
2

Recap: Generalities of N=2 Gauge Theory

The theory is solved in terms of an auxiliary Riemann surface S;
for SU(n), it is of genus                     .

Over singular regions in the moduli space, this surface
degenerates in that certain 1-cycles     shrink to zero.

The corresponding periods                                          vanish,
signalling the appearence of extra massless states ("monopoles").

 The shrinking 1-cycles can be associated with certain non-
 critical strings, whose wrappings create BPS states in space-time

{φ(u),φD(u)} ∼
∮
γ
λ

γ

g = n− 1

MQ

Extend these ideas to obtain novel kinds of
exactly solvable N=2 supersymmetric (field ?) theories,
as rigid limits of known string theories ....

S

S

γ = 0

γ

MQ

Local coordinate patches on          describe different local
approximations in terms of different, weakly coupled physical
degrees of freedom; perturbative physics looks different in the
various patches.

Local Mir ror  Symmetry and Rigid L imits
of N=2 Supersymmetric String Theories

Recovering SW theory from string duality

heterotic-type II string duality

1

W.Lerche 1997

2 main par ts:

K3-fibrations

local geometry and mirror symmetry 

SW curves, blow-up in moduli space

Novel r igid limits

closed monodromy sub-problems 

vanishing 4-cycles and tensionsless, non-critical strings

stringy effective actions



Use tree-level IIB on
mirror CY’  to derive
SW effective action,
plus gravitational
corrections  !

43

Heterotic-Type I I  Str ing Duality

Heterotic String
 on  K3 x T2

     structure

vector multiplets
exact in type IIB

Type IIA String
  on   CY

Type IIB String
  on mirror CY’

Mirror symmString duality

perturbative ADE
gauge symmetry

large radius limit

non-perturbative
SW theory:
space-time instantons

(N=2 SUSY in d=4)

small radius:
world-sheet
instanton effects

tree-level:
not corrected

strong coupling

coupling: dilaton
Higgs field

S
St

coupling:  dilaton
Kähler moduli: t

D

Common moduli space:

M = MV ( , , . . .) ⊗MH( , . . .)S t

    structure

hypermultiplets
exact in heterotic string

D

heterotic
coupling

type II
coupling

HT,KV

coupling:  dilaton
complex strucure
moduli: zi( , )S t

|C |Q

D
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General Scheme

SW curvelocal, non-compact
 ADE singularity on K3

global, compact
K3 manifold

global, compact
Calabi-Yau  manifold

All what is important for a rigid, field theory limit is
the local singularity structure of the
compactification manifold !

fibration =
quantum corrections;
scale= size oflocal singularity

scale =α′

Universality:

ADE classification of "simple singularities"

ADE type of gauge theories

IP1 ! 1/Λ

5

K3-Fibrations

Important:  this duality works (naively) only for
                       a special class of Calabi-Yau compactifications
                       on the type II side .....
                       CY’s must be

The non-perturbative corrections in 4d
(a la SW) arise from
brane wrappings of the base

large        = weak coupling = instanton
effects suppressed

K3 fibrations 

K3-fiber

︸
︷︷

︸

the total space
is a Calabi-Yau
3-fold

..... essentially because the basic duality
is in 6 dimensions, between type IIA
on K3 and heterotic string on T4  (HT)

base = complex plane

the vanishing 2-cycles
give ADE gauge symmetries
in 6d

IP1

IP1

IP1

gauge particles arise from
wrapping IIA 2-branes
around these 2-cycles

IP1 ! 1/Λ
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Fibrations of ADE Singular ities

We have seen that the relevant local geometry of the K3
is given (for SU(n)) by n-1 intersecting vanishing 2-spheres

Relevant in 4 dimensions is however not the K3, but a
CY 3-fold obtained as fibration of K3 over      .

Therefore the relevant local geometry for N=2 quantum
Yang-Mills theory is simply a fibration of these 2-spheres
over       :

IP1

IP1

This geometry is in fact exactly the one of
the corresponding Seiberg-Witten curve !

the total space
is a non-compact
CY 3-fold

IP1

︸
︷︷

︸ IP1 × IP1 × IP1 × IP1

D2 brane wrappings around the fiber give the
perturbative contributions to the eff lagrangian:

F ∼
∑
(a · αi)

2 log(a · αi)

The non-perturbative corrections in 4d  (a la SW) arise
from  brane wrappings of the base

large        = weak coupling = instanton effects  suppressed

IP1

IP1

[KLMVW]
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Local ADE Singular ities on the K3 Sur face

Near a        ~ SU(2) type of singularity, K3 looks locally like:

WK3 = ε [x
2 + y2 + z2 + µ] + O(ε2)

For SU(n),

which is a 2-sphere  (vanishing 2-cycle if               )

More generally, near any ADE type of singularity, K3 looks
locally like a non-compact "ALE space of ADE type":

The vanishing 2-cycles of an ALE space generate the
corresponding ADE root lattice, and the global embedding of this
lattice into the full lattice of all the 2-cycles of K3
mirrors the embdding of a root lattice into the Narain
lattice           on the heterotic side:

"Simple singularity" of type              ;
 moduli parameters      ~ Casimirs of SU(n)µk

WK3 = ε [P
(ADE)
ALE (x, y, z)] + O(ε2)

P
(An−1)
ALE (x, y, z) = xn −

n∑
k=0

µk x
n−k−2

︸ ︷︷ ︸+y
2 + z2

An−1

 For SU(n), this looks like n-1 intersecting 2-spheres, whose
 intersection form is nothing but the              Cartan matrixAn−1

µ→ 0

Γ20,4

Non-perturbative, dual
Type IIA string version
of the heterotic Frenkel-Kac
mechanism ....

A1

H2(ALE, ZZ) ∼= ΓR(ADE)

H2(K3, ZZ) ∼= Γ20

⊂ ⊂

local ...

global ...

type IIA heterotic

H2(K3, ZZ) ∼= ΓNarain20,4
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Embedding of the SW Moduli Space

The moduli space of the non-compact CY 3-fold looks roughly

MCY

conifold singularity (~ SW monopole)

large base space limit
(weak coupling: exp(-S) = 0 )

The relevant region is located in one point,
namely in the intersection of the singular loci

Need to "blow up" the point of tangency
by singular change of variables

"Exceptional Divisor":
Seiberg-Witten moduli space
with singularities at u = {±Λ2,∞}

MQ

The Seiberg-Witten theory represents a "closed monodromy subproblem":

That is, one can consistently single out 2 periods (a,aD) from the CY
periods                     that do not mix with the other periods under
the monodromies in the u-plane,

(XA, FA)

M+Λ2 ,M+Λ2 ,M∞

u

9

SW Curves from Local Mir ror  Symmetry

In the framework of toric geometry (which is a toolkit
especially suited to describe Calabi-Yau manifolds),
it is extremely easy to obtain the SW curves directly
from the local geometrical data.

One describes it by the following "mori cone vectors" (KKV):

base IP1

︸
︷︷

︸

sphere
tree as
fiber

Each vector corresponds to an equation of the form

The whole system is solved by
{
yi
}
=
{
z,
1

z
, 1, x, x2, . . . , xn

}
This amounts to                                              of the above local geometry.

That is, the IIB mirror  on the IIA string side is given by
the algebraic curve                                     , which can be
cast in the form:

W =
∑
aiyi = 0

and encodes the correct intersection/fibration properties of
the various

WSW = z +
Λ2n

z
+ xn −

n∑
k=0

µk x
n−k−2 = 0

This is exactly the Seiberg-Witten curve for  the pure SU(n)
gauge theory !

"local mirror symmetry"

(also: periods OK)

IP1

vb = (1, 1,−2, 0, 0, 0, 0, . . . , 0, 0, 0, 0)

vf1 = (0, 0, 1,−2, 1, 0, 0, . . . , 0, 0, 0, 0)

vf2 = (0, 0, 0, 1,−2, 1, 0, . . . , 0, 0, 0, 0)

vf3 = (0, 0, 0, 0, 1,−2, 1, . . . , 0, 0, 0, 0)

...
...

vfn−1 = (0, 0, 0, 0, 0, 0, 0, . . . , 0, 1,−2, 1)

yi−1yi+1 = yi
2
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The Physics of Vanishing 4-cycles ?

Related to still another kind of non-critical strings in 6 dimensions:

Before we had (0,2) susy of strings wrapping around SW curves:  "Type II"
Here we have chiral (0,1) non-crit. strings with E8 symmetry: "Heterotic"

Scheme:

IIA                                        F-Theory                          heterotic string
on elliptic CY                     on                                        on

If del-Pezzo 4-cycle         vanishes:     5-brane in F-theory leads to
                                                                       tensionless En string in d=6.

d=12

d=10

d=6

d=4

If  we consider type IIA string on the same degenerating CY      ,
we obtain the torus compactification of the En string to d=4.

This gives an effective U(1) N=2 SUSY theory in d=4 , analogous to the
Seiberg-Witten theory:
               what are its properties,  the effective action ?

X X × T2

Bn

X

K3× T2

dual

dual

T2 T2

K3

X

X

(
“
√
E8 × E8 het. String”

)

11

Other Globally Consistent Sub-Theories ?

Conjecture:  all possible consistent "rigid" truncations of a string
compactification are given by closed sub-monodromy problems,
that allow to single out a subset of the periods.

MCY

MQ

Any such closed subproblem defines a
canonical physical, non-perturbatively
consistent sub-theory !

However, this does not necessarily always give a QFT
that we already know, like SYM theory with matter.
There can be novel things like non-critical strings or
membranes..... !

Clearly such closed subproblems should always
be associated with a distinguished geometrical structure.

Any such theory appears as consistent as the SW theory itself, since
it is on the same footing.

Consider here:
         ~ size of a "del Pezzo" 4-cycle        in a Calabi-Yau

del Pezzo  types               =  (          blown up at n points;

..... have canonical En symmetry
n=0,1,....8 )

MQ Bn

Bn IP2
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Properties of the Moduli Space

     parametrized by

Note:              is a global slice through the CY moduli space,
that includes the large complex structure point.
This is in contrast to SW theory that is concentrated in one point,
as we have seen.

show:  both 2- and 4-cycles    (a and aD)  vanish at origin.
             conformal point with          many massless excitations,
             electric and magnetically charged

Only 3 independent periods

Only 3 singularities in moduli space:

Π =
(
1, a(u), aD(u)

)

MQ

u

10

large complex structure
limit of CY

conifold singularity:
massless hypermultipet

MQ

MQ u ≡ ψ6 ! e2πia + instanton corr

~ (0,2,4)-cycles

13

Intr insic Formulation (B8)

Embed 4-cycle B8 into non-compact Calabi-Yau 3-fold:

mori vector:

This non-compact 3-fold is the IIB local mirror of the B8 4-cycle in
 the embedding Calabi-Yau.

(Coxeter number)

Similar for the other Bn~ En; these are sub-cases

vB8 = {−6, 3, 2, 1, 1,︸ ︷︷ ︸
B8

−1 }︸ ︷︷ ︸
normal bundle

WB8 =
1

w6︸︷︷︸
2d gravity

+ y2 + x3 + z1
6 + z2

6︸ ︷︷ ︸
B8 singularity

−ψ (xywz1z2)

According to our rules, this immediately gives:

It contains all relevant information in its periods.

The Euler number is χ = 2hE8 , hE8 = 30

This is actually a 1-modulus sub-theory of a larger theory ;
in principle, there are 8 more moduli (E8 Wilson lines) that
could be switched on to break E8 to a subgroup (G,GMS..)
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Geometr ic Reduction to Elliptic Curve

Π ≡
(
1, a(u), aD(u)

)
=

∫
Γ

Ω , Ω ≡ ψ
xdw dy dz1 dz2

WB8

Can now explicitly obtain the periods                   in terms of
hypergeometric functions:

Evaluate explicitly the 3-cycle integrals (technical):

whereΠ ≡

∫
Γ

Ω −→

∫
α,β

λ

λ =
1

2
log
[√1 + x3 + 14ψ2x2 + 12ψ x√
1 + x3 + 14ψ

2x2 − 12ψ x

] dx
x

from(1, a, aD) =

∫
du

u
(%,%D) + const.

∫
λ

where the ordinary torus periods are

%D(u) =
31/4

4π3/2i

(
ξF0(u) +

1

ξ
F1(u)

)
%(u) =

31/4

4π3/2i

(
ρξF0(u) +

1

ρξ
F1(u)

)
,

ξ ≡ −
i 31/4

22/3 π3/2
Γ(1/3)3 , ρ ≡ e2πi/3

and
F0(u) = u

1/6
2F1
(1
6
,
1

6
,
1

3
;u
)
,

F1(u) = u
5/6
2F1
(5
6
,
5

6
,
5

3
;u
)
.

with

What we have achieved is a formulation of the del Pezzo theory in
terms of an "ordinary" Seiberg-Witten curve, with  a however very
complicated differential.
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Properties of the Periods

 The periods are killed by the Picard-Fuchs differential operator       :

This just happens to be the PF operator for the elliptic curve

Suggests to relate the del Pezzo periods       to SW type periods
of the above torus; for this, need to find a suitable meromorphic
differential     .

Π ≡
(
1, a(u), aD(u)

)
=

∫
Γ

Ω , Ω ≡ ψ
xdw dy dz1 dz2

WB8

3-cycle mirrors of (0,2,4)-cycles

L · Π = 0 , L ≡ LE8 ·Θ Θ ≡ u
∂

∂u

which contains the hypergeometric operator

LE8 ≡ Θ
2 − 12u(6Θ + 5)(6Θ+ 1)

PẼ8 = y
2 + x3 + z6 − ψ xyz = 0

("        elliptic singularity".....)

So this means that

Ordinary torus periods

Θ ·Π ≡ u
∂

∂u
(1, a(u), aD(u)) = (0,%,%D︸ ︷︷ ︸)

This is very similar to the usual SW periods that obey
∂

∂u
(a(u), aD(u)) = (%,%D)

LE8 ·Θ · Π = 0
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Physical Interpretation / Conclusion

It might be that the moduli space we found is intrinsically related
to the d=6 non-crit string itself, and not necessarily to its
4d compactification ...  ?

We have hit in the CY moduli space a sub-space that forms a
closed monodromy sub-problem and that thus defines a consistent
physical sub-theory. What is the physics of this theory ?

This rigid sub-theory displays intrinsic stringy behavior, in terms
of world-sheet instantons near infinity.
The constant period can be interpreted in terms of KK excitations.

Thus this sub-theory indeed behaves much like a compactified
d=6 non-critical E8-type of string !

The correct identification of the modulus is

But the compactification radii can be absorbed in an
"effective" string tension, and there are no net geometrical
parameters to vary !

MQ

10

large complex structure
limit: stringy expansion

Conformal point:
infinitely many massless excitations

non-crit. string tension

T2 radii

F∞ !
∑
c! e

2πi!a

a ! B + iR5R6Φ
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Effective Actions near the Singularities

Just like for ordinary SW theory, we can now write down an effective
action for each local coordinate patch, centered at any given
singularity:

 u=0:  conformal point

This is very different as compared to the usual rigid
SW gauge theory, where

 u=1:  conifold point

It is intrinsically stringy, but we have here a rigid theory where
gravity is already switched off !

no logarithm:  vanishing beta-function

F0 =
1

2
τ0 a

2 +O(a6) , τ0 = e
2pii/3

just like for ordinary SW theory at the monopole point

aD(u) ! const +O(u− 1) , a(u) ! (u− 1) log[u− 1] +O(u− 1)

 u=       : large complex structure limit

Π ≡
(
1, a(u), aD(u)

)
!
(
1, log[u], log[u]2

)

Familiar world-sheet
 instanton expansion
(nl=252,-9252,.......)

F∞ ! a2 log[a2] +
∑
c!

(1
a

)4!

F∞ =
1

6
a3 +

1

4
a2 −

5

12
a+ const +

1

(2πi)3

∞∑
!=1

n! Li3(e
2πi!a)︸ ︷︷ ︸

(
prepotential F(a) ≡

∫
daaD(a)

)


