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We show how a class of N = 2 supersymmetric, quantum integrable theories in two dimensional space-time
can be obtained by an appropriate choice of coupling in quantum Toda theories. The theories thus constructed
correspond to the most relevant, supersymmetric perturbation of the N = 2 supersymmetric coset models based
on G/H' where G/H' is a hermitian, symmetric space and G is level one. These perturbed conformal theories
posses non-trivial conserved currents that can be constructed via a Miura transformation of the bosonic fields
of the Toda theory. We show how the spectrum of these Toda theories is related to that of the associated
Landau-Ginzburg model.
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of motion for the most relevant perturbations of these minimal models. Upon
orbifoldization these type D minimal models become type A minimal models,
and the most relevant perturbation of the type D theory becomes the next-
to-most relevant perturbation of the type A theory. Some of the integrals of
motion of the type D theory survive this orbifoldization and so we see that the
next-to-most relevant perturbation of the minimal models is also integrable.
This result 1s also confirmed more directly by perturbation theory about the
conformal theory.

In a G-Toda theory or an affine G-Toda theory, the infinitely many integrals
of motion have spins m; mod ¢ where m;, i = 1,...,¢ are the exponents of G
and g is the dual Coxeter number of G. These integrals can be constructed in a
number of ways. One approach is to start from the Lax pair for the theory and
then use the “connection matrices” to generate the conserved quantities and
express them in terms of the bosonic fields ¢ [2]. While this approach readily
demonstrates a relationship between the spins of the integrals of motion and
the degrees of the Casimirs of G, it 1s not very useful for obtaining explicit
expressions for the required conserved quantities. Another way of proceeding
1s to regard the affine Toda theory as a very special perturbation of a confor-
mal theory !. This perturbation has the property that the potential terms in
the resulting affine Toda Hamiltonian possess a symmetry between the part
corresponding to the unperturbed theory and the part corresponding to the
perturbation [4] [5] 2. All holomorphic fields of the conformal theory commute
with the integrated Toda potential; thus all we need to do in order to ensure
that any putative charge density is conserved is to require that it respect the
symmetry just mentioned. We show in section 4 that the quantum integrals

for the supersymmetric theories we consider can be found from appropriate

1" We have to fix the Toda coupling constant to a particular, purely imaginary

value in order to make the correspondence to a perturbed conformal field theory.
2 The charge at infinity that is needed to make the theory a conformal one actually
breaks this symmetry, but this is of no consequence for the structure of the local

conserved charge densities.

symmetric combinations of Miura-transformed variables arising from the free
bosons describing the underlying Toda theory.

As mentioned above, the N = 2 supersymmetric cosets based on G/H’
that can be directly related to Toda theories are those for which G is level one
and G/H' is hermitian and symmetric. This is also precisely the class of cosets
for which there is a known Landau-Ginzburg formulation [6]. As a consequence
of this and the results of [3] one might expect some close relationship between
Landau-Ginzburg solitons and particles or solitons in Toda theories. In section
5 we discuss some preliminary results on the Landau-Ginzburg soliton structure
of our particular perturbed coset models, and we discuss how these solitons can
appear in the spectrum of the corresponding Toda therory.

Finally, Section 6 contains some further discussion of the issues raised in

this paper.

2. N = 2 Supersymmetric Cosets, W-Algebras and Toda Theories.

In [7] it was shown that if G/ H' is a Kahlerian coset manifold with rankG =
rank H’, then the usual GKO construction could be extended to obtain an N = 2
superconformal theory from the coset theory M = %d—). In this coset
model, d is the (real) dimension of G/H’, and the factor SO(d) represents the
bosonized fermions. The group H' is diagonally embedded into G and SO(d),
the latter embedding being induced by the H’-action on the tangent space of
G/H'. The index of the embedding of H' into SO(d) is ¢ — h where ¢ and h
are the dual Coxeter numbers of GG and H' respectively 3. Thus if the current
algebra of GG has level k then the current algebra of H' has level k+g —h. (The
group SO(d) represents bosonized fermions and thus always has level one.)

In this paper we wish to consider the ¥ = 2 coset models such that G

has level one, and G/H’ is a hermitian, symmetric space. As a convenient

3 The groups G and H' will be semi-simple, except possibly for UU(1) factors. The
dual Coxeter number of U(1) is defined to be zero, and if G or H' has more than one
simple or U(1) factor then g, h and g — h are to be viewed as vectors in the obvious

manner.



abbreviation we shall refer to such N = 2 models as minimal, hermitian models.
We will also assume for simplicity of exposition that G is simple. The fact
that G/H' is a symmetric space means that the embedding of H' into SO(d) is
conformal [8] and thus representations of the SOy (d) current algebra are finitely
reducible in terms of H{’/_,l representations. (Subscripts on the label of a group
will always denote the level of the current algebra in question). Moreover,
because G is level one and GG and H' have the same rank, it follows that Gy
representations are finitely reducible as representations of Hi{. (For simply-
laced algebras this is a trivial consequence of the vertex operator construction.)
Thus, up to questions of finite reducibility of the representation theory, the
minimal, hermitian model M is equivalent to
%. (2.1)
HY y
The fact that G/ H’ is Kahlerian means that H' contains at least one U (1)
factor. This U(1) factor defines the complex structure on GG/H'. For hermitian,
symmetric spaces with GG simple, one finds that ' = H x U(1), where H is
either simple or is the product of at most two simple factors [7][6]. Let £ denote
the rank of of H and ¢ denote the £ + 1 component vector of free bosonic
currents that generate the Cartan subalgebra of G or, equivalently, of H’. The
U(1) factor of H' is defined by (pe — pr) - O¢, where, as usual, pa denotes half
the sum of the positive roots of a group A.
One can cancel U(1) factors between the numerator and denominator of
(2.1) (provided that one rescales the momenta of the remaining U (1) appropri-

ately) and hence the original coset is equivalent to the coset model:

H1 X Hg—h

x U(1), 2.2
o v (22

where the U(1) factor now represents the U(1) current of the N = 2 supercon-

formal algebra. It is elementary to compute the central charge of this theory:

_ 3d _ I /li(hi + l)
c= e =t Zi:&[l D) (2.3)
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where the sum over i is over the simple factors H() of H, and ¢; and h; are the
ranks and dual Coxeter numbers of these factors.

The importance of the foregoing decomposition of the minimal, hermitian

O g
models 1s that the coset models HI—(X,)HL are intimately related to Toda theories

+1
and to W-algebras. Since we will need to employ some of the detailed properties

of this relationship we will now briefly review the relevant material. Consider

HyxH,
HP+1

are labelled by three highest weights, wq, w2 and w3 of H. These weights label

the coset model

for H simple. The representations of such a coset theory

affine H representations of levels 1,p and p + 1 respectively, and correspond
H,xH

to the numerator and denominator factors in o The fact that H,4; is
embedded in f{; x H, means that one must have w; = w3z — w2 4+ 7 where r is
some co-root vector, and since w is a label of a level one algebra it follows that
wy 1s uniquely determined by the labels ws and ws. One should also note that
there 1s an action of the center of H that acts trivially upon the coset model,
but can be used to change the label w; to zero. That is, because of “spectral
flow” by the center of H, all representations of this particular coset model can
be obtained by merely taking the representation of H; to be the one that has
a singlet ground state [9] [6]. Making such a choice of w; means that w, and
ws must differ by a (co-)root of H.

It 1s convenient at this juncture to assume that H is simply-laced, and
we will comment upon the generalizations later. Consider a state of the coset
model labelled by wy, ws and w; = ws — w3z + 7. Then, up to an integer, the

conformal dimension of this state is given by [7]:

_ 1 2 1 2
A = gluz—wa) 4 507 {W”QPH'W}
- ;{w2+2m&1'w3} 2.4
2p+h+1)L° (2.4)

= %[(Bw:’, — %wz)z + 2<B— %)PH : <Bw3— %wz)],

where

9 p+h
= . 2.5
p+h+1 (2:5)
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Note that (2.4) is also precisely (i.e. not modulo integers) the conformal di-

mension of the operator
~ 1
exp| —i| fws — =wz | - ¢(z) (2.6)
(= i(Pus = Fue) -4(2)
in a free bosonic theory whose energy momentum tensor is
T(z) = —l(aqﬁ(z))2 + i(ﬁ — l)p 0% (2.7)
9 B H . .

This 1s not a coincidence. It is known, at least when H is simply-laced, that
the coset model Hy x H,/Hp41 can be obtained as a unitary subsector of the
Hilbert space of ¢ free bosons [10]. The vertex operators (2.6) then represent
primary fields in the physical Hilbert space of the coset model, and the energy
momentum tensor of the theory is given by (2.7).%

Finally, one can also connect the foregoing with Toda theories with an
imaginary coupling constant [11] [12]. Consider the theory whose action on the

complex plane is:

S = o [ [(06)F0) + 5 Y eonlibas-9)]. @9)

where £ is the rank of A and the «; are the simple roots of H. After adding
improvement terms (which correspond to the non-vanishing background charge)
to the generally covariant form of this action, one can argue that this Toda
theory corresponds to a conformal field theory with central charge ¢ = ¢|1 —

h(h+1)
(p+h)(p+h+1)

#(z,7) is now a Toda field ( and is thus not free). The physical vertex operators

still have the form (2.6) (with ¢(z) replaced by the Toda field ¢(z,7)), and the

The energy momentum tensor is given by (2.7), where ¢ =

1 The generalization of this result to the Lie algebra By, is fairly straightforward.
The energy momentum tensor is modified by adding to (2.7) the energy momentum
tensor of a Majorana fermion. In the non-spinor representations the vertex operators
are identical to their simply-laced counterparts, but in the spinor representations one
must append the spin field of the Majorana fermion to the bosonic vertex operators
[10].

conformal dimension is still given by equation (2.4), in spite of the fact that ¢ is
now a Toda field. More details about the relationship between the Toda theory
and the free field theory can be found in [11][12]. The physical interpretation
of a theory with non-real action is not clear, but recent work has shown that
what we are studying is a unitary projection of the theory [13].

With these observations we can represent the minimal, hermitian model
based on the coset G/H' as a product of an H-Toda theory and a single, free,
U(1) conformal field theory (the latter representing the U(1) current of the
N = 2 algebra as outlined above). We can construct the perturbations of these
supersymmetric models as vertex operators of the Toda fields combined with
vertex operators of the free U(1) boson. From this viewpoint there are obvious
integrable perturbations, namely those perturbations that extend the H-Toda
theory to some larger Toda theory, or to some affine Toda theory. Indeed, the

original N = 2 coset model suggests two natural integrable perturbations:
Vo = e.rp(ié'y . ¢); Vi = 61‘])( — B - ¢), (2.9)

where v 1s a simple root of G that extends the simple roots of H up to a simple
root system for GG. The vector ¢ is the highest root of G. In equation (2.9),
and henceforth, we take ¢ to denote a vector of £ 4+ 1 bosons that generate the
Cartan subalgebra of GG. The bosons of the H theory are obtained by making
the appropriate projections. Perturbing by V_ extends the H-Toda theory to a
G-Toda theory, and the further perturbation by V extends this to an affine G-
Toda theory. Note that the intermediate G-Toda theory will not be conformal
since the energy momentum tensor of this theory is that of the free U(1) plus
(2.7), and (2.7) has a charge at infinity given by py and not pg. Moreover,
the coupling constant 3 is tuned to the conformal value for the H-coset and
not for the G-coset. As an incidental point, we shall see below that there is
a symmetry between Vy and V_ and one can obtain a completely equivalent
intermediate G-Toda theory by perturbing with V first.
We now show that perturbing by V_ and V. preserves the N = 2 super-
symmetry. Because G/ H is a hermitian, symmetric space, we have:
1
(b —pu) -y = (pc—pu) - = 59

8



In particular, (¢» — =) lies on the root lattice of H. Furthermore, one can show
that {«;, —4} is also a system of simple roots for G. Hence there is a Weyl
rotation that maps {a;, —¥} onto {a;,~}. It follows that v is necessarily of
the same length as ¢, that is, they must both be long roots (and thus have
a canonically normalized length of \/5) > The canonically normalized left-

moving U(1) current, J(z), of an N = 2 superconformal theory has J(z)J(w) ~

< 1
3 (z—w)??

and in our models 1t is therefore represented by:

21
J(2) = —=—=—=—==(pc — pu)- 04 . (2.10)
9(g+1)
One should also remember that the Toda theories that make up the ¥ = 2

theory must all have ,é = 5493 From this one finds that the operators Vi

have an U(1) charges of + (ﬁ — 1). Moreover, the conformal weights of

V4 are now elementary to compute using (2.4) and one finds that V. and V_

both have left and right conformal weights of % + 2(;—“) The charges and

dimensions are exactly consistent with V. and V_ representing G:Lé:!r and
théfli where z and T are the most relevant chiral, primary geld;of the
N :2 2 c2oset model, and Gfl and éfl respectively represent the left-moving
and right-moving Super—charges. :
To render the identification incontrovertable, we first observe that  and =
1

are the unique fields in the N = 2 coset model having conformal weight G0

and U(1) charges :I:ﬁ. These operators can therefore be unambiguously

identified with the Toda (or free field) vertex operators:
-~ 1 ~ 1
W_ =expli|lf—=)7v -¢], Wy=expl —ilf—=) o). (2.11)
((F=3)7-9) (=i(F-3) ve)

It 1s also elementary to identify the supercurrents in terms of Toda vertex

operators. In the hermitian, symmetric space models one has [7]

GE(z) = ) JF()UE(z) (2.12)

actt

® Note that we are not assuming that G is simply-laced and so it is not obvious

that v has length /2.

where t+ = AT(G)\AT(H), the J* are the currents of G, and ¥ are the
fermions of SO(d). Consider how this is represented in the H-decomposition.
The group G decomposes into Kt @K~ @ H’ under the H action, where KT and
K~ are conjugate, irreducible H representations. The highest weights of these
representations are, in fact, ¥ and — respectively. The corresponding vertex
operators are thus those with ws = v or wa = —i. Moreover, the operators
Gi(z) have no components in the denominator of the coset, and hence one

must have wz = 0 and thus w; = ws, as is evident from (2.12). Thus one has:
i i
G (z) = exp| —=7v-¢], GT(z) = exp(=v- 6] . (2.13)
(-579) (509)

One can readily check that the U(1)-charges are £1 while the conformal dimen-
sion is 3/2 for both.

If one now considers the operator products of the vertex operators in (2.13)
and (2.9) one finds: Gi(z) Vi(w) = mWi(w), and thus Wy and Vi are
superpartners of each other. (By associativity we also expect that GT W1 ~ Vi,
but this will only become manifest after employing the screening operators so as
to make the operator product local.) Combining left movers and right movers
and passing to the Toda form of the theory, the foregoing leads directly to the
identification of V4 and V_ with GfléfLT and G:Lé:yfv.

The fact that these operators cafl be 2written n zhis Igorm means that per-

turbing by them preserves the supersymmetry. Consider the perturbed action:

S

So + /d2z(Av_(z,z)+A*V+(zi)) 2.14)
2.14

So + A /d22d29+ X 4+ /\*/d22d29_ X

where Sy is given by (2.8), and X' and A are the appropriate superfields: for

example,

r) |

Substituting (2.8) and (2.9) into (2.14) one obtains the the action of an affine

X = (x4 60"G- 0 + ot é:Lac + 60tet G:Lé:

1
2

G-Toda theory. The action is not quite in the standard form: one must rescale

10



A and A*. This can be accomplished by shifting the bosons according to
¢ = ¢+ pi(pe — pu) + popn for some appropriately chosen constants p; and
po. Therefore, the most relevant supersymmetric perturbation of the N = 2
supersymmetric, hermitian symmetric space model based on G/H' corresponds
to an affine G-Toda theory, with ,52 = (ﬁ:)

It should be noted that we are considering an intrinsically different sort of
perturbation to those considered in [4]. In [4] the energy pertubations of the
W-algebras led to affine H-Toda theories with B2 = hfll—-ltil . Here we start with
an H-Toda theory with 42 tuned to the appropriate value for the conformal

field theory of the H-coset. Supersymmetry and CPT then require that we use
two perturbing vertex operators, one of which extends the theory to a G-Toda
theory at a non-conformal value of the coupling constant, while the second
operator takes the theory to the corresponding affine GG-Toda theory. Putting
this another way, an affine G-Toda theory can serve to describe various kinds of
perturbed conformal field theories. If the coupling is chosen to be ,52 = ?—I%’
and the background charge is chosen to have the appropriate form, then the
affine Toda theory describes a conformal W, theory perturbed by &5 [4].
When ,52 = 3497’ then the affine Toda theory describes a perturbed %@l,
N = 2 superconformal, minimal, hermitian model. The different choices of H’
correspond to different choices of the background charge that enter in the stress
energy tensor (2.7).

The affine (-Toda theories have precisely n, integrals of motion of spin s,
where n; 1s the number of exponents, m;, of (G such that n;, = m; mod g. The
exponents of a Lie algebra can be defined in several ways: there are precisely
{41 = rank G of them and the numbers m; + 1 are the degrees of the Casimirs
of G. In particular my =1, mep1 =g — 1, and my < m; < mey1, ¢ =2,..., L.
One also has m; = ¢ — myqpo_;. For SU(n), {m;} = {1,2,...,n — 1}, for
SO(2n), {m;} = {1,3,5,...,2n—3,(n—1)}. For Eg, 7 and Fs the exponents
are {1,4,5,7,8 11}, {1,5,7,9,11,13,17} and {1,7,11,13,17,19, 23,29} respec-
tively. These therefore represent, mod g, a complete list of the spins of the

integrals of motion for the perturbed minimal, hermitian models.

11

We will discuss some applications of the foregoing observations in subse-
quent sections of this paper. We conclude here by noting that in our discussion
of the connections between conformal theories and Toda theories, we restricted
H to be simply-laced (but no such restrictions were made upon the group G).
We did this primarily because this restriction was made in the relevant litera-
ture on Toda theories. It appears that this restriction has been made basically
due to the technical details, rather than because of some fundamental obstruc-
tion. Thus it 1s highly probable that the results above can be generalized to
conclude that the most relevant, chiral, primary perturbations of all the mini-
mal, hermitian coset models will be directly related to affine Toda theories, and

hence are integrable.

3. Integrable Perturbations of the N = 2 Minimal Series.

In [3] it was shown that the most relevant supersymmetric perturbation
of the Ax11 modular invariant, minimal, N=2 supersymmetric model yields an
integrable field theory. These minimal conformal models can be constructed as
level one, N = 2 supersymmetric cosets with G = SU(k+1) and H' = SU (k) x
U(1). Thus, by employing the results of the foregoing section one can easily
see that the integrability of the most relevant supersymmetric perturbation of
the kth minimal model is a direct consequence of the integrability of affine
SU(k + 1) Toda theory. Tt also follows that these perturbed minimal models
possess precisely one integral of motion of every integer spin, except when the
spin is a multiple of k+1. This was indeed what was found in [3], and in addition
it was also shown there that the soliton scattering matrices were closely related
to those of the affine SU(k + 1) Toda theories. It was to some extent this
observation that prompted the work contained in this paper.

There are also other N = 2 coset models that correspond to the N = 2 min-
imal series. Most particularly, if one takes the level one, super-coset model with

G = SO(m+2) and H' = SO(m) x SO(2), one obtains a theory with central

3m
m+1 -

charge ¢ = This infinite sequence of theories corresponds to every second

12



model in the usual N = 2 minimal series, i.e. k = 2m, except that the parti-

tion function is that of the type D modular invariant. The most relevant chiral,

primary field of such a type D conformal field theory has conformal weight
1 1

h = TG = g1 The corresponding type A theory (with the same central

charge) is a Z3 orbifold of the type D theory, and the most relevant chiral, pri-
1 1

mary field of this type A theory has conformal weight D = AT In the
language of the corresponding Landau-Ginzburg theory, the type A theory has
superpotential W(z) = 22(m+1) and has z as its most relevant chiral, primary
field, while the type D theory has superpotential W(xy, z2) = x71n+1 +xz122 with
x1 as its most relevant chiral, primary field. The orbifoldization that takes the
type A theory to the type D theory projects out all odd powers of z, leaving z?
as the most relevant, chiral, primary field which can thus be identified with z;.
(The new chiral, primary field zs of the type D theory appears in the twisted
sector of the orbifold).

Using the results of the previous section one can relate the type D minimal
models with m = 2p to SO(2p) Toda theories tensored with a single free boson.
Furthermore the x; perturbation of this model will be related to an affine
SO(2p+2) Toda theory, and it will thus possess non-trivial integrals of motion
of spin s whenever s modulo 2p is an element of {1,3,5,...,(2p—1),p} °.

The question naturally arises as to whether these integrals of motion sur-
vive orbifoldization back to the type A model. That is, is the perturbed N = 2
superconformal field theory with potential W (z) = 27?4+ Az? an integrable
field theory? More generally, what can be said about W(z) = zf+? 4+ A\z?
? Direct computation, using the techniques of [14] and [3] shows that there
is indeed a non-trivial integral of motion at spin 3 for the z? perturbation of
the general A,y minimal model with & > 2. The holomorphic part of this

conserved current 1s

Gt Loy — @(t}_l)?’hoz (3.1)

5 In section 2 we restricted ourselves to the consideration of simply-laced groups,
and thus we make a similar restriction here. It does, however, seem highly plausible

that the result will generalize to all the type D minimal models.
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for the theory with central charge ¢ = % The J, are the moments of
the U(1) current of the N = 2 superconformal field theory normalized so that
J(z)J(w) ~ %ﬁ As in [3] we have written (3.1) in the form Gf%G:%(’HO >
so as to explicitly exhibit the supermultiplet structure.

It should be noted that the foregoing integral of motion has been computed
to first order in the perturbation z%. As was pointed out in [3], a simple
argument, based on a unitarity bound for the dimension and charge of a field
inan N =2 S.C.F.T., reveals that there can be only one other possible higher
order correction. Specifically, if 7(z) is a holomorphic conserved current in the
conformal theory, and O is some collection of operators of the theory, then the

second order correction to 8;<T(Z) (’)> 1s of the form
82— < /d291|_d221 A /Y2(91|_,21) /d292_d222 /\* T2(92_,22) T(Z) O > (32)

The unitarity argument shows that the only possible correction to 8Z—<T(2) (’)>
occurs in the limit z; = 29, where A'? and T fuse into the field ®Z. (See, for
example [15] for notation: ®2 denotes the primary field with quantum num-
bers { = 2, m = 0.) Now suppose that 7(z) is the holomorphic component
of a current that is conserved at least to first order in perturbation theory.
Recall that such a current and the perturbation to the N = 2 S.C.F.T. are
both top components of some superfield, and so by the Ward identities for
supersymmetry, the quantum corrections to the current 7 should also be top
components of a superfield. However, ®2 is manifestly not the top component
of a superfield, and therefore such a quantum correction would explicitly vio-
late supersymmetry. We thus expect that the second order correction to the
conserved current vanishes when the divergence in (3.2) is regulated in an ap-
propriate, supersymmetry preserving manner. Therefore, despite a potential
resonance, first order perturbation theory suffices to compute the integrals of
motion for the 22 perturbation. As further evidence for this it should be noted
that the corresponding perturbation of the type DD modular invariant theory is
certainly integrable because of its relationship to a Toda field theory. Moreover,

the | = 2,m = 0 state (which is not excluded by unitarity from appearing as

14



second order correction to the integral of motion) is not projected out under
orbifoldization. Thus any problems with such resonances in the type A model
would also be manifest in the type D model.

Returning to the consideration of the integrals of motion of the type
D theories, one finds that at least one of these integrals does not survive
orbifoldization. Consider the model with supercoset with G = SO(4) and
H' = S0O(2) x SO(2) (i.e. we take p =1 in the models discussed above). Since
S0(4) = SU(2) x SU(2) it follows that this model is two copies of the ¢ = 1,
N = 2 superconformal theory. Indeed it has long been known that & = 4, type
D minimal model decomposes in this manner. The orbifoldization that takes
this to the A5 modular invariant, minimal model (with W(z) = %) is the Z
interchange of the two ¢ = 1 models [16]. Thus the 2? perturbation of the As
modular invariant model corresponds to the symmetric sum of the most rele-
vant, chiral, primary fields of the two ¢ = 1 models. The corresponding Toda
theory tells us that there should be exactly two integrals of motion at every odd
spin. At spin 1, one of the corresponding conserved currents is obviously the
energy-momentum tensor, and the other current is simply the anti-symmetric
combination of the energy-momentum tensors of the two ¢ = 1 models. Ob-
viously this second integral of motion will be projected out in orbifoldization
back to the type A modular invariant model.

More generally, we have checked that for the 22 perturbation of the k = 4p
type A minimal models the only integrals of motion up to and including spin
4 are those associated with the N = 2 superconformal algebra and the spin 3
integral described above. In particular, there is no spin 2 integral for p = 2, no
spin 4 integral for p = 4 and only one spin 3 integral for p = 3. Thus it appears
to be generally true that the spin p integral of motion of the SO(2p + 2) affine
Toda theory does not survive orbifoldization. The presence or absence of the
spin p integral of motion is, presumably, intimately connected with the fact that
the type D chiral algebra is extended beyond the type A chiral algebra (which is
simply the N = 2 superconformal algebra) by an operator of conformal weight
p. One should also note that the spin p integral of motion of the SO(2p + 2)
affine Toda theory is connected with the Casimir of degree p+ 1 [2] and it is
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also probably not a coincidence that this Casimir cannot be constructed directly
from the Casimirs of the unitary, semi-simple subgroups of SO(2p + 2).

As regards computing further integrals of motion, it is, as yet, too compli-
cated to use the methods of [14] and [3] to obtain the integrals of spin greater
than four. However the fact that one has at least one higher spin integral of
motion gives us strong cause to believe that there 1s an infinite tower of such

k+2 models lead to

integrals of motion, and thus, the 2? perturbation of the =z
integrable field theories.

As a parenthetic note, there seems to be an integrable perturbation of the
minimal series that does not appear to correspond to a Toda theory. Consider
the perturbed conformal theory with Landau-Ginzburg superpotential z*+2 4
AzF. 7 There are no integrals of motion at spins 2 and 4, but for spin 3 one

obtalns:

Gt GT {200 + 120000 + (€= 6) GZ, GY 10>

Again, first order perturbation theory suffices. Using the fact that G, z* is
a bosonic exponential (up to a trivial parafermionic current), one can se2e that
there 1s no multiple fusion of several of such operators that could possibly gener-
ate a higher order correction. (Higher order chiral corrections would necessarily
have to be in a non-trivial representation of the parafermionic algebra.) On the
other hand, fusion of chiral with antichiral fields can produce only supersym-
metry violating contributions that must be excluded by the same reasoning as
above. It seems that these non-renormalization type features are generic and

should apply also more generally than to merely the N = 2 minimal models.

4. Quantum conserved currents from Toda theory

We now turn to the structure of the conserved currents in the non-critical
field theories discussed above. We wish to show that for these NV = 2 supersym-
metric models the conserved currents can be obtained in terms of the Miura

transform on the free bosons ¢ used in section 2.

7 Note that this perturbation does not resolve the singularity of the Landau-

Ginzburg potential completely, and thus this model has some massless excitations.
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The basic i1dea behind the construction of the conserved currents is the
following [5][4]. The classical affine Toda theory based on a Lie group G has
a discrete symmetry that is essentially generated by the center of the group.
In the quantum theory this symmetry relates the BRST charges of the confor-
mally invariant Toda theory to the perturbing operators that take the conformal
theory to the off-critical, affine Toda theory. All operators in the conformal the-
ory commute with the BRST charges. If we now construct an operator that
1s invariant under the discrete symmetry, then this operator has to commute
with the perturbing Hamiltonian as well as with the BRST charges. There-
fore such an operator must give rise to an integral of motion. For example,
consider G = SU(k + 1). The simple roots can be represented by vectors
e; —eir1,1 = 1,..., k while the negative of the highest root is —¢) = ex41 —e1.
These k 4 1 roots have a Z;y1 symmetry corresponding to the cyclic permu-
tations of e1,...,ex41. It was observed in section 3 that the off-critical field
theory obtained from the most relevant, N = 2 supersymmetric perturbation
of the G/H’ coset model could be represented as an H-Toda theory perturbed
by the operators (2.9). These perturbing operators can obviously be cyclically
permuted into vertex operators involving the simple roots of H, and the latter
operators are simply the BRST currents in the free field language. It follows
that any operator that lies in the physical part of the free field Hilbert space and
that is Zx 41 symmetric must be an integral of motion for the off-critical theory.
The Miura transformation provides a method of constructing such operators.

To illustrate the procedure we will consider the N = 2 supersymmetric,
minimal series with the type A modular invariant. We will also only consider
the perturbation of this conformal model by the real combination of the most
relevant fields, that is, in the Landau-Ginzburg language, by a hermitian com-
bination of the chiral, primary field  and its anti-chiral conjugate T. Let us

define
A(B)(z) = j{A(z/)B(z)(z/ — z)_ldz/ (4.1)

z

where the contour runs around the point z. The first two conserved currents

for these models have the following holomorphic components:
T(z) and 2J(T(z)) — GT(G™(2)) . (4.2)
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It should be noted that these expressions are only unique up to total derivative
terms.

We now show that these expressions encode the structure of the corre-
sponding integrals of motion in Toda field theories. It is interesting to note
that the conserved currents (4.2), and their higher spin counterparts, are con-
structed from only four basic local fields: J(z), T(z), GT(z),G™(z). The Toda
field theory and its integrals of motion, on the other hand, are constructed from
£ bosons, where ¢ is the rank of the group in question. The fact that we are
able to express the integrals of motion in terms of fewer fields than one needs to
describe the Toda theory i1s another manifestation of the fact that there 1s extra
symmetry (in particular, supersymmetry) at the value of the coupling constant
that we have chosen.

To get the type A minimal models one takes G = SU(k + 1) and H' =
SU(k) x U(1) as in section 3. The coset (SU, (k) x SUy(k))/SUz(k) is realized
in terms of k — 1 free bosons, which we will represent by & bosonic fields, ¢;,

satisfying the constraint:

Z 6 = 0 (4.3)

The extra U(1) factor of (2.2) will be represented by a free bosonic field ¢¢. As
we saw 1n section 2, the perturbed N = 2 theory can be regarded as an affine
SU(k + 1)-Toda theory at a specific value of the coupling. In order to simplify
the action of the Zx41 symmetry, it is convenient to introduce a new basis for

the bosonic fields. Define q;i,i =1,...,k+1by

$i = ¢it+voo; k41 = —kveo (4.4)
with
S s
k(k+1) '

These fields satisfy a constraint similar to (4.3):

k1
b =0 (4.6)
i=1

18



The Zk 41 then acts by cyclic permutation of the qgl In [11]

[4] it was shown that
the operators of the W-algebra of the coset model (SU; (k) x SUy(k))/SU2(k)
have a simple realization in terms of the bosonic fields. This realization is
obtained directly from the Miura transformation of the Toda theory. The op-
erators of the W-algebra are Z; symmetric, and one finds that their bosonic
realizations also display this Z, symmetry up to total derivative terms &. Mo-
tivated by this we consider the Miura transformation extended to the k free

bosons of the N = 2 theory. That is, consider operators defined by:

k1
[[ G0 —06:) = (i0d = 0dk11) ... (iad — 9¢1)
i=1
o (4.7)
— R+L) s k+1—j
= ; (iad)* 17
7=0
One finds Uék-l_l) =1, Ul(k-l_l) = ZkH dé; = 0. We also have
(h+1) 1R S
Skt . 5 N a2 7
Us = 52 8@ — zaZ(k+l—])8 é;
7j=1 Jj=1
A |t k1
U = =2 3 (00,)° — e Y (k41— 1)(076:)(00;)
7j=1 Jj=1
R k+1
e Y (96:)(0%6;) — —m }:A+1—gk—ﬂ8¢J
1<i<j<k+1 j=1
(4.8)
7 (k+1)

The operators U; are Zp41 symmetric, up to total derivatives. In order to
relate these operators to the W-algebra of the minimal models; we must take
1
@ =E = (4.9)
(k+1)(k+2)

Using the relations (4.4) between the # and the ¢, we find

~ 1
gt = - 50 (4.10)

8 The bosonic realization need not have the same manifest symmetries as the opera-
tor it represents—the bosonic realization will, in general, only display such symmetries

up to trivial states in the BRST cohomology.
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where

k
T =i\ 9% (4.11)

is the U(1) current of the N = 2 theory, and T is the energy-momentum tensor.

That 1s,

1
T = Ty — §(a¢0)2 (4.12)
where
1 k
Ty o= A e - Y G-p e @
1 Jj=1
is the energy momentum tensor of 7 parafermions. Rewriting U:,EA'H) in terms

of the decompostion of the N = 2 theory according to (2.2), one obtains:

UPHD = U — S (k= o (090 — 20 U 06y

. (4.14)
— 5o(2k = 1)(960) (0" ¢0) + g;(03¢®

(k)

The operator U5™’ is known [11] to be a linear combination of the spin 3 current
W and the derivative of T, ;. The precise combination can be determined from

the OPE of U5 with itself and with UQ(k) =T,;. One finds

W) _ _; |[k=2)Bk+1) L in 91 T i1
U’/ = HhT ) W+2a(n ) 0Ty, (4.15)
where W is normalized, as usual, by
6 (2(k=1)
p— 6 _—
W(z) Ww) ~ (2 —w) (3(k+ 2)). (4.16)

Using the representation

HORY kQ—:Q P(e)e™?GT() =

with
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we find

N T . i ,
Gt (G7) = \/W W+ 2ip Tpp (9¢0) — i (0¢0) 4.19)

— (90) (8%0) + @ (0%60)

where we have used the parafermion OPE as given in [17].

Putting together (4.14) and (4.19) we find that, up to total derivatives:

Sy _ L k42 ot (e
e 27 (1) - G* (67) (4.20)

where the right-hand side is (up to normalization) exactly the second integral of

motion in equation (4.2). We have thus recovered the spin 2 quantum integral

of motion directly from the Miura transformation.

0;""“) lie within the conformal field theory,

they must commute with the BRST charges in the free bosonic formulation, and
p(k+1)
U;

they must also commute with the perturbation. It follows that the operators

Because all of the operators

because the operators are all Z, 41 symmetric (up to total derivatives)
Uj must be current densities for quantum integrals of motion for the perturbed
conformal field theory. Moreover, some, and probably all of the higher spin
(i.e. spin > k + 2 ) integrals of motion can be obtained from polynomials in
the U](k-H) and their derivatives, provided that these polynomials are 74
symmetric up to total derivatives.

For the N = 2 minimal series ( ¢ < 3 ) there is another method for
obtaining the higher spin integrals of motion. In this instance one knows that
the holomorphic components of all the integrals of motion can be written as
polynomials in J(z), G*(z), G~ (z), T(z) and their derivatives. The coefficients
in these polynomials will themselves be polynomials of a known bounded degree
in the central charge, ¢, of the theory. The precise form of a general integral of
motion of a given spin, s, may be determined by obtaining the corresponding
expression for a sufficient number of models in the minimal series, thereby
completely determining the general form of the relevant polynomials in ¢. On

the other hand, for the kth member of the minimal series, with k& > s, the
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holomorphic component of the spin s integral of motion is simply Us(iTl) The
operators U can be written in terms of J and the W-algebra, and thus in terms
of J, G* and T. Thus one can use one’s explicit knowledge of the integrals of

motion for k > s to interpolate and obtain the integrals of motion for k < s.°

5. Some Observations about Landau-Ginzburg Solitons.

In [6] it was shown that the class of minimal, hermitian models has an
N = 2 supersymmetric, Landau-Ginzburg description. It is thus interesting to
investigate the spectra of the Landau-Ginzburg models that correspond to the
perturbed minimal, hermitian theories and to compare them with the spectra
of the corresponding affine Toda theories. More precisely, we want to compare
minimal sets of excitations that form closed scattering theories. In the Landau-
Ginzburg models an obvious candidate for such a minimal set are the funda-
mental solitons, and in particular those that saturate the Bogomolny bound of
the supersymmetry algebra [3]. On the other hand, in the affine G-Toda the-
ories the massive particle excitations form a natural closed scattering sector.
There are ¢ = rank G such particles, and their masses are: m = (mq, ..., m),
where m 1s the Frobenius-Perron eigenvector of the Cartan matrix, C, of G.
That is [18]:

C-m = 4sin2(21)m.
g

It was shown in [3] that for the most relevant supersymmetry-preserving per-
turbation of the N = 2 minimal series, the Landau-Ginzburg solitons do indeed
have masses that correspond to an affine SU(k + 1) Toda theory. Moreover,
apart from supersymmetric pairings of states, the scattering matrix of the Lan-

dau-Ginzburg solitons was that of the massive particle excitations of the affine

9 It is possible that the polynomial expression for the integral of motion found in
the foregoing manner could become trivial via null vectors. Explicit computations for
the first few integrals of motion shows that this only happens when the integral itself
disappears. Thus no new expressions for the integrals of motion are needed, and we

assume here that this is always the case.
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Toda theory. It is therefore tempting to suggest that there should be a corre-
spondence in general between the Landau-Ginzburg solitons and the massive
excitations of the Toda theory. To provide further evidence for this, and also
because of their intrinsic interest, we present here some preliminary results on
the Landau-Ginzburg soliton structure for the most relevant perturbations of
some more general minimal, hermitian coset models.

The solitons of an N = 2 Landau-Ginzburg theory interpolate between
pairs of isolated degenerate vacua. Let z denote the fundamental Landau-Ginz-
burg fields, and W (x) denote the superpotential. Then in the i-th vacuum the
fields, z, have an expectation value z?, where z! is a solution to VW (z!) = 0.
Employing specific properties of N = 2 Landau-Ginzburg models, it can be
shown [19] [3] that the mass of a fundamental soliton linking the é-th vacuum
with the j-th vacuum is bounded by the distance between the images of 2! and

0

z; 1n the complex W-plane, v.e.:

m(ig) > (W) = W)l (5.1)

It was shown in [3] that for models with one Landau-Ginzburg field, the soli-
ton masses saturate this Bogomolny bound, and that the soliton trajectories
correspond to straight lines in the W-plane. While the bound (5.1) remains
valid for Landau-Ginzburg theories with several fields, 1t is not clear whether
the correspondence of soliton trajectories with straight lines in the W-plane
remains true. The lengths of these straight lines still represent lower bounds
for the soliton masses, and this bound will be saturated by solitons that are
annihilated by two of the four supercharges. We will investigate the Landau-
Ginzburg potential to find the lengths of these lines and hence the minimal
possible soliton masses, and we will compare these masses to those of the Toda
theory.

First of all one needs to determine the superpotentials that describe the
unperturbed models. For the minimal, hermitian model based on G/H’, the
algebra of chiral, primary fields is closely related to the cohomology ring R on
G/ H' [6]. Both rings can be obtained from a generating function ¥, and can be

. . c
realized as the quotient R = WV[E:%' In fact, there are general arguments and
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also explicit examples that support the conjecture that both rings are actually
isomorphic to each other; and that the functions W coincide.

Adopting this hypothesis (and our results will strongly support it), the
superpotentials can easily be computed by integrating the non-trivial vanishing
relations VW = 0 in the polynomial algebra of the cohomology. These vanishing
relations can be obtained by noting that if rank G = rank H' and G/H' is
Kahler, the cohomology of G/H' is generated by the Chern classes ¢; of bundles
that are defined by H’ represenations, R. For any R, the c¢; are defined by

expanding the graded total Chern form

Cr(Q) = detp(l+1Q) = Y et (5.2)

i=0
where €2 1s the curvature two-form of the bundle. The point is that the bundles
are trivial precisely when R is also a representation of G. That is, if Rg = ®& Ry,

we obtain the following relations for the ¢;:
Cre(Q) =) &t* = [[Cr() = 1. (5.3)
k=0 l

The Chern classes ¢; and ¢; are of course directly related to the Casimirs of
H' and G respectively. From (5.3) we see that the é are quasihomogeneous
polynomials in the ¢g, and that these polynomials represent vanishing relations.
To obtain a complete set of such relations one may need to consider more than
one choice of Rg. (For an example, see below.) The cohomology ring R is
generated by all the ¢; taken modulo the é;. The Chern classes ¢; correspond
precisely to Landau-Ginzburg fields with U(1) charge j/(g + 1). Tt is usually
the case that by using the vanishing relations one can trivially express many
of the ¢, as polynomials in the ¢; of lower degree. Thus it is convenient to
eliminate these redundant variables and work with a reduced set of independent
generators for R. Corresponding to this there will be a reduced set of vanishing
relations. One finds that for the minimal, hermitian models the (reduced set
of) vanishing relations can be “integrated” to a potential [6]. That is, all the
vanishing relations are equivalent to the equations VW = 0 for some function

W of the independent variables.
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Consider for example G/H' = SO(10)/U(5). From [6] one infers that the
general form of the superpotential has to be W = z° 4+ y® + az3y?, for some
particular value of the modulus a that we need to determine. Taking R¢g to be
the ten dimensional vector representation, with Q = diag(x1, —x1, ..., 25, —25),
we have (0(Q) = H?zl(l — t*z?). Expressing (5.3) in terms of the Chern
classes corresponding to the 5 of U(5), ¢; = > 4 . cp. @k, .- Tk, One obtains

the following relations:

52 = 262 — C% =0

54 = 264 - 26163 + C% =0

~ _ 2 _
6 = 2c9c4 —2c1c5 —cz = 0
~ _ 2 _

g = c; —2c3c5 = 0

The SO(10) Casimir of degree 5 does not appear here, but from the 16 of
SO(10) we get the additional vanishing relation és = —12¢5 = 0. Thus only ¢
and ¢z remain independent and they can be associated with the Landau-Ginz-
burg fields z and y above. These fields satisfy vanishing relations at grades 6
and 8, that give the equations we are looking for as 8,V = és(x,y) = 0 and
9 W = és(x,y) — %1‘256(1‘, y) = 0. Integration yields the superpotential, which
can be brought by field redefinitions to the above normal form with modulus

1/3
a=—/2 {ﬁ} . Further examples are:

W[ = 2+ +ax®y? | a= —3\/5(22 + 10\/5)_1/3, (. =10)

su(s)xsu(z)xu(1)]

[/V[ SU(e) ] = 2 + l’yB + am3y2 , a= —71/3, (’u = 15)

ST@XSU @RI

9% SU(s = 2"+ 2zl + 9Pz +axtz 4 bty
a=3/4V7,b=0, (u=20)

[/V[ SU(7) ] = 28— y4 + ay%@4 + bx6y,

SUBXSU@RUT
2 92\ 3/1
— 14y = b=928( = =21
¢ 31 (31) (e=21)

(5.4)

£ is always given

In accordance with [6], the multiplicity 4 = dimR = Tr(-1)

by the dimension of a particular representation of .
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We consider perturbations of the superpotentials W — W 4 Az, where z 1s
the lowest dimensional chiral, primary field with conformal weight h = m
Under these perturbations, the p-fold degenerate critical points of W resolve
into g non-degenerate critical points, so that we have distinct vacuum states
2l =1, 0

Studying the foregoing (and other) examples, the following general pattern
emerges. The p vacuum image points in the W-plane either lie on concentric
circles or at the center of these circles. Some of these image points may coincide
with each other. The W-plane picture is symmetric under 7, rotations, and,
in particular, each concentric circle has g points regularly spaced around it.
The circles have specific radii whose ratios are fixed by the particular values of
the moduli a, b, ... above. The important observation from the point of view of
solitons is that the radii are such that most of the distances |W (7) — W (23)]
give masses that correspond to the appropriate affine Toda theory. This is
highly non-trivial, as there are many more possible links (i.e. solitons) between

the g vacua than the ¢ masses of the Toda particle spectrum.
SU(6)

xSU(2)xU(1)
The W-plane diagram is given by a regular star with 6 vertices, created by

As an example, consider the picture for ST in more detail.
the intersection of two equal sized equilateral triangles. The ¢ = 15 vacuum
images, W (z?), are distributed as follows: one vauum maps to each of the 6
vertices of the star. One vacuum goes to each of the 6 intersections of the two

equilateral triangles, and finally three vacua map to the center of the star. The
affine SU(6) Toda model has three different masses,

(ma:mg):(mb:mg):mcz1:\/5:2. (5.5)

These ratios correspond precisely to the distance between two nearby vertices of
the star (my), the distance between a vertex and a nearby intersection (mg), and
the distance between a vertex and a next-to-nearby intersection (m.). There
are also distances that do not fit with the affine Toda particle spectrum, for
example, the distances between non-adjacent vertices. These distances are all
larger than the ones cited above. Moreover, from a naive classical analysis it

appears that there are no fundamental soliton trajectories linking these points,
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but only multi-soliton trajectories. Thus the SU(6) affine Toda spectrum is

exactly reproduced if the solitons saturate the Bogomolny bound. The same
SU(6)
xSU(3)xU(1
whose superpotential is given in (5.4) (and of course, also from the perturbed
SU(6
SU(B)xU
picture consists of two concentric circles with radii 1 and 1/2, plus two vacuum

spectrum can also be obtained from the perturbed SU3) 3 theory,

) theory whose superpotential is W = 27 + Az). Here the W-plane

images in the center. Six vacuum images build a regular hexagon on the outer
circle, and there are 12 such images on the inner circle (the latter set of images
come in pairs that are mapped to the same point); the hexagons have the
same orientation. One can check that if the fundamental solitons saturate the
Bogomolny bound then they do not have masses other than those determined
by (5.5).

For the other examples, the situation is more complicated. Though most

distances [W(z) — W ()

indeed do correspond to Toda masses, there exist
in general also distances that do not fit and are smaller than the Toda masses.
However, not every line between two dots need correspond to a soliton; in fact,
in [3] a simple example of this phenomenon was displayed. Thus it is possible
that these smaller lengths do not correspond to solitons and in fact the Toda

masses give the entire spectrum of the Landau-Ginzburg model.

6. Conclusions

By exploiting the relationship between Toda field theories and conformal
field theories, we have shown that a large class of N = 2 supersymmetric
models admit integrable deformations. It is intriguing to note that the class
of N = 2 supercoset models that can be related to Toda theories coincides
precisely with the class of N = 2 supercoset models that are known to have a
Landau-Ginzburg description [6]. This means that all of the integrable models
that we have described here also have an equivalent Landau-Ginzburg form,
and as the results in section b suggest, one can learn a considerable amount

from this Landau-Ginzburg formulation.
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The connection with Toda theories enables one to trivially read off the spins
of the integrals of motion of the perturbed conformal model. Moreover, by using
the Miura transform of the Toda field theory one can explicitly construct the
integrals of motion in terms of the free bosonic formulation of the conformal
model. Thus the realization of perturbed theories in terms of Toda theories
affords valuable insight into the structure of the theories.

In this paper we have studied the application of Toda technology to per-
turbed N = 2 superconformal theories. These techniques have already been
applied with great success to non-supersymmetric theories [4][12]. There are
further applications that we are now investigating. One of these is to look at the
role of generalized Toda theories [2] in perturbed conformal field theory. The
simplest example of this is the Bullough-Dodd theory, which can be thought of
as a Z4 reduction of SO(8) affine Toda theory [18], and is intimately related
to the spin perturbation of the bosonic minimal series. Another application
1s essentially a generalization, to non-supersymmetric theories; of the results
presented here. That is, we find new integrable models that can be thought of
as multiple perturbations of products of conformal models.

In most of this paper we have considered what can be learned about confor-
mal field theory from Toda theories. There is also something to be learned by
reversing this procedure. First, although the classical integrability of Toda the-
ories 1s well understood, the quantum integrabilty, and even the quantization of
Toda theories with imaginary coupling constants is, at best, poorly understood.
The fact that the integrals of motion of the perturbed, minimal, N = 2 mod-
els that we derived here coincide with those of [3] provides some confirmation
that there 1s a sensible, unitary conformal field theory within the Hilbert space
of the quantized Toda theory, and that the corresponding affine Toda theories
are quantum integrable. Another consequence of our work is that for certain
values of the coupling constant, affine Toda theories have a quantum N = 2
supersymmetry. This N = 2 supersymmetry has no analogue in the classical
theory, and appears in the quantum theory via the vertex operators (2.13). In
the simplest example of this, namely in sine-Gordon theory, the supersymme-

try appears at a value of the coupling constant that lies is the strong coupling
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region. We believe that this is generally true, that is, we believe that the su-
persymmetry point of an affine Toda theory will lie somewhere in the strong
coupling domain. This domain is notoriously hard to analyze, but at this one
1solated point the structure becomes simpler, and by utilizing the corresponding

Landau-Ginzburg theory one should be able to learn much about the theory.
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