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ABSTRACT

We review the properties, and soliton structure, of a class of quantum
integrable N = 2 supersymmetric field theories that can be obtained by
a particular perturbation of certain N = 2 superconformal field theories.
These integrable theories are remarkable in that they have an exactly
known effective Landau-Ginzburg superpotential, and this enables us
to determine much about the soliton spectrum. We also discuss some
features of other integrable perturbations of the N =2 supersymmetric
minimal models.

1. Introduction

Our intention here is primarily to give an overview of what one can learn about
N=2 supersymmetric quantum integrable models by employing Landau-Ginzburg
methods. A secondary purpose is to discuss what we believe to be a very interesting
class of N = 2 superconformal theories. This class of theories goes by the unpre-

possessing name of SLOHSS models
‡

. These theories were originally described in
terms of cosets1, but, as one might expect from the title of this lecture, they also
have a Landau-Ginzburg description2,3. In addition to this, the SLOHSS models
also have a Toda description, and a related free field description4,5; they are al-
most certainly super-W minimal models6, and very probably have a simple solvable
lattice description7. On top of these facts, the most relevant chiral primary per-
turbations of these models provide N=2 supersymmetric, integrable field theories,
and these will be the main topic of this lecture. In particular, we will describe the
chiral soliton spectrum of these theories, and give a very simple characterization of

∗ Talk presented by N.P. Warner.

‡ This stands for some permutation of the words: supersymmetric, simply-laced, level one,
and hermitian symmetric space.



the quantum numbers of the solitons in terms of projections of a regular geometric
figure called the soliton polytope. The discussion here is based primarily upon the
work in a recent paper8 and upon earlier material9,4.

Apart from, and somewhat independent of, this, we have included some as
yet unpublished ideas about particular perturbations of the N=2 supersymmetric
A-D-E minimal models.

2. The SLOHSS Models

The SLOHSS models form a subclass of the general N =2 super-coset models
of Kazama and Suzuki1. To obtain the latter models one applies the super-GKO
construction to Kählerian cosets G/H ′. Specifically, one considers coset models of

the form G×SO(d)
H ′ , where d = dim

(
G/H ′

)
; H ′ is embedded into both G and SO(d),

and H ′ = H × U(1), with the U(1) inducing the Kähler structure on G/H ′. The
Kähler structure enables one to decompose the single supercharge of the super-GKO
construction, into the two N = 2 supercharges. The SLOHSS spaces are obtained
by making the following further restrictions:

(i) G is simply-laced.
(ii) G has level one.
(iii) G/H ′ is a hermitian symmetric space.

This leaves one with three infinite series of models, and two exceptionals
♮

:

G/H =
SU(n+m)

SU(n) × SU(m) × U(1)
,

SO(n+ 2)

SO(n) × U(1)
(n even) ,

SO(2n)

SU(n) × U(1)
,

E6

SO(10) × U(1)
, or

E7

E6 × U(1)

(2.1)

The chiral primary fields
⋄

of the N = 2 supersymmetric coset models have
been computed2. These fields from a ring, R, with multiplication induced from the
operator product expansion. For SLOHSS models, this ring can be characterized
by a Landau-Ginzburg potential, W0(φi). That is, there are chiral primary fields,
φi, that generate the ring R, and a quasihomogeneous function W0(φi) such that R
is the local ring of W0

•
. The fact that W0 is quasihomogeneous means that there

are some rational numbers ωi such that:

W0(λ
ωi φi) = λ W0(φi).

♮ Note that SU(n+1)

SU(n)×U(1)
describes the N =2 minimal series of type An+1, whereas SO(n+2)

SO(n)×U(1)

(n even) gives the series Dn+2. Note also that there exists no SLOHSS model based on E8.

⋄ These are primary fields, φ, that are annihilated by half the supercharges: G+
−1/2

φ =

G̃+
−1/2

φ = 0, where G±(z) and G̃±(z̄) are the four supercurrents.

• The local ring of W0 is defined as the quotient R ≡ P/J where P is the ring of power

series in φi and J ≡ {
∂W0
∂φi

} is the ideal of P generated by the partials
∂W0
∂φi

of W0.



The conformal weights of φi satisfy hi = h̄i = 1
2ωi. One can now take the view that

an N=2 SLOHSS theory can be described by going to the infra-red fixed point of
an N=2 Landau-Ginzburg theory with a superpotential W0

10,2.
It is relatively straightforward, though a little laborious, to obtain the superpo-

tential W0(φi) for a given coset G/H ′ explicitly. One can compute this superpoten-
tial by exploiting the fact that the chiral ring, R, is isomorphic to the cohomology
ring H∗(G/H ′) 2, and the latter can be computed by using the invariant differen-
tial forms on the coset11. These observations lead to the following algorithm for
computing W0: Let ψA, A = 1, . . . , r be the independent (irreducible) casimirs of
H ′ and let χA, A = 1, . . . , r be those of G. The number of these casimirs is equal to
rank(G) = rank(H ′), and their degrees are m′

A +1 and mA +1, where m′
A and mA

are the exponents of H ′ and G respectively. (We adopt the convention that a U(1)
factor in H ′ has an exponent equal to zero, and a casimir of degree one, i.e. the
trace.) The casimirs of G are necessarily H ′ invariant, and so one can decompose
the χA into polynomial functions of the ψB . The ring R consists of all polynomials
generated by the ψB modulo the ideal J generated by the polynomials χA(ψB).
Some of the χA have terms that are linear in some ψC , and these particular χA

can be succesively set to zero and thereby used to eliminate some of the ψC . Let
φi be the subset of the ψA that remain after this process. The ring R can then
be generated by these φi’s modulo the remaining χA’s. The somewhat surprising
empirical fact is that one can ‘integrate’ this ring to obtain a quasihomogeneous
function W0, whose local ring is R. We stress that this is an empirical fact, and, as
yet, we have no deep understanding of why this can be done.

3. Perturbed SLOHSS Models

The idea now is to construct integrable models by using conformal perturba-
tion theory12. In the N=2 superconformal field theories described above there is a
unique lowest dimensional chiral primary field, which will be denoted by φ1. Con-
sider the field theory obtained by making a perturbation of the conformal “action”
by:

λ

∫
G−

−1/2G̃
−
−1/2 φ1 d

2z + λ̄

∫
G+

−1/2G̃
+
−1/2 φ̄1 d

2z , (3.1)

where φ̄1 is the anti-chiral conjugate of φ1. Since conformal field theories do not
necessarily have actions, one must interpret the foregoing as a statement about mod-
ifying the hamiltonian, or, equivalently, one defines the new correlation functions
pertubatively by making insertions of the form of Eq.(3.1).

One fairly obvious fact is that the perturbed model is still N=2 supersymmet-
ric. What is far less obvious is that the model is also (quantum) intergrable. One
can establish this by using conformal perturbation theory12, but doing this directly
from the coset description is extremely laborious and is only really feasible for the
minimal models9. The most effective method to demonstrate integrability is to pass



to the Toda, or to the free field, formulation of the underlying conformal model. By
making a simple extension of arguments that are used for W minimal models13, it
can be shown4that the W algebra generators of G extend to integrals of motion in
the perturbed SLOHSS models. These models have a super-W structure6, and one
can show14 that each of the W generators of G is, in fact, the top component of a
super-multiplet of currents. Thus, there are conserved currents with spins mA + 1,
and associated charges, q(mA), with spin mA, where, once again the mA are the
exponents of G. While it has not been established beyond the sine-Gordon models,
there are probably infinitely many conserved charges, whose spins are congruent to
the mA mod g, where g is the (dual) Coxeter number of G.

3.1. The Ground States of the Perturbed Model

The perturbed conformal field theory has an effective Landau-Ginzburg po-
tential:

W (φi) = W0(φi) + λφ1 . (3.2)

To determine the ground states of this theory, one has to solve ∂W
∂φi

= 0. This is
most easily accomplished by reverting to the group theoretic characterization of the
ring, R. Indeed, in terms of the casimirs, χA, of G, one has to solve:

χr = const. λ , χA = 0 , A = 1, . . . , r − 1 , (3.3)

where χr is the casimir of maximal degree, g = mr + 1. It is now very convenient
to consider χA restricted to the Cartan subalgebra (CSA) of G, and think of χA as
a function acting on some basis elements of the CSA. Indeed, χA is a homogeneous
polynomial of degree mA + 1 on the CSA, and this polynomial is W (G)-invariant,
where W (G) is the Weyl group of G

⋆
. Let ξ denote a vector in the CSA. Consider

a Coxeter element
†

,s, of W (G). This element has order g, and acting on the CSA,
s has eigenvalues exp(2πimj/g), j = 1, . . . , r. Let ξ(1) be an eigenvector of s with
eigenvalue exp(2πi/g). Now observe that because χA is W (G) invariant, we have:

χA(ξ(1)) = χA(s(ξ(1))) = χA(e2πi/g ξ(1)) = e2πi(mA+1)/gχA(ξ(1)) ,

where the last identity follows from the homogeneity of χA. However the foregoing
implies that χA(ξ(1)) ≡ 0, A = 1, . . . , r − 1. Moreover χr(ξ(1)) 6= 0 since the
vanishing of all the casimirs would imply ξ(1) ≡ 015. Observe that all the W (G)
images of ξ(1) also satisfy Eq.(3.3). Finally, note that because the Landau-Ginz-
burg fields are all H ′-casimirs, all the W (H) images of ξ(1) yield the same ground

⋆ Conversely, a W (G)-invariant polynomial on the CSA can be extended to a casimir on G.

† A Coxeter element can be written as a product r1r2 . . . rr, where ri is the Weyl reflection

in the simple root αi. A Coxeter element depends on the choice of a system of simple roots,

and the upon the ordering of the ri in the foregoing product, but all Coxeter elements are
conjugate, and any such element will suffice here.



state. This gives a one-to-one
∗

mapping between the ground states of the perturbed
model and the cosets of W (G)/W (H). It is interesting to note that in the conformal
theory there is also a natural one-to-one association of Ramond ground states and
the cosets of W (G)/W (H) 2,8. Presumably these associations of Weyl cosets with
ground states in the conformal and perturbed conformal theories are related, but
this is not obvious from the two constructions.

One should also note that the perturbed superpotential in Eq.(3.2) is com-
pletely resolved (morsified), and only has massive perturbations.

3.2. Soliton Structure and Soliton Masses

Suppose that the two-dimensional space time is IR× IR with coordinates (σ, t).
We want to find the minimum energy configurations, φi(σ, t), subject to the bound-
ary conditions:

φi(σ = ±∞) = φ±
i , (3.4)

where φ±
i are two of the solutions to: ∂W

∂φi
= 0. In particular, we wish to deter-

mine the fundamental chiral solitons; that is, those single soliton states that are

annihilated by half of the supercharges in the pertubed theory
‡

.
At is this point it is helpful to use the following physical picture as a guide:

The conformal field theory has µ =
∣∣ W(G)
W(H)

∣∣ degenerate Ramond ground states that

can be mapped into each other via operator product with the chiral primary fields.
The perturbed theory also has µ distinct degenerate ground states, and we are
now seeking the chiral solitons that link these ground states. Such chiral solitons

presumably have the chiral primary fields as their conformal progenitors
♮
.

The commutation relations of the perturbed superalgebra can be computed8

and one finds that the mass, M , of a solitonic state satisfies a Bogomolny bound:

M ≥ |∆W | = | const. ∆φ1| , (3.5)

where ∆W ≡ W (φ+
i ) − W (φ−

i ) is the topological charge of the soliton, and this
charge is proportional to ∆φ1 ≡ φ+

1 − φ−
1 . The bound in Eq.(3.5) can also be

established by semi-classical arguments16,9. The chiral solitons are precisely those
solitons that saturate this bound, and because of this one can argue that the chiral
solitons are fundamental. That is, the chiral solitons are generally not multi-soliton
states. Therefore, to determine the mass spectrum of the (fundamental) chiral

∗ To completely establish this one needs the theorem that the values of the casimirs on ξ
uniquely specify ξ up to Weyl images15.

‡ The perturbed theory has four supercharges: Q±and Q̃± and two appropriately chosen

linear combinations 9,8of these charges annihilate chiral solitons.

♮ It would be nice to establish this interpretation rigorously, and in particular see how oper-

ators and states behave as one continuously deforms the theory away from the conformal
point.



solitons, one needs to solve the problem of which pairs of ground states are connected
by such solitons. It is simplest to first state the solution to this problem and then
justify it. To do this we need to introduce the soliton polytope, P .

For a hermitian symmetric space G/H ′, there is a canonical representation, V ,
(called Ξ in our earlier work8) of G such that (i) the representation is miniscule, i.e.
all the weights of V have the same length, and (ii) the highest weight space |λ> is
fixed by H ′. (In fact λ = 2

g (ρG − ρH), where ρG and ρH are the Weyl vectors of G

and H respectively.) For example, for the grassmanians:

Gm,n ≡ SU(n+m)

SU(n) × SU(m) × U(1)
, (3.6)

the representation, V , is the m index anti-symmetric tensor of SU(m + n). The
important point is that, literally by definition, the weights of V are in one-to-one
correspondence with the cosets of W (G)/W (H). Thus we may associate ground
states of the integrable model with the vertices of a regular geometric figure whose
vertices are the weights of V . This is the soliton polytope, P . If λ1 and λ2 are two
weights of V whose corresponding ground states can be linked by a chiral soliton,
then, from the results above, it is elementary to see that the mass of this soliton is
given by:

M = M0 |ξ(1) · (λ1 − λ2)| , (3.7)

where M0 is some overall constant and ξ(1) is the eigenvector of the Coxeter element
introduced earlier.

The characterization of chiral solitons is now elementary: two ground states
are connected by a chiral soliton if and only if the corresponding weights, λ1 and
λ2, on P differ by a root of G. While there is not a completely rigorous proof of this
statement, there is very strong evidence that it is true8. There are some physical
arguments, of which perhaps the best is based upon the relationship between the
conformal theory and the perturbed theory8. However, perhaps the most compelling
evidence is the fact that the foregoing characterization of fundamental chiral solitons
satisfies a vast number of consistency conditions provided by resonances. Since this
analysis leads to the soliton charges for the higher spin integrals of the motion, we
will describe it here in some detail.

3.3. Higher Spin Conserved Charges

Consider any three vacua on P that are connected by a triangle of chiral soli-
tons. Label these solitons by a,b and c. Project this soliton triangle into the the
complex plane defined by ξ(1). Then from Eq.(3.7) one sees that the sides of the
triangles have lengths equal to the masses Ma, Mb and Mc of the three solitons.
Let the angles be labelled by θa, θb and θc as shown in figure 1. Then some trivial
trigonometry shows that:

Ma e
i(θa−π) + Mb e

−i(θb−π) = Mc . (3.8)



θa θc

θb

Mc Ma

Mb

Figure 1. The mass projection of the soliton triangle.

If one now imagines scattering soliton a and soliton b against each other, then

there is a resonance to create soliton c at rest when soliton a and soliton b have

rapidities i(θa −π) and −i(θb −π) respectively. Now recall that there are conserved

charges, q(mA), whose spins are mA, A = 1, . . . , r (with q(1) being the mass). Let

q
(s)
a , q

(s)
b and q

(s)
c be the spins s charges of the solitons a, b and c. The resonance

implied by the soliton triangle of a, b and c imposes the following constraint upon

the q(s) charges:

q(s)a eis(θa−π) + q
(s)
b e−is(θb−π) = q(s)c . (3.9)

Considering every soliton triangle in the polytope provides a highly overdetermined

system for all the spin s charges of the solitons (see figure 2, for example). The

solution to this system of equations is also provided by the soliton polytope.

Consider, once again, the Coxeter element of the Weyl group of G acting on

the CSA. Let ξ(mA) be an eigenvector with eigenvalue exp(2πimA/g). Project the

soliton triangles onto the complex plane defined by ξ(s). The remarkable fact about

the soliton polytope is that this new triangle has interior angles sθa, sθb and sθc

mod π8,17,18. Thus, modulo signs and an overall scale, one can identify q
(s)
a , q

(s)
b

and q
(s)
c with the side lengths of this projection of the soliton triangle. Moreover,

one can orient the sides and thereby give these lengths a sign so that these signed

lengths exactly satisfy Eq.(3.9).

Thus the soliton polytope encodes all the information about all of the charges

of the chiral solitons. The fact that there is a solution to such a highly over deter-

mined system of resonance constraints also provides good evidence that the original

characterization of chiral solitons is correct.



3.4. Further Comments on the Integrable SLOHSS Models

The actual set of numerical values of the higher spin charges of the chiral
solitons is not altogether surprising: Depending upon the soliton, the spin s charge,

q
(s)
a , is always some component of the eigenvector of the Cartan matrix of G with

eigenvalue 2 − 2cos(sπ
2 ). (The details of how these eigenvectors emerge in the

projections of the polytopes may be found elsewhere8,17.) Thus one sees further
evidence of the relationship to affine Toda theory.

It is also important to remind oneself that the Landau-Ginzburg model is super-
symmetric. This means that each soliton described above is, in fact, a (shortened)
supermultiplet of four solitons, two “bosonic” and two “fermionic”. In the cor-
responding affine Toda theory, this supersymmetry appears only at the quantum
level, and requires a special choice of background charge a particular value for the
coupling constant. This coupling constant is also purely imaginary, just as in the
non-supersymmetric affine Toda theories that describe integrable perturbations of
non-supersymmetric conformal field theories.

Figure 2. The soliton polytope for the E7/E6×U(1) model is obtained
by taking V ≡ 56 of E7. This diagram shows the ξ(1) (or mass) pro-
jection of the polytope; the dots are the images of the vacuum states.
The central dot in the diagram represents two vertices. The lengths of
the soliton lines are proportional to the soliton masses. There are 756
solitons and 4032 soliton triangles. The system of equations (3.9) is thus
overdetermined by more than a factor of 5.



It is known that the classical Toda theory, with a purely imaginary coupling
constant, has solitonic solutions with physically sensible quantum numbers19. These
interpolate between the vacuum states, which lie on the weight lattice of the corre-
sponding group. At the quantum level, it will be necessary to truncate the soliton
spectrum to provide a unitary Hilbert space. For the simplest affine Toda model, the
sine-Gordon model, this quantum group truncation20 can be viewed as effectively
reducing the infinite-well potential to a Landau-Ginzburg potential with a finite
number of wells, or as reducing the weight space of SU(2) to a finite weight diagram
of some representation of SU(2). We conjecture that the G/H ′ Landau-Ginzburg
solitons correspond precisely to such classical Toda solitons, after some form of (per-
haps affine) quantum group truncation. This truncation should effectively reduce
the whole weight space of G to the finite weight diagram of the representation V .

The work described above characterizes all the chiral solitons. A consistent
scattering matrix for these (supermultiplets of) solitons has only been computed
for the simplest (minimal) models9. It would be interesting to find S-matrices
for some of the more complicated Landau-Ginzburg models. There is, however, a
problem to be solved before one can do this. Simple kinematic arguments9show
that the chiral solitons cannot (except in the type A minimal models) form a closed
scattering theory. One needs to add new states. One can make educated guesses
as to what these states should be, and kinematic consistency can often be restored
by adding some new “breather” states. It would be nice to have some method of
determining the complete spectrum and then finding the S-matrix.

Another interesting issue is raised by the circuitous manner in which the higher
spin charges were determined. The masses of the solitons were obtained from the su-
peralgebra and a Bogomolny bound involving a topological charge. The higher spin
charges were then deduced from resonance consistency. Since the higher integrals of
motion come from the super-W algebra generators, one might hope to obtain new
Bogomolny bounds, and perhaps some new topological charges, and thereby deter-
mine the higher spin conserved charges of the solitons directly from the perturbed
super-W algebra. The fact that the answers are so beautifully encoded in the soli-
ton polytope suggests that there may also be some simple underlying geometry to
the perturbed super-W algebra.

Finally, it should be remembered that the most relevant chiral primary per-
turbation is not the only perturbation of the N = 2 super-coset models that leads
to a quantum integrable N = 2 supersymmetric field theory. For the minimal A-
series there are two other such perturbations9,4,21. (One of these perturbations will
be discussed in the next section.) There are also indications22 that there may be
other perturbations of the SLOHSS models that give rise to integrable theories. It
is certainly of interest to determine the soliton spectrum and S-matrices for these
models.

4. Real Resolutions of A-D-E Singularities, Solitons and Fusion Rules

Our purpose here is to make some, hopefully, amusing observations concerning
perturbed A-D-E minimal models

⋆
. These observations will be discussed in more

⋆ Note that only the A and D series minimal models are SLOHSS models.



detail elsewhere. In contrast to perturbing by the most relevant chiral field, as
above, we now perturb the minimal models with the (F -component of the) unique,
least relevant operator, φtop, of dimension c/6. As we will see, this type of perturba-

tion also leads to interesting soliton structure
†

. For the A-series, it is known that
this perturbation leads to an integrable theory9,4,24,21, and non-trivial integrals of
motion have been constructed. Similar results can probably be established also for
the D and E series.

An important point to realize is that perturbing N = 2 theories by insertions

of the form e
−

∑
λℓ(

∫
φℓ+h.c.)

in the correlation functions amounts to deforming the
operator algebra in a way that can be characterized by an effective superpotential25,
W (φ, λ) = W0 +

∑
φk∈R gk(λℓ) φk. Here, the fields φk denote generic elements of

the chiral ring, and the coupling constants gk are particular, non-trivial
∗

functions
of the perturbation parameters (or “flat coordinates”), λℓ, and can be determined
by using the techniques described in25,26,27.

For the minimal A series the effective superpotential for the perturbation with
φtop is

An : W = 2
n+1

λ
n+1
2 Tn+1(λ

−1/2φ/2) = 1
n+1

φn+1 − λφn−1 +O(λ2) , (4.1)

where Tn are Chebyshev polynomials. The corresponding potential |∂W
∂φ |2 is a multi-

well potential with n zeros along the real-φ axis. If one calculates the values of
W at all the critical points, one finds that it takes only two values. Thus all
the chiral solitons have the same mass (M = |∆W |). This is perfectly consistent
with the conjecture that this model is equivalent to a quantum truncated, N = 2
supersymmetric sine-Gordon model22. (This conjecture is also supported by the
structure of the quantum integrals of motion.)

The potential in Eq.(4.1) received recently attention28,29,22,30 because of the
remarkable fact that for λ=1, the structure constants cℓm

n of the deformed chiral

ring, in a basis consisting of fields Φℓ(φ, λ) ≡ −∂W(φ,λ)
∂λℓ

, coincide with the fusion

coefficients Nℓm
n of SU(2)k=n−1 WZW models. This is because one finds that:

Φℓ(〈φ〉a, 1) =
Sℓa

S1a
, (4.2)

where Sℓa is the modular transformation matrix of the SU(2) characters, and a
labels the n vacuum states, ∂W

∂φ (〈φ〉a) ≡ 0.

† There is an analogous, relevant perturbation of general SLOHSS models and one can
construct S-matrices for the solitons23.

∗ As remarked earlier, the most relevant chiral primary perturbation leads to a simple effective
superpotential W (φ, λ) = W0 + λφ1.



Apparently, similar properties hold also for other minimal models, where the

dependence on the flat coordinate λ is25,31 ‡
:

Dn : W = (−1)n−1 1
2φ1φ2

2 + 1
n−1 (−λ)n−1 Tn−1(1 − (2λ)−1φ1)

= (−1)n−1 1
2φ1φ2

2 + 1
2n−2φ1

n−1 − λφ1
n−2 +O(λ2) (4.3)

E6 : W = 1
3φ1

3 + 1
4φ2

4 − λφ1φ2
2 + 1

2λ
3φ2

2 − 1
12λ

4φ1 (4.4)

E7 : W = 1
3φ1

3 + 1
3φ1φ2

3 − λφ1
2φ2 + 4

9λ
3φ1

2 − 1
9λ

4φ1φ2 + 1
81λ

6φ1 + 1
4374λ

9

(The perturbed E8 potential has not yet been computed). We find that for these
models:

Φℓ(〈φ〉a, λ) = λ
mℓ−1

2
q
(mℓ)
a

q
(1)
a

, (4.6)

where q
(mℓ)
a are once again the ubiquitous eigenvectors (with a particular normaliza-

tion) of the corresponding A-D-E Cartan matrix, and mℓ are the exponents of the
corresponding group. This equation seems to be a consequence of the well-known
fact that the intersection matrix in the integral homology of the level surfaces as-
sociated with the A-D-E singularities is given by the appropriate Cartan matrix.

For the A series one finds that the eigenvectors q
(mℓ)
a are equal to the entries of

the modular transformation matrix Sℓa. However, this is not true for the D and
E theories. Therefore, Eq.(4.6) does not seem to diagonalize fusion rules of the
corresponding SU(2) theory in all cases. But we find again that all structure con-
stants are integers for particular values of λ, and whether this has an interesting
interpretation is an open question.

We also find that certain genus g amplitudes of the topological matter models
are given in terms of the Frobenius-Perron eigenvector of the Cartan matrix,

S(g) ≡ 〈 Φtop(φ, λ)1−g 〉(g) =
∑

a

( Φtop(〈φ〉a, λ)

det[∂φi∂φjW (〈φ〉a, λ)]

)1−g

=
∑

a

(q(1)a )2−2g = integer

These integers (which also show up in the context of Toda mass matrices32) appear
to be the dimensions of Friedan-Shenker vector bundles of the topological minimal
models on Riemann surfaces. For example, we have for E6: S(g) = 2g−1(2g+1)[(3+√

3)g−1 + (3 −
√

3)g−1 ], and the first few values of S(g) are: 1, 6, 60, 864.
It is clear from Eq.(4.6) that Φℓ evaluated on the vacuum states are real num-

bers (for real λ), and in particular, that W (φ, λ) evaluated on the vacuum states

‡ We disagree with some of the coefficients given in the second reference.



is real. Potentials with this special property have been, in fact, thoroughly investi-
gated in the mathematical literature (see, for example, a paper of Gusein-Zade33,
where indeed the potentials of Eqs.(4.1), (4.3) and (4.4) appear explicitly). Thus
the flat coordinate associated with the top element of the chiral ring provides what
is called a real resolution of a singularity.

A most striking property of these real resolutions is that the soliton structure
is given by the Dynkin diagram of the corresponding A-D-E group. That is, the
vacuum states are associated with the nodes of the Dynkin diagram, whereas the

solitons are associated with the links
♮

. For an example, see figure 3. It also turns
out that when one of these superpotentials, W , is evaluated at one of its critical
points, then W only takes one of two possible values. Thus, in a given model, the
fundamental solitons all have the same mass.

This gives support to the conjecture that these particular perturbations of the
D and E theories yield integrable models. These models might also be in some
way related to the integrable lattice models discussed by Pasquier34. Indeed, our
Eq.(4.6) is more or less the same as Eq.(23) of Pasquier34.

-0.5 -0.25 0. 0.25 0.5 0.75 1. 1.25 1.5
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Figure 3. Contour plot of the potential |∇W (φ1, φ2)|2 obtained from
the superpotential in Eq.(4.4). It clearly displays the structure of the
E6 Dynkin diagram.

♮ The model An has thus two interpretations: the vacuum states and solitons are associated

either with some weight diagram of SU(2) (corresponding to a quantum truncation of the
N =2 sine-Gordon model), or with the Dynkin diagram of An.
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