Open String TFT on the Elliptic Curve

W.Lerche, ASC München 04-2006

hep-th/0408243, with I. Brunner, M. Herbst, J.Walcher hep-th/0512208, with S. Govindarajan, H.Jockers, N.Warner hep-th/0603085, with M. Herbst, D. Nemeschansky

Prior important work by: Kontsevich, Kapustin/Li, Zaslow/Polishchuk

Overview

- Why is this interesting to study ? ...completely solvable toy model
- Non-trivial for intersecting brane configurations
- Playground for studying "homological mirror symmetry" between categories of A- and B-type of topological D-branes

I

• Practical application: compute correlation functions, effective superpotential including world-sheet instanton corrections

Landau-Ginzburg description of B-type D-branes

• Consider bulk LG model with superpotential: $\int_{\Sigma} d^{2}z d\theta^{+} d\theta^{-} W_{LG}(\Phi) + cc.$ B-type SUSY variations induce boundary ("Warner")-term: $\int_{\Sigma} d^{2}z d\theta^{+} d\theta^{-} (\bar{Q}_{+} + \bar{Q}_{-}) W_{LG} = \int_{\Sigma} d^{2}z d\theta^{+} d\theta^{-} (\theta^{+} \partial_{+} + \theta^{-} \partial_{-}) W_{LG}$ $= \int_{\partial \Sigma} dx d\theta W_{LG}$ • Restore SUSY by adding boundary fermions $\Pi = (\pi + \theta^{+} \ell)$ (... not quite chiral: $\bar{D} \Pi = E(\Phi)|_{\partial \Sigma}$) via a boundary potential: $\delta S = \int_{\partial \Sigma} dx d\theta \Pi J(\Phi)$ Condition for SUSY: $J(\Phi)E(\Phi) = W_{LG}(\Phi)$

Matrix factorizations

• Generalization for n LG fields: need N=2ⁿ boundary fermions, and

$$J_{N \times N} \cdot E_{N \times N} = E_{N \times N} \cdot J_{N \times N} = W_{LG} 1_{N \times N}$$

7

• Physical interpretation: N... Chan-Paton labels of space-filling $D\overline{D}$ pairs

Boundary potentials J,E are tachyon profiles that describe condensation to given B-type D-brane configuration [Kapustin-Li, Lazaroiu]

• Physical open string spectrum: determined by the cohomolgy of the BRST operator: $Q_{e} = \bar{\partial} + Q_{\partial}$

$$egin{array}{rcl} Q_{\partial} &=& \pi\,J + ar{\pi}\,E \;=\; igg(egin{array}{cc} J \ E & \end{array}igg) \ 1/2\,Q_{\partial}\cdot Q_{\partial} \;=& W_{LG}\,1_{2N imes 2N} \end{array}$$

Kontsevich's triangulated category C_W

The LG model provides a concrete physical realization of a certain Z₂-graded "twisted" category C_W : all quantities have explicit LG representatives

• objects: composites out of DD pairs:

$$M_A \cong \left(\begin{array}{cc} P_1^{(A)} & {J^{(A)}\over \displaystyle{\swarrow \over E^{(A)}}} \end{array} P_0^{(A)}
ight), \quad J^{(A)}E^{(A)} = W$$

• morphisms (boundary Q-cohomology):

Large radius linear sigma model

Bound State formation via tachyon condensation

• Boundary changing tachyon profile:

$$J_{AB}(u_A,u_B,T) \;=\; egin{pmatrix} J_A(u_A) & T\Psi_{AB}(u_A,u_B) \ 0 & J_B(u_B) \end{pmatrix}$$

For non-zero tachyon field T, this corresponds to a new matrix factorization, describing a ``bound state" (non-trivial bundle extension)

• Boundary RG flow: physical realization of the "cone" construction:

triangle:
$$M_A \xrightarrow{\Psi_{AB}} M_B \longrightarrow C \longrightarrow M_A[1]$$

cone: $C = \left(P_1^{(A)} \oplus P_0^{(B)} \xrightarrow{J_{AB}} P_0^{(A)} \oplus P_1^{(B)} \right)$

П

D-branes on the elliptic curve, B-Model

• Simplest Calabi-Yau: the cubic curve

$$T_2: \quad W_{LG} \equiv x_1^3 + x_2^3 + x_3^3 + a x_1 x_2 x_3 = 0$$

• Charges of simplest branes \mathcal{L}_2 \mathcal{S}_2 \mathcal{L}_1 \mathcal{L}_1 \mathcal{L}_1 \mathcal{L}_2 \mathcal{L}_2 \mathcal{L}_2 \mathcal{L}_1 \mathcal{L}_1 \mathcal{L}_1 \mathcal{L}_2 \mathcal{L}_3 \mathcal{L}_3

The "short diagonals" S are related to 2x2 factorizations, while the "long diagonals" L are described by 3x3 (4x4) factorizations

D-branes on the elliptic curve, B-Model

• Quiver diagram of open string spectrum

13

Generating the charge lattice

 One can systematically apply the cone construction, and generate matrix factorization corresponding to branes with arbitrary RR charges (rank(V),c1(V)) as composites out from a generating set

[GHLW]

particular choice of tachyon determines bound state

• There is more to it than just adding RR charges, due to the moduli dependence of the matrices... interesting phenomena e.g.,

bound states at threshold $u_A \neq u_B$ $\mathcal{M}(\mathcal{D}_A, \mathcal{D}_B) \cong \operatorname{Sym}^{\otimes 2}T_2$ $u_A = u_B$ $\hat{u} \neq 0$ blow up $\hat{u} \neq 0$

3x3 matrix factorization

Simplest are the factorizations corresponding to the long diagonals Li

 $J_{i} = \begin{pmatrix} \alpha_{1}^{(i)}x_{1} & \alpha_{2}^{(i)}x_{3} & \alpha_{3}^{(i)}x_{2} \\ \alpha_{3}^{(i)}x_{3} & \alpha_{1}^{(i)}x_{2} & \alpha_{2}^{(i)}x_{1} \\ \alpha_{2}^{(i)}x_{2} & \alpha_{3}^{(i)}x_{1} & \alpha_{1}^{(i)}x_{3} \end{pmatrix}$ $E_{i} = \begin{pmatrix} \frac{1}{\alpha_{1}^{(i)}x_{1}^{2} - \frac{\alpha_{1}^{(i)}}{\alpha_{2}^{(i)}\alpha_{1}^{(i)}x_{2}x_{3}} & \frac{1}{\alpha_{3}^{(i)}}x_{3}^{2} - \frac{\alpha_{3}^{(i)}}{\alpha_{1}^{(i)}\alpha_{2}^{(i)}}x_{1}x_{2} & \frac{1}{\alpha_{2}^{(i)}}x_{2}^{2} - \frac{\alpha_{2}^{(i)}}{\alpha_{1}^{(i)}\alpha_{3}^{(i)}}x_{1}x_{3} \\ \frac{1}{\alpha_{2}^{(i)}}x_{3}^{2} - \frac{\alpha_{2}^{(i)}}{\alpha_{1}^{(i)}\alpha_{3}^{(i)}}x_{1}x_{2} & \frac{1}{\alpha_{1}^{(i)}}x_{2}^{2} - \frac{\alpha_{1}^{(i)}}{\alpha_{2}^{(i)}\alpha_{3}^{(i)}}x_{1}x_{3} & \frac{1}{\alpha_{3}^{(i)}}x_{1}^{2} - \frac{\alpha_{3}^{(i)}}{\alpha_{1}^{(i)}\alpha_{2}^{(i)}}x_{2}x_{3} \\ \frac{1}{\alpha_{3}^{(i)}}x_{2}^{2} - \frac{\alpha_{3}^{(i)}}{\alpha_{1}^{(i)}\alpha_{2}^{(i)}}x_{1}x_{3} & \frac{1}{\alpha_{2}^{(i)}}x_{1}^{2} - \frac{\alpha_{2}^{(i)}}{\alpha_{1}^{(i)}\alpha_{3}^{(i)}}x_{2}x_{3} & \frac{1}{\alpha_{1}^{(i)}}x_{3}^{2} - \frac{\alpha_{1}^{(i)}}{\alpha_{2}^{(i)}\alpha_{3}^{(i)}}x_{1}x_{2} \end{pmatrix}$

These satisfy $J_i E_i = E_i J_i = W_{LG} 1$ if the parameters satisfy the cubic equation themselves:

$$W_{LG}(\alpha_i) \equiv \alpha_1^{\ 3} + \alpha_2^{\ 3} + \alpha_3^{\ 3} + a(\tau) \, \alpha_1 \alpha_2 \alpha_3 = 0$$

Thus the parameters parametrize the (jacobian) torus and can be represented by theta-sections:

$$lpha_\ell^{(i)} \sim \Theta \Big [rac{1-\ell}{3} - rac{1}{2} - rac{1}{2} \Big | \, 3u_i, 3 au \Big]$$

 u, τ ...flat coordinates of open/closed moduli space (natural in mirror A-model)

(i=1,2,3)

[HW]

15

Open string BRST cohomology

Superpotential on brane intersection

• Compute 3-point disk correlators = Yukawa couplings in LG framework $\mathcal{W}_{\mathrm{eff}} \sim C_{abc}(u_i, \tau) T_{13}^{(a)} T_{32}^{(b)} T_{21}^{(c)} + \dots$

$$egin{aligned} C_{abc}(u_1,u_2,u_3) &= ig\langle \Psi_{13}^{(a)}(u_1,u_3)\Psi_{32}^{(b)}(u_3,u_2)\Psi_{21}^{(c)}(u_2,u_1)ig
angle \ &= rac{1}{2\pi i} \oint \mathrm{Str}\Big[(rac{dQ}{dW})^{\otimes \wedge 3}\Psi_{13}^{(a)}\Psi_{32}^{(b)}\Psi_{21}^{(c)}\Big] \end{aligned}$$

• Final result: theta functions

$$C_{111}(\tau,\xi) = e^{6\pi i \xi_1 \xi_2} q^{3\xi_2^2/2} \sum_m q^{3m^2/2} e^{6\pi i m\xi}$$

$$C_{123}(\tau,\xi) = e^{6\pi i \xi_1 \xi_2} q^{3\xi_2^2/2} \sum_m q^{3(m+1/3)^2/2} e^{6\pi i (m+1/3)\xi}$$

$$C_{132}(\tau,\xi) = e^{6\pi i \xi_1 \xi_2} q^{3\xi_2^2/2} \sum_m q^{3(m-1/3)^2/2} e^{6\pi i (m-1/3)\xi}$$

$$(\xi \equiv u_1 + u_2 + u_3 = \xi_1 + \tau\xi_2)$$
(Polishchuk,Cremades et al)

The topological A-Model: instantons

 Interpretation of q-series: In A model mirror language, these are contributions from triangular disk instantons whose world-sheets are bounded by the three D1-branes:

 $\Theta_{penta} \begin{bmatrix} a \\ b \\ c \end{bmatrix} (3\tau | 3u, 3v, 3w) \equiv \sum_{m, n, k} q^{\frac{1}{3}(a_{>} + 3(n+k))(b_{>} + 3(m+k)) - \frac{1}{6}(c+3k)^{2}} e^{2\pi i \left((a_{>} + 3(n+k))u + (b_{>} + 3(m+k))v + (c+3k)(w-1/6) \right)}$ $\mathcal{H}_{\bar{a}\bar{b}\bar{c}\bar{d}\bar{e}\bar{f}}(\tau,u_{i}) = \delta_{0,\bar{a}+\bar{b}+\bar{c}+\bar{d}+\bar{e}+\bar{f}}^{(3)}\Theta_{hexa} \begin{bmatrix} [-b-c-d]_{3}\\ [c+d+e]_{3}\\ [c-d+\frac{3}{2}]_{3}\\ [a-f+\frac{3}{2}]_{3} \end{bmatrix} (3\tau|3(u_{5}-u_{2}),3(u_{1}-u_{4}),3(u_{3}+u_{2}+u_{4}),3(-u_{6}-u_{1}-u_{5}))$ N=6: hexagons

 $\Theta_{hexa} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} (3\tau | 3u, 3v, 3w, 3z) \equiv \sum_{m,n,k,l} {}^{l} q^{\frac{1}{3}(a+3n)(b+3m) - \frac{1}{6}(c+3k)^2 - \frac{1}{6}(d+3l)^2} e^{2\pi i \left((a+3n)u + (b+3m)v + (c+3k)(w-1/6) + (d+3l)(z+1/6) \right)}$ $\sum_{k=1}^{\prime} \sum_{j=1}^{\prime} \sum_{k=1}^{\infty} \sum_{j=1}^{l} \sum_{k=1}^{l} \sum_{j=1}^{l} \sum_{j$

20

Global properties of open string moduli space

 Indefinite theta-fcts: singularities due to colliding branes eg., rewrite trapezoidal function in terms of Appel function:

$$\Theta_{trap} \left[\begin{array}{c} a \\ b \end{array} \right] (3\tau | 3u, 3v) \ = \ e^{2\pi i v b} \sum_{n \in \mathbb{Z}} \frac{q^{\frac{1}{6}(a+3n)(a+2b+3n)} e^{2\pi i (a+3n)(u-1/6)}}{1-q^{a+3n} e^{6\pi i v}}$$

• analytic continuation

Area becomes negative: resum instantons in terms of different geometry

"instanton flop"

21

Global properties of open string moduli space

contact term

Open/closed top. string consistency conditions

• How can we be sure that these expressions are correct ? Make use of Q-closedness and factorization constraints

$$Q \cdot \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) = \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) + \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) + \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) = 0$$

These lead to " A_{∞} relations" for correlators

 $\sum_{\substack{k,j=0\\k\leq j}}^{\dots} (-1)^{\tilde{a}_1+\dots+\tilde{a}_k} r_{m-j+k}(\psi_{a_1}\dots\psi_{a_k},r_{j-k}(\psi_{a_{k+1}}\dots\psi_{a_j}),\psi_{a_{j+1}}\dots\psi_{a_m}) = 0$ $r_m(\Psi_{a_1}\dots\Psi_{a_m}) \equiv \Psi_{a_0}C_{a_1\dots a_m}^{a_0}$

....here: simple interpretation in terms of instanton geometry:

(compatible with homotopy transf)

23

Quantum A_{∞} relations for the annulus

[Herbst]

• There are analogous factorization relations in higher genus, eg:

 In concrete case, it boils down to an identity between disk and and annulus correlators:

$$\partial_{u_3} \mathcal{A}_{\Omega|} = \partial_{u_3} \sum_{\substack{3 \ n \neq 0, m \\ c = 1}} q^{nm} e^{6\pi i n(u_1 - u_3)}$$
$$= \sum_{c=1}^{3 \ n \neq 0, m} \mathcal{P}_{a\bar{c}c\bar{a}}$$

This maps disk and annulus instantons into each other!

