute them!?
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Homological Mirror Symmetry

Kontsevich

® Open string mirror symmetry becomes highly non-trivial for intersecting branes

There is an infinitely richer diversity of open Gromov-Witten invariants, ie.,
world-sheet instantons.

e Eg. the elliptic curve is almost trivial from the
point of view of closed string instantons: 7, — 75

® However in the open string sector with intersecting SL A-type branes,

an arbitrary number of polygon-shaped disk instantons may .
contribute to the superpotential!
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Polygonal instantons

N=4: trapezoids b el

Toped(Tyus) = 6g+’b,5+g@tmp[ d 24 8/20s ] (3713 (w1 + u + wa), B(ur = ug)) WL u

a ! 1(a+3n)(a+3n m)) 2mi|(a+3n)(u—1/6)+(b+3m)v
@tmp[ ’ ] (37[3u,8v) = 3 qh(atamatantatam) 2mi((etsn) w=1/6)+(0o+3m)v)
N=4: parallelograms Bl
c_
Pased(Tsws) = 8.°) . 5, 3 Opara [ I o ] (3713 (ur — ug), 3(uq — uz))

Opara [ v ] (37|3u, 3v) = Z’q%(a+3n)(b-|—3m)ezm((b+3m)u+(a+3n)v)
b m,n
N=5: pentagons [—b—c—d]s
pa,BE(Ié T, u'l,) = 6a,5—|—6—|—&—|—é @penta [€+C+d]3 (3T|3(u5_u2)73(ul_u4),3(U3—|—’U,2—|—U4))
[C—d-l—%]s
@penta Z (3T|3u, 3’0, 3’11}) = Z ’q%(a>+3(n+k))(b>+3(m+k))—%(c-|-3k;)2e27r'i((CL>—|—3(n-|—k;))u+(b>+3(m+k))v+(c+3k)(w_1/6))
& m,n,k

N=6: hexagons

[—b— c— d]|3
_ 53 [c +d +e€ls
Habzazf(Tsui) = 50,a+5+5+d+é+f®h6ma e —d +2]s (37|3(us —uz2), 3(u1—uq), 3(ug+uz+uyq), 3(—ug—us —us))
a [a —f +3]s
Ohema 2 ] (37|3u, 3v, 3w, 3z) = Z ,q%(a+3n)(b—|—3m)—%(c—|—3k)2—%(d—|—3l)2627m'((a+3n)u+(b+3m)v+(c+3k)(w—1/6)—|—(d—|—3l)(z—}—1/6))
d m,n,k,l

oo <kBmae <lmae — o0 Skmin >lmin

5 IR DED DD DD DEED DD S

m,n,k,l m,n>0 k>0 1>0 mn<l—1 k<-1 1<-1




How to compute!

® The elliptic curve is flat, so it is easy to determine the areas by inspection,
and sum them up by hand Polishchuk, Zaslow

... but this is not what we ultimately want, because it does not
easily generalize to higher dimensional Calabi-Yau n-folds!

® Rather we want to employ mirror symmetry, as familiar from the
bulk, closed string theory.

® Recap ingredients of closed string mirror symmetry:

Pair of mirror Calabi-Yau’s X,Y; h21(X)=h;(Y)
Variation of Hodge structures on X

Gauss-Manin flatness equations

Period integrals determining functional mirror map
Saito’s higher residue pairings



Lightning recap: closed string mirror symmetry

[Type lIA String on Calabi Yau Y@[Type lIB String on Calabi Yau X]

e Moduli space of
N=2 vector SM: OM -

Y, t) ~ MPEH(X,z)

e 3-pt functions:

T dddmk abe(2) 0zq 0zp O0zc
Cklm—/Jk/\Jl/\J _|_Z ..... dy, Gk Hqgi< )pb() b

Y 0 1 — T, ¢ 1 [1A(z) 0ty 8ty Oty
A-model: deformed quantum geometry from B-model: classical geometry
world-sheet instantons = holom maps P; — Y

—t
q=c¢e

® Mirror map:

t; 1= /Jz.l’l(Y)—l—... +—> / Q%9(X) =: Inz.(t) + O(2)

a

. Period mtegral
[flat coordinates on QM =" (Y)} flat coo on M 5 (X)
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Phys: Superconformal B-twisted TCFT

All this has a concrete realisation in field theoretical models:

e Calabi-Yau defined by X : W(x;,2) =0
W(x,z) is the superpotential of a N=(2,2) 2d Landau-Ginzburg model

di(x,t) = Oy, W (x, z(t)) forms a flat basis of the chiral ring
(Ppr¢y) = const.

® In terms of these, all correlators are given in terms of residue integrals:

2 1
Crim(t) = <¢k¢l¢m€fti¢’g )> = %(dW(CL’ dr(x,t)di(x,t) P (x4 1)

1))

= 04,04,0,, F(t) integrability

Cklmnl..n,,. (t) 8tn1 "-atn,,a Cklm (t)

8 “Special Geometry”



Math: Gauss-Manin system

® The period integrals satisfy certain flatness diff. equations that arise from
the variation of Hodge structures.

Essentially this boils down to a linear system of the form
[ Tw

_ k k :

V. = (5;?8,57: +(Cy)* — (T)); ) -

AN \ St /L

Yukawa’s/ring OPE coeffs T

period vector []

Gauss-Manin connection

® I' = 0 defines flat coordinates (and thus the mirror map): z = z(t)

... as well as flat operator bases via ¢;(x,t) = 9¢, W (x, 2(t))



Phys: Contact terms versus flat coordinates

® The Gauss Manin eqgn. encodes contact terms:

0 =T = 9,0; — Ulndy)

where U plays the role of the closed string propagator

Hrp > H
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® Functional dependence reflects renormalization by iteratively
integrating out massive fields:

o(t) = ¢(0) +tU () +1/2t° U(¢U(99)) + -+ = 9:W (x, 2(t))

Summing up all nested trees in one swoop! T~

" L. products



Math: Saito’s higher residue pairings, K[u](-,-)

® Reformulate by avoiding period integrals while emphasizing contact terms:

Localize path integral with insertion e~ *Lo+ul) for A\—oo

produces residue pairings K [u](®k, P1) = D, u* K (¢, ¢1)

where u is a spectral parameter that counts the number of contact terms:
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® |n terms of these, the Gauss-Manin eqgs can be written compactly:
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From closed to open strings...

® Mirror symmetry between A- and B-models

———=—> Homological Mirror Symmetry between
categories of A- and B-type branes

Kontsevich, ... many...

® Hodge theory of CY-spaces
——> Non-comm. Hodge theory on Aco categories

Kontsevich, Soibelman, Katzarkov, Panteyv, Sheridan....

Involves cyclic chain complexes, their (co)homologies,

diverse Hochschild and Connes differentials, (b and B),

a “Getzler connection” and a semi-infinite extension involving the
spectral parameter u, with differential d=b+uB.

e Math lit focuses on rederiving Hodge-theoretic (“bulk”) mirror symmetry from
categorial one, but less on genuine open string invariants

™ See eg Ganatra,Perutz, Sheridan; Caldararu;Shklyarov; Ju.....



Phys: Homological Mirror Symmetry and D-branes

A-Model onY B-Model on X

mirror symmetry

< >
DI branes on (p,q) cycles (N2,No) = (r,c1) of gauge bundle
“Fukaya category” of “Bounded derived category”
lagrangian cycles onY of coherent sheaves on X
Fuk(Y) D®(Coh(X))

However there is much more to this than just quantum numbers (K-theory),
or isomorphisms between categories:

Infinitely many open string correlation functions which
encode enumerative invariants!
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Mirror symmetry between A~ products
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Open string correlators and A~ products w

El@
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A —1
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o k Mo — 07

e Multilinear, non-comm. maps my : POF - W
m; = Q,
satisfy A« relations = Ward identities from disk factorization: Mo — e

Sa Q\ - /-515\ R

ml-m4(1, 2, 3, 4) — g3 (m2(1, 2), 3, 4):|:m2 (m2(1, 2), m2(3, 4)):|:m3(1, 2, m2(3, 4))

® Can be recursively solved in closed form:

U=Q
/Q\ CS - é !

open string propagator
/O /? ?\

m4(1, 2, 3, 4) = mg(U°m2(1, 2), 3, 4):|:m2(U-m2(1, 2), U-m2(3, 4)):|:m3(1, 2, U-m2(3, 4))




Where are the open enumerative invariants!?

® That’s all fine.. but where is the functional complexity (open GWV invariants)
concretely coming from!?

So how to tie open A- and B-models together quantitatively, ie, obtain
transcendental functions encoding enumerative invariants !

...in analogy to closed string mirror map = period map: t(z) «—> z(1)

® We will consider deformations induced by closed string moduli t only, so

Fuk(Y)(t) «——> D°(Coh(X))(2)

We need to extend this algebraic framework by an appropriate
flat deformation structure, manifested in certain flatness diff eqs which
determine flat operator bases.



Deformed A~ Products @‘:;5

(2)
® We are interested in the dependence on bulk deformations t xp“”’”(\ﬁb/

Ca07a19"°9a'k: (t) — <\IlaO\Ila1P/\Il£L:L) * ./\Il(l) \:pake_tk:qu’(c2)>

A —1

= ((Pq, 7m2(\I’a1 D ... 0 ¥q,))

® Deformed multilinear products satisfy “weak’” A= relations where Mg 7 0

® Form extended structure: “open/closed homotopy algebra”

® How to sum up t-dependence to all orders explicitly?



HMS for the elliptic curve

Polishchuk, Zaslow

® The elliptic curve is flat, so it is easy to determine the areas by inspection,
and sum them up by hand, eg.:

e Fukaya product Lo
mo : Hom™(Lg,L1) ® Hom™ (L1, L2) — Hom™(Lg, L3)
realized by theta-functions which are sections of the Hom’s

©l0, 0](7,u) - ©[0,0](7,u) = ©]0, 0](27, u)®][0, 0] (27, 2u)
+ ©[1/2,0](27, u)O[1/2, 0|(27, 2u)

® Boils down to addition formulae of theta functions

... looks like an OPE, but these ®’s are not really field operators!



Phys: B-type, boundary LG models: matrix factorizations

Kapustin, Li
e Consider 2d LG model with superpotential: BHLS
/ d?2d0td0~ Wia(x,t) + cc. (W(x,t)=0 describes CY X)
by

® If there is a boundary, B-type SUSY variations induce a “Warner”-term.
This can be cancelled by boundary dof. whose BRST operator satisfies:

Q(wa t7 u)2n><2n * Q(wa tau)2nx2n — WLG(wa t) ]-2n><2n

® The matrices live in the Chan-Paton space and can have arbitrarily high
dimension, 2n.

The precise form encodes the brane geometry and depends on
K-charges and possible deformation moduli t,u.

® The set of all matrix factorizations of VW describes all possible B-type
boundary conditions!
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Math: The category of matrix factorizations

Math. Theorem: Kontsevich, Orlov
Cat(MF(W,X)) ~ DbP(Coh(X)), Category of coherent sheaves on X
(Q?%AXMA ® objects = chain complexes
AN TP P1
/V"W:, 2na X2np P — ( P]_ PO ) Q — (O pO)
D Po P1 0

O‘W ----------- (QB)ZTLBXZTLB

po,l ~tachyons” pop1 = p1po = W1
3 B0

%@ nexanc e morphisms = boundary changing operators
0«4«_ “ A,B 1 A B
(QC)ZnCXZnC (\Il((z ))Z’nA X2np E EXt (X; D Y D )

® non-triv. cohomology ¥(4B) ;g . ¢A:B) — o ®AB) £ g. 4
where d - O(A:B) = QA\II(A’B) T \II(A’B)QB

* (non-comm.) composition maps ¥ (4-5) . \I;I()B’C) = Cop° A

(contain as components analogs of theta-function identities)



Phys: Correlators from matrix factorizations

® EFasy part:
Construct representatives ¥ ¢ ker d/Im d and recursively compute my.

Cao,ai,...an () = ((Pao, mtk(‘I’al D...Vu,D)))

with inner product = Kapustin-Li supertrace residue pairing

((A, B)) = ]{S‘cr ((ji‘?/_)@)NA-B)

7

Kapustin, Li;
Lazaroiu, Herbst

® Can always choose representatives such that the two-point fct is const:
(D, 8,5%)) = s

e Difficult part: what is the proper flat, renormalized operator basis!?

U, = go(t)¥qs, ®g — go(t)~' &, A priori freedom of rescaling....

...leaves corrs undetermined, eg: (T, TW)) ~ g(t)°
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Math: The boundary-bulk (or open-closed) map OC

® Generalization to non-commutative Hodge-Theory has been a major
theme in math literature. Getzler; Kontsevich, Soibelman, Pantev, Katzarkov, Sheridan, ,....

® Usually one considers the open-closed map, eg.
OC(—) = str[dQ™ - —] : HH*(CCq) — Jac W(X)
CC, = P Hom(Lo, L1) ® Hom(Ly, L2) -+ - ® Hom(Ly, Lo)
k

...and thereby maps the open string sector (Hochschild complex) to the
closed string sector with pairing: (a, 8) 55, — (OC(a), OC(3)) p

e This is different to what we want to do!

® The open-closed map OC is non-vanishing only on cyclic chains of
operators, and in particular on single boundary changing operators:

oc(¥*B)y=0, ifA#B

Our desired open Hodge theory must thus involve more data than just the
isomorphism of the Hochschild cohomology HH*(CC) with the bulk

cohomology!
22



The curse of the forgetful map OC

® Under OC, the relative normalization factor g(t) cancels out, and thus
cannot be determined in this way:

GM
Vt

¢ = str[dQ"E BB ¢ Jac(W)

OC:

Vgpeng—l (t)(I)(B’A)
-

voreg(t)w(AB) A

e So need a boundary connection acting individually on the matrix-valued
boundary changing operators!
23



Analog of Gauss-Manin connection at the boundary?

e There is a non-commutative version of the Gauss-Manin connection,
the “Getzler” connection, but unclear to me if this is the full story, since

OC (V7. —) ~ vMOC(-)

It acts on cyclic chains only and involves the degree-2 spectral parameter u
which is an intrinsic bulk quantity (counting bulk propagators/contact terms)

® We go a physically inspired route:

Crucial ingredients:

Generalization of Saito’s residue pairings K to matrix factorizations
Coupled bulk-boundary deformation problem
Mixed bulk-boundary contact terms

o
°
°
® Construct intrinsic boundary connection directly acting on matrices

24



Higher supertrace residue pairings

e Construct higher Kapustin-Li pairings to systematically capture contact terms

Shklyaroyv,
d;Q \ ®N uses OC
Kﬁ?},(waa (I)b) — ]{Str ((de) v, - qlb)
_s 0qap = const
(1) _ D™ S~ Rl
K1, (¥a, Pp) = " Z( 1) Z €ir.iiin X
(n+1)! g ]
d; e Q dp¥, diy d;
2%51;1' 1Q i1 @ dr k+Q... nQ P,
di,W ' diy W dtW di W dy W
L d’l,lQ dsz d’l,k,_|_1Q ’Ln 1Q d @b
d;, W~ d;, W "'diww dy, W d,W
Instead of a commuting spectral parameter u of degree 2, .
which counts insertions of the bulk propagator U~ d
dw J

we (formally!) have an anti-commuting parameter & of degree |, ,
which counts insertions of the odd boundary propagator [J5 ~ » —?
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Coupled bulk-boundary deformation problem

e Due to bulk-boundary contact terms, the bulk perturbation ¢ = ;W
must be accompanied by a “Warner” boundary counter term v = 9;Q

1Q(t),7(t)} = o(t)|an1
— (2)1 _ (1)
5= (o1 1)

This combo perturbation preserves Q(t)? = W (t)1 so is unobstructed.
It is the natural Q-invariant pairing in relative (co-)homology of disk.

e What matters are the contact terms of y with the other boundary ops Y:

\D4‘ \D
B = ¥
Qtot © / ey
\I}. oD ql
\I{‘
Qtot o ‘I’ = ‘I} -I- Z



Finally, flatness equations for matrix factorizations

® Taking all together, we propose “relative bulk-boundary” diffegs.
which play the role of the Gauss-Manin eqgs familiar from
standard bulk mirror symmetry:

K (ViWa, @) = KO (0: W0, @)+ K¢} (0,7 @ )—— K, (Z i War D)
=0 boundary-boundary ct boundary-bulk ct
: oW o)
Morally: o <8t— i ) B <8t— tQ)
u bulk C boundary

These eqgs supposedly determine the proper flat boundary changing
representatives Y(t) incl. moduli dependent renormalisation factors

When combined with the recursive A structure, the latter should eventually
determine the t-moduli dependence of all correlation functions!

(“splitting” ambiguities?)
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Example: branes on cubic elliptic curve T>

: : : . complex struct modulus
® Simplest |-dim Calabi-Yau: elliptic curve P

1
T, : Wi(x,z(t)) = g(mlg’ + x2° + x3%) — 2(t) 12223 = 0

2F1(1/3,2/3,1;1 — 1/2%)
2F1(1/3,2/3,151/23)

Mirror map: t(z) = i//3

e B-type D-branes are composites of D2, DO branes,
characterized by

(Nz,No;u) = (rank(V),cl(V);u)

e We will consider the
"long-diagonal” branes with charges

’ \
\ \ Y \ Y
’ \
\ \ ’ \ ’
\ ,’ \\ \ Y \ Y
\ v v
\,’ \\ \ 7 N/
K- --F - ----- W ——————— X
\ 7
—_— —_— —_— —_— \ ‘S 7\ /N ’ N,
(1029]QO)EA {( 190)9( 193)9(29 3)} \ 37N FAEN P
\ / \ ’ \ Y
\ /, \ ’ \ ’ T
\ ’ \ ’

picture of mirror A-branes “/_____¥_ N/
LS \'o
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Seidel lagrangian

® Actually the LG model describes the orbisphere T2/Z3 (or pair of pants),

where the 3 branes map into one single, triply self-intersecting brane

“immersed lagrangian”

T?/Zg ~ P;,g,g

® Need to go to equivariant matrix factorization to describe branes on Ty,

in practice only labels change

29



Matrix factorization corr. to Seidel lagrangrian

Given by 8x8 matrix: Q = (O %‘)) satisfying Q°

with

DPo —

D1 —

\

L1
3
x5 — x1x32(t)
3 — x1x22(t)
0

/ xrd — xaw3z(t)

x5 — x1x32(t)

x3 — x1x22(t)

0

D1

2

2

3
rox3z(t) — x4

0
2 — r1222(t)
£

2
3
€T

1
3
0
3 — x1x22(t)

This realizes the “homological mirror functor” of
Cho,Hong, Lau, Oh...

30
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Open string BRST cohomology

e Solving for the BRST cohomology yields explicit
moduli dependent matrix valued morphisms, eg.

AA 0
WA —(g(2) ( %‘))

q1
1 0 0 0
B Sx3z(t) 3z, 0 0
do = ngz(t) 0 3z, 0
0 %azzz(t) —%wgz(t) 1
—3x1 0 0 0
o — %wgz(t) —1 0 0
V7 Sxp2(t) 0 —1 0 * %) __
’ 2O sxaz(t) —Zwsz(t) —3x [Q’ \Ilg, )] =0

® Again, the issue is to determine the flattening,
moduli dependent renormalisation factor g(t)

Solving the proposed “relative bulk-boundary” diffeqgs yields

g(t) =n(q)'/3, q=e*
31



A-model instantons

® This defines via open string mirror symmetry the quantum Fukaya product ma:

1/3g(AC) In B-model, the functional complexity

N is entirely due to the flattening

@ renormalization factor g(t)!

1
It sums up infinitely many tree v

diagrams
B,C) 771/3\1}(A,B) n1/3\If§-B’C) Us

1

(4,B)

(
7 7Tj

A-Model B-Model

® Phys. interpretation in A-model: 3-point function counts disk instantons

Cave(t) = (T2 g, (PP WG = €00 n(q)
n(q) = ¢ 1] (1 - q™)

n>0
3D
= Dy minimal area:
o (12 (29 /24 of fundamental domain
=



Higher order B-model correlators: 4 pt function

® Define “boundary chain”

\IJS == _1/32572\11'5

Compute m3 via nested trees and propagators: U U
n(t) E
mS(\Psa W, Vs, ) — —W(S7 t)l
¢(¢) v, U, U v, U, W

_ /(1)
0= o

fundamental period

e m3(¥®3) ~ W1... =Maurer-Cartan equ,
means that Seidel lagrangian on P31,3,3 is “weakly obstructed”
FOOO

e Matches results on the A-model side Cho, Hong, Lau, Oh...
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Summary and Outlook

® math: Cat of matrix factorizations <—— D(Coh(M))

phys:  Boundary B-type TCFT «<—> B-type D-branes

e Field theoretical LG model allows to explicitly compute non-
trivial correlation functions also for intersecting branes

® Main issue: find suitable Gauss-Manin type differential eqgs that
determine the proper flat operator bases

Main tool: matrix analogs for higher residue pairings

® Generalization to M = CY 3-folds, eg. for quintic!?

Werr = Cxxy(t) TrXXY + Cxxyxxy(t) Tr(XXY)? + ...

\ /

t... Kahler modulus

... expect infinitely many new results in enumerative geometry
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