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Abstract

We review the system of holomorphic di�erential identities implied by special K�ahlerian

geometry of four dimensional N � � supergravity� For the special case of superstring

compacti�cations on Calabi�Yau threefolds
 these identities are equivalent to the Picard�

Fuchs equations of algebraic geometry that are obeyed by the periods of the holomorphic

three�form� The monodromy group of these equations is closely related to the target

space duality symmetry group� Examples with one and two moduli are considered� The

connection of special geometry with the moduli space of N � � superconformal �eld

theories is also discussed�
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� Introduction and Summary

It is well known that four�dimensional heterotic string vacua which are

N � � space�time supersymmetric have necessarily an N � �� c � � super�

conformal �eld theory 	SCFT
 in the left moving sector ���� Furthermore
 the

couplings of the corresponding low energy e�ective Lagrangian are directly re�

lated to correlation functions in the N � � SCFT� In general
 such correlation

functions are quite di�cult to compute
 and usually more insight into their

structure can be gained by using the formulation of the 	�
�
�string vacua in

terms of the Landau�Ginzburg superpotential ��� 	possibly in its twisted version

corresponding to N � � topological �eld theory ���

 which is in many cases

directly related to the geometrical description in terms of Calabi�Yau ��fold

compacti�cation of the heterotic string ����

One is actually faced with the problem of computing low�energy quantities

in terms of the properties of the moduli space of a given SCFT �eld theory� The

moduli space is the space of all marginal deformations of the underlying N��

SCFT or
 in the geometrical picture of Calabi�Yau compacti�cations
 it is the

space of the parameters ��
 �a describing the deformations of the K�ahler class

and of the complex structure of the Calabi�Yau manifold ���� In the low energy

theory
 the moduli parameters ��	x

 �a	x
 appear as neutral massless scalar

�elds with vanishing potential�

Recently
 much progress has been made in the determination of the phys�

ical low�energy parameters without ever relying on the underlying SCFT
 but

rather by using techniques of algebraic geometry and topological �eld theo�

ries 	TFTs
 ������� A crucial step in this new direction was done in ref� ���


where it was shown that the couplings could be obtained from the solution of

a certain fourth order linear holomorphic di�erential equation� It was realized

that this di�erential equation is a particular example of �Picard�Fuchs equa�

tions� obeyed by the periods of the holomorphic threeform � that exists on any

Calabi�Yau threefold ������ 	Picard�Fuchs equations can be derived for general

�Calabi�Yau� d�folds ��
��
 but we consider mostly d � � in the following�


On the other hand
 in the framework of TFTs one can derive from con�

sistency considerations alone ���
��� di�erential equations that are equivalent

� � �

to the Picard�Fuchs equations� We should note that not only the Picard�

Fuchs equations arise from these topological considerations
 but there are fur�

ther properties of the low energy e�ective Lagrangian encoded in the underlying

topological �eld theory 	TFT
���
��
����

A further step in uncovering the general structure behind the di�erential

equation was undertaken in refs� ���
���� It was realized that the Picard�Fuchs

equations for a Calabi�Yau threefold are just another way of expressing a geo�

metrical structure called �special geometry� �������� It �rst arose in the study

of coupling vector multiplets to N � � supergravity in four dimensions �����

In string theory
 special geometry is related to the subclass of string vacua

with 	�� �
 worldsheet supersymmetry �������� The additional right�moving

world�sheet supersymmetry implies further constraints on the couplings of the

e�ective Lagrangian� In particular
 in the moduli sector of the theory these

constraints can be expressed by the equations ���
�����
���

R�
���
�g���
�

� � g���
�

� �C���g
��C���g
�� �

C��� � eKW���	z
 �

	���


Here
 g��	z� z
 � ����K	z� z
 is the K�ahler metric on the moduli space and

the 	completely symmetric
 Yukawa couplings W��� are holomorphic functions

of the moduli z� 	� � �� � � � � n
 where n is the dimension of the moduli space
�

A complex K�ahler manifold whose metric obeys 	���
 is called a special K�ahler

manifold� 	Further relevant formulas of special geometry are collected in Ap�

pendix A�


For givenW��� 
 eq� 	���
 can be viewed as a covariant and non�holomorphic

di�erential equation for the K�ahler potential� Its general solution can be ex�

pressed ���
��� in terms of n � � holomorphic sections XA	z
� A � �� �� � � � � n

which obey ��X
A � ��

K � � ln i	XAFA �X
A

FA
 � 	���


where

W��� � ��X
A��X
B��X
CFABC � 	���


� � �



and FA	X
 � �F �X�

�XA 
 etc
 and F 	X
 is a homogeneous function of X of de�

gree two� We see that all information about K and W��� are encoded in the

holomorphic objects XA	z
 and FA	z
 and their complex conjugates�

In order to make contact with the di�erential equation of ref� ��� one ob�

serves ���
��
��� that eq� 	���
 is entirely equivalent to the following system of

non�holomorphic �rst order equations

D�V � U�

D�U� � �iC���g
��U�

D�U� � g��V

D�V � � �

	���


where V 	z
 �

�
XA	z
� FA	z

�

and D� is the K�ahler and reparametrization

covariant derivative� By successively inserting these equation into each other

one can represent this system by

D�D�	C����
��D��D�V � � 	���


	assuming for the moment that the matrix 	C�
�� is invertible
� Here
 b	 is

a priori not summed over 	in contrast to 

� In ref� ���� it was shown that

eq� 	���
 in one complex dimension 	n��
 is actually holomorphic
 although its

building blocks are not� It is the covariant version of the 	holomorphic
 equation

of ref� ���
 and thus is the analogue of the Picard�Fuchs equations in special

geometry� Its solution determines XA and FA and thus via eqs� 	���

	���
 also

W��� and K�

The existence of the covariant holomorphic di�erential equation 	���
 is

intimately connected to the fact that the Christo�el as well as the K�ahler�

connection naturally split into the sum of two terms ����� One of them is non�

holomorphic and transforms as a tensor whereas the other term is holomorphic

and transforms like a connection� Furthermore
 the holomorphic pieces of these

connections are �at and vanish in �special coordinates�

ta	z
 �
Xa	z


X�	z


	a � �� � � � � n
 � 	���


� � �

A similar situation holds in topological Landau�Ginzburg models where the �at

connection can be identi�ed with the Gauss�Manin connection ���
��
���

Ref� ���� generalizes the analysis of ���� to arbitrary dimensions n and sec�

tions ��� are based on this paper� We start in section ��� by showing that

eq� 	���
 in one dimension is not the most general linear fourth order di�eren�

tial equation but rather is characterized by the vanishing of one of the �invari�

ants�
 w� � �� The other invariant w� measures the deviation from covariantly

constant
	

Yukawa couplings
 or in other words
 the deviation from the large

radius 	classical
 limit of the Calabi�Yau moduli space�

Every N�th order di�erential equation is equivalent to a �rst order matrix

equation of the form 	��A
V � �
 where the �rst row ofV is the solution vector

V in 	���
� In section ��� we show that w� � � translates into the statement

that the gauge potential A of this matrix equation takes values in sp	�
� It is

this fact which nicely generalizes to an n dimensional moduli space�

In chapter � we derive the Picard�Fuchs equations of special geometry for

an arbitrary number of moduli� They are a direct consequence of 	���

 and are

most easily displayed as n coupled �rst order holomorphic matrix equations

	�� � A�
V � � � 	���


where A takes values in sp	�n� �
� This is the analog of the vanishing of w� in

one dimension� A� is a sum of a matrix I�� which contains the �at connections

plus the structure constants C� of a �n � � dimensional chiral ring R���� The

structure constants contain the Yukawa couplingsW��� and furthermore satisfy

�C��C�� � �� C� � �� Because the connection is symplectic
 V can always be

taken as an element of Sp	�n��
� This means that the well�known symplectic

structure of special geometry can ultimately be traced back to the identity 	���
�

In section ��� we display the relationship between equations 	���
 and 	���
�

Eq� 	���
 can also be written as a �rst order matrix equation 	�� �A�
U � �


albeit with a non�holomorphic connection A� Strominger observed ���� that the

� Covariantly constant with respect to the holomorphic connections	

� � �



system 	���
 is just the �atness condition for A� We will show that eq� 	���


corresponds to a gauge where A � ��A � A� �A � ��

In section ��� we consider particular cases where C is degenerate
 which

corresponds to decoupled chiral rings� Here the F�function is a direct sum

whereas the metric of the moduli space is a complicated function and by no

means the metric on a product space� This clearly shows that the fundamental

object in special geometry is indeed the holomorphic function F and not the

non�holomorphic metric on moduli space�

As we indicated above
 the motivation for the present work was to analyse

the holomorphic di�erential equations of special geometry� So far
 the discussion

was completely general and applied also to geometries that do not have an

interpretation in terms of Calabi�Yau manifolds or TFT�s� In chapter � we relate

eqs� 	���
�	���
 to Calabi�Yau moduli spaces
 where V� U�� U�� V correspond

to basis elements of the third cohomolgy
 H� � H��
�� � H��
�� � H��
�� �

H��
�� ���
���� We then relate the formulas used in topological Landau�Ginz�

burg theory to the structures uncovered in special geometry in chapter �� This

is useful in order to explicitly compute the di�erential equations� In particular

we verify that the computation of Yukawa couplings W��� via Picard�Fuchs

equations in special geometry is
 as expected
 identical to the computation of

certain three�point correlators in topological Landau�Ginzburg theory�

We should stress that in the context of special geometry the deformations

of the K�ahler class and the deformations of the complex structure appear on an

equal footing� This is because eq� 	���
 holds for both types of moduli ���
���


which is a manifestation of �mirror symmetry� ����� In practice
 it is often

only possible to compute the Picard�Fuchs equations for one type of moduli�

In order to �nd the Picard�Fuchs equation for the other class of moduli
 one

needs to make use of the mirror symmetry�

By using �topological anti�topological fusion� the geometrical structure

implied by eq� 	���
 was extended in ���� to include relevant 	massive
 pertur�

bations
 in addition to the marginal 	massless
 moduli considered here� One of

the main objectives of ���� was to construct non�holomorphic quantities 	like

the metric
 from TFT� On the other hand
 the emphasis of the present review

� � �

is on the structure of the holomorphic Picard�Fuchs equations in relation to

special geometry�

In the remaining sections
 based on refs� ���
���
 we will be concerned with

the non�trivial global properties of the moduli space M
 which are a conse�

quence of the group of discrete isometries � of M
 generally referred to as the

�target space duality group�
 or �modular group� ����� The duality group de�

scribes quantum symmetries of the string e�ective action and is the discrete

remnant of the non�compact symmetries of the well�known supergravity La�

grangians 	no�scale supergravities����
� The knowledge of the duality group

is very important since the physical quantities appearing in the e�ective La�

grangian must transform in a de�nite way under this group� for example
 the

gauge coupling g��a 	t� t
 is a real function which must be modular invariant in

t� t� We will see that the target space duality group � is closely related to the

monodromy group �M of the Picard�Fuchs equations that determine the period

matrix for Calabi�Yau manifolds�

A celebrated example is the compacti�cation of the heterotic string on a

��torus
 modded out by some discrete symmetry that leaves a residual N � �

space�time supersymmetry� The K�ahler class untwisted modulus 	correspond�

ing to the volume size

 t � �	R��i
pjgj

 parametrizes the homogeneous space

�����

SU 	�� �


U 	�


� 	���


The K�ahler potential of the scalar �elds t
 ��	 is

K � �� log �i	t� t
� ��	��	� � 	���


and the target space superpotential W is characterized by a constant Yukawa

coupling
 W � C���	� The theory is invariant under transformations of

PSL	�� IR

t� �
at� b

ct � d

� ���	 � � �
ct � d
��	 � ad� bc � � � 	����


� � �



However
 when other 	twisted
 sectors are introduced and quantum corrections

are taken into account
 the duality group is reduced to PSL	��ZZ

 with gener�

ators

t� t� � t���
t
� 	����


More generally
 for Calabi�Yau manifolds the superpotential W is no longer

constant
 but in general it depends on the moduli � W��� � W��� 	�� �

 be�

cause of the instanton corrections of the 
�model� However
 for one modulus

it turns out that t� t� � is still an exact symmetry
 if t is the special coordi�

nate of special geometry
 or equivalently
 the �at coordinate of the associated

topological �eld theory� That is
 the Yukawa coupling ���

W 	t
 �

�X
n
�

dn e��int 	����


is periodic in t� Actually
 the translational symmetry is supposed to be exact

for any number of moduli
 since the invariance under ta � ta � �
 a � �� ���� n

has a stringy origin in the existence of the antisymmetric axion �eld Bij �

In the large radius limit
 t � i�
 eq� 	����
 gives W 	t
 � d� � const�


which implies that F	t
 � jX�j��F 	XA
 is cubic in t� Actually the most general

prepotential such that W 	t
 and the K�ahler potential 	���
 are invariant under

t� t� � is ����

F 	XA
 � 	X�
��
C

� 
t� � �	t
 � P�	t
� 	����


where P�	t
 is a polynomial of degree two with purely real coe�cients and �	t


a periodic function of t� If instead invariance under arbitrary shifts is required


t � t � c
 c � R
 then � must be a constant� Note that a non vanishing � is

generated in 
�model perturbation theory at the four loop level ����

Under the inversion t���
t

the K�ahler potential transforms as follows

K � K � f	t
 � f	t
 	����


� � �

so that W 
 which has a non trivial K�ahler weight undergoes a non trivial trans�

formation� In the following
 we will show that the generalization of the inversion

for a generic duality group is given by

ta � fa	ta� �aF �F !A�B�C�D
 a � �� ���� n 	����


where n is the number of moduli
 F	ta
 � 	X�
��F 	XA
 and A�B�C�D are

	n��
� 	n� �
 matrices parametrizing a generic Sp	�n��!Z
 transformation

M �

M �
�

A B

C D
�

� Sp	�n � �!Z
 	����


As an example
 we will then brie�y recall the determination of the duality

group for the quintic ���
 which is generated by the following two transformations

acting on the special coordinate�
t� t� �

t� t

tF �t � �F � �
�

	����


Here
 F	t
 is the holomorphic prepotential of special geometry� The modular

coordinate 	 on which the two transformations described earlier act as SL	�� IR


transformations 	for any F
 is described in chapter � and the relation of 	 with

the special coordinate t as well as with the Landau�Ginzburg coupling of the

de�ning polynomial in CPd�� will also be given�

The determination of the duality symmetry group � for Calabi�Yau com�

pacti�cations
 or more generally
 for 	�� �
 c � � SCFT
 is in general a math�

ematically very complex problem� Only recently one has been able to solve

a couple of examples in which the moduli space is two�dimensional ���
��
����

However
 we will see that just from the speci�c structure of the Picard�Fuchs

equations
 one can extract important information for any number of moduli�

i
 The 	holomorphic
 Yukawa couplings can be read out directly from the

leading coe�cients in the order Picard�Fuchs equations�

� � �



ii
 Using the matrix form of the Picard�Fuchs equations in the special

geometry gauge
 we argue that
 for any number of moduli
 the subgroup of the

duality group that corresponds to translations in the special variables

ta � ta � na � na � ZZn � 	����


can be constructed in terms of the intersection numbers of the Calabi�Yau

manifold�

Finally
 in section � we will illustrate an e�cient method for computing

the duality group
 exempli�ed by considering a model with two moduli� We

will use algebro�geometric techniques which were developed and applied to the

study of the monodromy group of Feynman integrals some time ago���
��� � We

will show that � is simply given by a ��dimensional representation of a central

extension of B�
 the braid group on �ve strands�

� Di�erential equations for one variable

��� Linear di�erential equations and W�generators

In ref� ��� it was shown that the periods of a one�dimensional moduli space

of a particular Calabi�Yau�threefold 	a quintic in CP�
 are determined by a

fourth order linear di�erential equation� The corresponding di�erential equation

in special geometry "the one�dimensional version of eq� 	���
" was derived

in ref� ����� In this section we add some observations concerning this one�

dimensional case� This will prove advantageous for the study of the general

situation�

Thus
 let us �rst brie�y review some facts about linear fourth order di�er�

ential equations ����� Their general form reads

�X
n
�

an	z
 �nz V � � � 	���


where the an obey well�de�ned transformation laws in order to render eq� 	���


covariant under coordinate changes z � ez	z

 � � 
���
 
 � �ez��z� Not all

� � �

of the an are relevant� First
 one can scale out a�
 and furthermore drop the

coe�cient proportional to a� by means of the rede�nition V � V e
����
R
a��u�

a��u�
du

�

This puts the di�erential equation into the form

DV � 	�� � c��
� � c�� � c�
V � � � 	���


where the new coe�cients cn are combinations of the an and their derivatives� In

this basis V transforms as a ���� di�erential
 but the transformation properties

of the cn are not very illuminating� However
 one can �nd combinations of the

cn�s and their derivatives which transform like tensors�

w� � c�

w� � c� � c��

w� � c� � �
�c
�

� � �
�c
��

� � 

���c
�

� �

	���


A straightforward computation shows

ew� � 
���w� � �fez! zg�ew� � 
��w�ew� � 
��w� �

	���


where fez! zg � 	�
�





� �
�	�




�
 is the Schwarzian derivative� Actually w�� w�� w�

form a classical W��algebra 	see
 for instance
 ����

 a fact that we will not

make use of in this paper� Using 	���
 and 	���
 one �nds

D V �
�

�� � w��
� � 	w� � w��
� � �

��w
��

� � 

���w�
� � �

�w
�

� �w�
�

V � 	���


The advantage of rewriting a di�erential equation in terms of W �generators is

that this is a convenient way to display the particular properties of the equation

in a reparametrization�covariant way� From eq� 	���
 we learn that there is

always a coordinate system in which w� � � holds� On the other hand
 w� and

w� do characterize the fourth order di�erential operator D in any coordinate

frame�
Let us return to special geometry� in ref� ���� it was shown that there is

a holomorphic fourth order di�erential equation that expresses the constraint

� �� �



of special geometry and thus is equivalent to eq� 	���
� This equation is the

one�dimensional version of 	���
 and reads

DDW��DDV � � � 	���


where D is the K�ahler� and reparametrization covariant derivative de�ned in

	A���

 and W is the one�dimensional Yukawa coupling� In special coordinates

	���

 this equation becomes very simple


��W�� �� V � � � 	���


Equation 	���
 can be written in the form 	���
 and one �nds that the coe�cients

are not arbitrary but are related as follows ����� a� � ��a�� a� � W��� a� �

�a� � �
��
�a�� The coe�cients a� and a� are complicated functions of W and

the connections� The above relations translate into the invariant statement
	

w� � � � 	���


Furthermore
 the other W �generators are given 	in special coordinates
 by

w� � �
�W�
�

�WW �� � �W ���

w� � �

���W�
�

���W �� � ���WW ��W �� � ��W �W ��� � ��W �W �W ���

� ��W �W ����� � 	���


Thus
 all special geometries in one dimension lead to a fourth order linear di�er�

ential equation that is characterized by w� � �� This is in close relation to the

fact that the solution vector V does not consist of four completely independent

elements
 but rather has a restricted structure� More precisely
 by construction

four linear independent solutions are given by the components of the vector 	cf�


	A���



V �
�

XA	z
� FA	z

�

� A � �� � � 	����


with

FA	z
 �

�

�XA	z

F 	z
� 	����


� This was noted in ��� for the special example of the quintic hypersurface in CP� 	

� �� �

where F is a homogeneous function of X of degree �� The reverse statement

is however not true� w� � � does not imply that the solution V can always be

written in the form 	����
� This is proven in Appendix B�

Note that the property 	����
 does not uniquely �x V � It is known

���
��
��
��� that precisely for symplectic rotations of V 


� eXA� eFA	 eXA

�

�

�
XA� FA	XA

� �M � M � Sp	�
 � 	����


one has eFA � 	� eF�� eXA
 where eF is again a homogeneous function of degree

�� Thus
 the elements of V are de�ned only up to this kind of transformations�

Of course
 generic linear combinations of the four solutions are still solutions of

	���

 but for these the special structure of the solutions 	that re�ects w� � �


is not manifest�

Symplectic transformations belonging to Sp	�n � �� IR
 have a particular

meaning in special geometry� They represent changes of special coordinate

bases and are exactly those transformations which leave K form�invariant and

consequently do not change any physical quantity� 	This can be easily seen from

eq� 	A���
 which displays manifestly the symplectic structure of K
� We will

show in the following sections how this symplectic structure of special geometry

is encoded in the di�erential equations�

One can similarly discuss the properties of D when in addition�

w� � � � 	����


From 	���
 it is clear that this applies in particular if W � const� However


w�	W 
 � � is a non�trivial di�erential equation that possesses also other solu�

tions than W � const� One might thus ask about the signi�cance of general

solutions of w�	W 
 � � with non�constant superpotential�

If w� � �
 eq� 	���
 simpli�es to

DV �
�

�� � w��
� � w��� � �

��w
��

� � 

���w
�

�
�

V � 	����


� �� �



and the solutions are given by
�

���� �
�

���� ���
�

�� �
�

�
�

���� � Here
 ��
� are the inde�

pendent solutions of the second order equation


	�� � �
��w�
��
� � � � 	����


One easily determines a symplectic basis to be

X� � ��� � F� � ��
�

	X�
�

	X�
�
� �c��X
� � �c��X
� �

X� � ����� � F� � �
�

	X�
�

X�

� �c��X
� � �c��X
� �

	����


where cAB are arbitrary constants� Using the homogeneity property XAFA �

�F or integrating FA we �nd

F � �
�

	X�	z

�

X�	z


� cABX
AXB � 	����


From this F we can compute 	using 	���

 the Yukawa coupling and �nd that

it is covariantly constant� bDW � �� For cAB � � 	����
 is the F�function
	

corresponding to the homogeneous moduli space SU 	�� �
�U 	�
 	which satis�es

the stronger constraint DW � �
� Moreover
 it follows from the inhomogeneous

transformation behavior 	���
 of w� that one can always �nd a �schwarzian�

coordinate where w� vanishes
 by solving a Schwarzian di�erential equation

ft! zg � �
�w�	t
� Then one has �� � �� �� � t and thus can take 	cAB � �


V � 	�� t� ��t
�� �� t
�
 � F � �

� t
� � W � ��F � � � 	����


It is clear that t � X��X� is precisely the special coordinate of eq� 	���
 	note

that the coincidence of special coordinates with Schwarzian coordinates holds

only if w� � �
� There is an analogous group action that preserves the rela�

tionship among the solutions of 	����
� This group is just the invariance group

� The quadratic terms in F can have the interpretation as perturbative ��model correc�

tions in Calabi�Yau compacti�cations ���	

� �� �

of the Schwarzian derivative
 which is SL	�� IR
� �� � a��b

c��d � ad� bc � �� The

action on the solutions of 	����
 is easily found through the mapping V � ���

M �

	B

a� a�c ac��� c���

�a�b �abc� a�d bc��� � acd c�d��

�ab� �b�c � �abd �bcd� ad� cd�

�b� �b�d �bd� d�

�CA � 	����


which is part of Sp	�� IR
 ����� Thus
 the speci�c structure of the solutions is

unique up to such SL	�
 transformations�

Summarizing
 the above means that if w� � �
 the situation for generic

w� is reparametrization equivalent to w� � �
 in which case the solutions are

given by 	����
� This corresponds to a cubic F �function and to constant Yukawa

couplingW � In general coordinates where w� does not vanish
W is not constant

	but covariantly constant with respect to the holomorphic connections
�

Thus
 for covariantly constant Yukawa couplings the di�erential equation

is essentially reduced to the di�erential equation of a torus� This is similar

to the situation for the K� surface where the only non�trivial W �generator is

w� ���� The possibility of having non�trivial Yukawa couplings
 or w� 	� �


is the new ingredient in special geometry� It re�ects the possibility of having

instanton corrections to W � Speci�cally
 it is easy to see from 	���
 that in

special coordinates the solutions have the general structure

V � 	 � � t � ��t
� � O	t�
 � ��t
� � O	t�
 
 � 	����


where the higher order �instanton� terms arise from a non�trivial w�� Thus


the invariant w� measures the deviation from W � const
 which is the large�

radius limit of the Calabi�Yau moduli space� One can actually check that the

contribution of a given rational curve of degree k to the Yukawa couplings

corresponds to a �w��surface�
 i�e�
 to a covariantly constant w� generator�

That is
 from 	���
 one �nds that in special coordinates� w�	W � ekt
 �

	const
k� 	see also Appendix B
�

We now turn to another way of understanding the signi�cance of w� � ��

This will also allow us to introduce some concepts which nicely generalize to

multi�dimensional moduli spaces 	section �
�

� �� �



��� First order equations

Any fourth order linear di�erential equation 	���
 is equivalent to a �rst

order matrix equation ���� h
��� � A
i

�V � �� 	����


	for a particular choice of the matrix A
 where V is a �� � matrix whose �rst

row is V � A matrix of the form
A �

	B


 � � �


 
 � �


 
 
 �


 
 
 

�CA � 	����


corresponds to a fourth order operator with a� � � whereas trA � � leads to

a� � �� However
 D is left invariant by local gauge transformations acting as

V� S�� �V and A� S��AS � S���S
 where S has the form

S �

	B

� � � �


 � � �


 
 � �


 
 
 �
�CA � N � SL	�
 � 	����


This is just the usual matrix of lower triangular transformations generated by

a nilpotent subalgebra of sl	�
� The top row of V corresponds to the highest

weight and thus also is N�invariant 	the other rows of V are gauge depen�

dent
� That is
 the solutions of 	���
 are completely invariant under the local

transformations 	����
�

Note also that the more general gauge transformations belonging to a Borel

subgroup B of SL	�

 where
S �

	B


 � � �


 
 � �


 
 
 �


 
 
 

�CA � B � 	����


� �� �

do not leave D invariant but induce a� 	� � and a� 	� �� However
 this just

corresponds to a rescaling of the solution V � f	z
V 	and corresponds to an

irrelevant K�ahler transformation in this context
�

Using the gauge freedom one can put the connection into the form�

A � Aw �
	B


� � � �

� �
��w� � � �

��
�w� � �
��w� � �

�w� ��
�w� � �
��w� �

�CA � sl	�� R
 � 	����


To understand this form
 recall the well�known relationship
	

between W �

algebras and a special
 �principally embedded� SL	�
 subgroup K ���� of

G � SL	N 
 	in fact
 G can be any simple Lie group
� The generators of K

are

J� �

X
simple

roots �

b�E� � J� �

X
simple

roots �

c�	b�
E�� � J� � �G �H � 	����


where b� are arbitrary non�zero constants
 c� depend on the b� in a certain

way and �G is the Weyl vector� An intriguing property ���� of K is that the

adjoint of any group G decomposes under K in a very speci�c manner�

adj	G
 �
M

rj � 	����


where rj are representations of SL	�
 labelled by spin j
 and the values of j

that appear in the r�h�s� are equal to the exponents of G� The exponents are

just the degrees of the independent Casimirs of G minus one 	for SL	N 

 they

are equal to �� �� � � �� N � �
�

Recalling that the Casimirs are one�to�one to the W generators associated

with G
 one easily sees that the decomposition 	����
 corresponds to writing

the connection 	����
 in terms of W �generators! more precisely
 for an N�th

order equation related to G � SL	N 

 the connection 	����
 can be written as

���
����

Aw � J� �
N��X

m
�
wm��	J�
m � 	����


� We thank R	Stora for discussions on this point	

� �� �



where J� are the SL	�
 step generators 	����
 	up to irrelevant normalization

of the wn
�

In our case
y

with N � �
 the decomposition 	����
 of the adjoint of SL	�


is given by j � �� �� �
 which corresponds to w�� w� and w�� We noticed above

that w� � � for special geometry and this means that Aw belongs to a Lie

algebra that decomposes as j � �� � under K� It follows that this Lie algebra

is sp	�
� Indeed
 remembering that the algebra sp	n
 is spanned by matrices A

that satisfy AQ�QAT � �
 we can immediately see from 	����
 that

Aw � sp	�
 �� w� � � � 	����


Above
 the symplectic metric Q is taken as in 	A���
�

We chose the gauge in 	����
 such that the symplectic structure is manifest�

General gauge transformations conjugate the embedding of sp	�
 in sl	�

 and

in general gauges the fact that Aw � sp	�
 is not obvious� The invariant way to

express this fact is to state that w� � � in the gauge invariant scalar equation�

Similarly
 if in additionw� � � 	which corresponds to a covariantly constant

Yukawa coupling

 Aw further reduces to an SL	�
 connection� This SL	�
 is

identical to the principal SL	�
 subgroup
 K
 since according to 	����
 the

entries labelled by w� and � in 	����
 are directly given by the K generators

J� and J�� It consists precisely of the transformations 	����
 that preserve the

non�trivial relationship between the solutions�

� Di�erential equations for arbitrary many moduli

��� Holomorphic Picard�Fuchs equations and special geometry

In this section we generalize the previous analysis to many variables� The

basic identities of special geometry are given by the system 	���
�
�

We already

y The choice ��	��� for A corresponds to an embedding ��	��� with b� � b� � b� � ��

and c� � c� � 
���� c� � ����	

� The relevant formulas of special geometry are collected in appendix A	

� �� �

mentioned in the introduction that
 assuming that 	C�
�� is invertible
 these

identities are equivalent to
D�D�	C����
��D��D�V � � � 	���


where b	 is a priori not summed over�

Since the solution vector V � 	XA	z
� FA	X

 is holomorphic
 we expect

that the non�holomorphic pieces in 	���
 that come from the connections in D

cancel
 so that 	���
 is e�ectively a purely holomorphic identity� We will prove

below that this is indeed the case by showing that V also satis�es manifestly

holomorphic identities that are equivalent to 	���
� These equations contain

only the holomorphic connections b� and � bK 	de�ned in Appendix A
�

Let us choose special coordinates ta � Xa�X� and the K�ahler gauge X� �

�
 and consider the following set of equations�

�aV � Va

�aVb � WabcV
c

�aV
b � �baV
�

�aV
� � � �

	���


where 	V� Va� V a� V �
 are all holomorphic and Wabc are the Yukawa couplings

in special coordinates� The last two equations of 	���
 give

V � � 	�� �
 � V a � 	ta� �� �
 � 	���


while the �rst two are solved by setting

V � 	�� ta� �aF � ta�aF � �F
 �

Va � 	�� �ba� �a�bF � tb�a�bF � �aF
 �

	���


The holomorphic function F is de�ned in eq� 	A���
 and satis�es 	in special

coordinates


�a�b�cF � Wabc � 	���


� �� �



This identity is the only non�trivial input in solving the di�erential equations�

The system 	���
 can also be written in matrix form


	 ���a �Ca 
V � � �

Ca �

	B

� �ca � �

� � Wabc �

� � � �ba

� � � �
�CA �

	���


and from the above we see that this is solved by the columns of the following

	�n� �
� 	�n� �
�dimensional matrix�

V �
	B

V

Vb
V b

V �
�CA �

	B

� ta �aF ta�aF � �F

� �ab �a�bF ta�a�bF � �bF

� � �ba tb

� � � �

�CA � 	���


From eqs� 	���

 	A���
 we can infer the transformation properties of V under

coordinate and K�ahler transformation and thus it is straightforward to write

down the covariant and holomorphic version of eqs� 	���
�

bD�V � V�bD�V� � W���V
�bD�V

� � ���V
�

bD�V
� � � �

	���


where bD is de�ned in eq� 	A���
 and contains the holomorphic connections given

in eq� 	A���
� This system can also be written as

�
���� � A�
�

V � � � V �

	B

V

V�
V �

V �
�CA � 	���


which contains the holomorphic �connection�

A� �

	BBB

��� bK ��� � �

� 	b�� � �� bK��
�� 	W�
�� �

� � 	�� bK�� � b��
�� ���

� � � �� bK
�CCCA � 	����


� �� �

The general solution of 	���
 is just the covariant version of eq� 	���
 and thus

corresponds to the columns of the matrix

V �
	BB


X� Xa X� e�a��F Xa e�a��F � �FX�

� X� ea� X�e�a
bD� ��F Xa e�a
bD� ��F �X� ��F

� � 	X�
�� e�a 	X�
�� Xa e�a

� � � 	X�
��

�CCA � 	����


Here ea� � ��t
a	z
 which satis�es bD�e
a

� � �� Furthermore
 in arbitrary coordi�

nates F is K�ahler invariant and obeys

bD�
bD�
bD�F � 	X�
��W��� � 	����


The system 	���
 implies the following manifestly holomorphic equation for V �

bD�
bD�	W��
b��� bDb� bD�V � �� 	����


Using eq� 	A���
 one checks that the �rst row of 	����
 indeed coincides with

V � 	XA� FA
� We conclude
 therefore
 that eq� 	����
 is the same as eq� 	���



except that it is written in a manifestly holomorphic way�

As for one variable
 the correspondence between eq� 	����
 and the linear

system 	���
 is not unique� Indeed
 	����
 is invariant under gauge transforma�

tions 	up to K�ahler transformations
 acting on V and A via

S �

	B


��� 	 	 �


 
n�n 	 	


 
 
n�n 	


 
 
 
���
�CA � B� 	����


which belong to a Borel subgroup B of SL	�n � ��C
�

It is easy to check that for one variable
 the connection A in 	����
 can

be gauge transformed to the form 	����
 that displays the W �generators� More

precisely
 under a symplectic transformation

S � diag
�

W�����W�����W ����W ���
�

	����


� �� �



the connection A takes the form

A �

	BB

�� eK � � �

� b�� � eK � �

� � �b� � � eK �

� � � � eK
�CCA 	����


where eK � bK � �
� lnW � �ln	X�W����
� To bring further eK to the gauge

	����
 one obviously needs an additional Sp	�
 transformation that belongs to

the nilpotent subgroup N � This transition from 	����
 to 	����
 is nothing but

a Miura�transformation �����

We have seen in section � that the Picard�Fuchs equation for one variable

can invariantly be characterized by the vanishing of classical W �generators�

The vanishing of w� was related to Aw � sp	�
� For many variables
 we do not

know how to characterize the di�erential equation 	����
 in terms of covariant

quantities like wn� But in analogy to the one�variable equation
 we expect that

the statement that corresponds to w� � � is just that A� � sp	�n��
 in 	����
�

Indeed
 the gauge in which we wrote 	����
 is manifestly symplectic� one easily

veri�es that QA � 	QA
T 
 where Q is the symplectic metric given in 	A���
�

More generally
 we expect that a multi�variable equation can invariantly be

characterized by the subalgebra g � sp	�n� �
 in which the set of connections

actually takes values
 for given W��� 	just like for n � � where the additional

vanishing of w� implies that Aw � sl	�

� For large n
 there exists obviously

a large number of distinct possible subgroups� 	Note that it is in general not

easy to determine g
 as the embedding in sp	�n � �
 is gauge dependent and

thus not always obvious� One is missing a gauge�invariant criterion for many

variables
 in analogy to the vanishing of certain W �generators for one variable
�

The solution vectors can accordingly be viewed as representations of

Sp	�n � �
 	or of some subgroup G
� The set of solution vectors when written

as a matrix V can always be chosen in a way such that this matrix becomes

a group element
 by multiplying V with an appropriate constant matrix from

the right� One can easily check that our choice of solution matrix 	����
 is

indeed symplectic with respect to the metric 	A���
� In this way
 one can

� �� �

regard V as a vielbein V
�A

�� with a well�de�ned symplectic action on both in�

dices 	 #A� #� � �� � � � � �n � �
�
	

Under coordinate and K�ahler transformations

z � ez	z
� K � K � f	z
 � f 	z

 the matrix V transforms as follows�

V��
�A	ez
 � S����
��

	z
V��
�B	z
M �B

�A 	����


where S is the symplectic block diagonal matrix

S �
	B

e�f 	 	 �

	 e�f 
�� 	 	

	 	 ef 
 	

� 	 	 ef
�CA � B � 	����


with 
 � 
�� � �ez���z� � Furthermore
 M is a constant matrix that can always

be taken as an element of Sp	�n � �
� One easily infers form 	����
 that these

transformations are nothing but gauge transformations of the holomorphic con�

nections � bK and b��

�� bK �� �� bK � �� fb�� �� 
��b��
 � �� ln 
 �

	����


This point of view allows us to also understand how global Sp	�n� �
 transfor�

mations acting on the index #A induce local frame rotations acting on the indexb�� the local rotations are induced by the requirement that A� stays in the gauge

	����
� More explicitly
 symplectic transformations� eV � V �M 
 which act in

particular on the solution vector as� eXA� eFA	 eXA

�

�

�
XA� FA	XA

� �M

M �

�
A C

B D
�

� Sp	�n � �
 �

	����


induce the following reparametrizations of special coordinates�

eta �

Aa
BX
B � BaBFB

A�
BX
B �B�BFB
	t
 	����


� The index �A corresponds to a symplectic basis of the Hodge bundle H and the index

�� to the �at bundle E de�ned in ref	 ����	

� �� �



These reparametrizations induce local
 compensating gauge transformations

	����
 with f � Tr	ln 

 and 
 � �eta��tb�

Note that the transformations 	����
 belong to the part of the Borel gauge

group 	����
 that is not �xed by the gauge choice 	����
! that is
 they lie in 	the

complexi�cation of
 the maximal compact subgroup U 	n
�U 	�
 of Sp	�n��
�

This implies that the group element V can be thought of as an element of

G�H
 where G � Sp	�n� �
 and H � U 	n
� U 	�
� More speci�cally
 one can

decompose ���
���

A� � I�� �C� � 	����


where the diagonal part
 I��
 consists of the connections b� and � bK 	which are

�attened by special coordinates ta � Xa � X� � �
� Furthermore
 C� is the

covariant version of 	���
 and generates an abelian
 n�dimensional subalgebra

of sp	�n � �
 that is nilpotent of order three� C�C�C�C� � �� Thus
 G is

determined by the subalgebra of sp	�n� �
 in which C� takes values
 and H is

determined by the subgroup of U 	n
� U 	�
 that is gauged by I�� �����

More precisely
 V is an element of Gc�B 	which is
 essentially
 isomorphic

to G�H

 where Gc is the complexi�cation of G and B the Borel subgroup

	����

 which contains the complexi�cation of H� From this viewpoint one can

easily make contact to supersymmetric 
�models on moduli spaces� Accord�

ing to ����
 K�ahler potentials for homogeneous K�ahler manifolds G�H can be

written in terms of holomorphic CCWZ type coset representatives L � Gc�B as

arbitrary functions ofK� � vLQLyvy� Here
 L transforms under globalG trans�

formations as� L	z
 g � S	z
L	z

 where g � G and S � B� Furthermore
 Q is

the metric of G and v denotes an isotropy vector
 which is left invariant under S

	up to a U 	�
 factor
 which corresponds to K�ahler transformations
� Note that

K� is manifestly invariant under global G and under local S transformations

	except for the K�ahler transformations
� Taking for Q the symplectic metric

	A���

 v � 	�� �� � � � �� �
 and L � V
 the logarithm of 	�i
K� gives precisely

the K�ahler potential 	���
 of special geometry� vVQVyvy � �	XAFA�XA
FA
�

In the generic case
 G�H � Sp	�n��
�U 	n
�U 	�

 but the moduli space

in which V	z
 actually takes values is a complicated subvariety of this space�

However
 there are special cases where G and H are e�ectively smaller sub�

groups! one example are the theories with cubic F�function where the moduli

� �� �

spaces are directly given by G�H� For instance for n � �
 the generic mod�

uli space is some complicated one�dimensional submanifold of Sp��
IR�

U����

whose

complex dimension is four� But for constant coupling W 	and for cAB � �

in 	����


 the moduli space in which V takes values is the one�dimensional

submanifold G�H � SL��
IR�

U��� � The special geometry of cubic F�functions are

further discussed below in Appendix C�

��� Non�holomorphic Picard�Fuchs equations

In this section we establish the relationship between the �rst order systems

	���
 and 	���
� Let us �rst note that the gauge group 	����
 can also be

extended to non�holomorphic gauge transformations S � S	z� z
 that leave V

invariant� The point is that eqs� 	���
 and 	���
 are precisely related by such

a non�holomorphic gauge transformation� That is
 the non�holomorphicity of

the supergravity equations 	���
 and 	���
 is a gauge artifact
 corrsponding to

the fact that all quantities in special geometry are determined entirely in terms

of holomorphic quantities�

More speci�cally
 one can rewrite the non�holomorphic system 	���
 in �rst

order form

D�U � 	���� �A�
U � � � 	����


where U � 	V� U�� U�� V 
T and

A� �

	B

���K ��� � �

� ���� ��K � ���� �iC���g
�� �

� � � g
��

� � � �
�CA � 	����


In addition U also satis�es
D�U � 	���� �A�
U � � � 	����


where

A� �

	BBB

� � � �

g�� � � �

� iC���g
�� ���� ��K � ���� �

� � ��� ���K
�CCCA � 	����


� �� �



It is easy to verify that as a consequence of 	���
 the connections A� and A�

have vanishing curvature ����
	

�

�D��D� � � �D��D� � � �D��D� � � � � 	����


It follows that via non�holomorphic transformations S	z� z
 that leave V in�

variant 	SV � V 

 one can gauge away A� and make A� purely holomorphic�

As a consequence of eq� 	����
 one can go to a gauge where

A� � S��S�� � 	����


This implies

��	SU
 � � and ��
�SA�S�� � S��S��
�

� � � 	����


so that the non�holomorphic system 	����
 becomes the holomorphic system

	���
 with

A � SA�S�� � S��S�� � V � SU � 	����


which displays a residual gauge symmetry of holomorphic transformations� Of

course
 one could also have chosen gauge transformations S that leave the low�

est row of V
 ie� V 
 invariant! in that instance one would have produced a

purely anti�holomorphic connection A�� The point is that there is no invari�

ant subspace with respect to both S and S
 so that the connection cannot be

completely �attened�

��� Singular Picard�Fuchs systems

In the previous considerations we have assumed that the matrices 	W�
�� �

W��� are invertible for all �� It is interesting to �nd the implications of degen�

erate fourth order partial di�erential equations 	����
�

� Vice versa ����
 one can start from a covariantly constant basis �V�U�� U�� V � of a �at

Sp��n��� IR� vector bundle E with connectionA and derive the fundamental identities

�
	�
� and �
	��� of special geometry	
� �� �

i
 The simplest situation is when W��� � �� Then
 from 	���
 or alterna�

tively from 	���
 one can see that the Picard�Fuchs identities become of second

order bD�
bD�V � � � 	����


In special coordinates we get

�a�bV � � 	����


with solutions 	� � ta
� This corresponds to F � 	ta
�� �
� 
 and implies that the

symplectic connection 	����
 becomes block diagonal in two 	n � �
� blocks�

The matrices Ca are nilpotent of order two 	CaCb � �

 and the solution matrix

is given by

V � et
aCa � 	����


The moduli space is 	locally
 G�H � U 	�� n
�U 	�
�U 	n
 with the embedding

�n� � � 	n� �
� 	n� �
 of U 	�� n
 in Sp	�n � �
�

ii
 We now consider the situation in which W��� does not vanish but is

degenerate� This is best discussed in special coordinates where I�� � � and

A� � C�� Let us �rst consider Wijk � � for some subset of indices i� j� k� and

also Wiab � ��Wijb � �� Then
 assuming that the remaining couplings Wabc

give rise to an invertible matrix 	W a
bc
 we have two sets of decoupled equations

�i�jV � �

�a�b	W
��
cde�c�dV � �

	����


with solutions given by the prepotential

F	ti� ta
 � c� 	ti
� � F	ta
 � 	����


To write these equations in arbitrary coordinates we note

bD�V� � W���V
� � ��t
A��t
B��t
CWABCV
� 	����


	where A�B�C here stands for either a� b� c or i� j� k
� Equivalently
 multiplying

by the inverse vielbeins e�A � 	eA� 
�� � 	��tA
�� one gets�

e�Ae
�

B

bD�V� � WABCV
�eC� 	����


� �� �



Supposing WABC � Wabc�Wijk � Waij � Wabj � �
 we get

e�i e
�

j
bD�
bD�V � � �bD�

bD�	W��
abce�a e
�

b
bD�
bD�V � � �

	����


Using bD�e
a

� � �
 the last equation can also be written as

e�de
�

e e
�

a e
�

b
bD�
bD�	W��
abc bD�
bD�V � � � 	����


In 	����
 and 	����
 all moduli coordinates appear
 but the structure of the

equations is such that they become indeed decoupled by making a coordinate

transformation� The coordinate independent statement on the Yukawa cou�

plings is

e�i e
�

j e
�

kW��� � � 	����


for a subset 	i� j� k � A�B�C
! A�B�C � �� � � � � n�

iii
 Two more special cases are worth of mention� One corresponds to two

non�vanishing Yukawa couplings for di�erent sets of indices Wijk 	� ��Wabc 	� �

with Wiab � Wija � �� In this case one gets two sets of fourth order equations

of the type 	����
�

iv
 The other case is when Wijk � ��Wija � � but Wiab 	� �� Here the

matrix Wi is invertible in the subblock 	a� b
 and the matrix Wa
BC is fully

invertible� The prepotential
 in special coordinates
 is of the form

F	ti� ta
 � Cijt
itj � hi	t
a
ti � h	ta
 Cij � const� 	����


In this case we get three sets of decoupled di�erential equations

e�i e
�

j
bD�
bD�V � �

e�ae
�

A
bD�
bD�	W��
aAB bD�
bD�V � �

e�ae
�

i
bD�
bD�	W��
iab bD�
bD�V � ��

	����


The purpose of these exercises was to �nd the di�erential equations for de�

coupled chiral rings� In special coordinates
 this re�ects in a simple additive

structure of F � On the other hand
 the corresponding K�ahler metrics do by

no means have the structure of direct product manifolds
 and rather are quite

complicated� This shows that special geometry is most easily characterized by

F and not by the geometry of the underlying manifold�

� �� �

� Relation to Calabi	Yau manifolds and topological 
eld

theory
The discussion of sections � and � has been completely general and with�

out any reference to Calabi�Yau moduli spaces or to more general c � �
 	�� �


superconformal �eld theories� In this section
 we relate our discussion to the

special case of Calabi�Yau manifolds and to topological Landau�Ginzburg theo�

ries� We understand that part of the material of this section is well�known 	see


for example
 ���
��
��
��
��
��
��

 but we think it is important to give the pre�

cise relationship to special geometry� This relationship is useful for practical

computations�

We like �rst to review some properties of the period matrix ���
���� For

those special geometries for which there exists an underlying Calabi�Yau space

M
 the sections V� U�� U�

and V in the non�holomorphic system 	���
 can

be viewed as basis elements of the third real cohomology of M
 that is


of H
��
��

�

	M� IR
�H
��
��

�

	M� IR

 H
��
��

�

	M� IR
 and H
��
��

�

	M� IR

 respectively�

Furthermore
 the solutions 	XA� FA
 of the Picard�Fuchs equation 	����
 are

just the periods of the holomorphic three�form
 � ���
��
����

XA �

Z
�A

� � FB �

Z
�B

� 	���


	A�B � �� � � � � n where n � h�
�
� Here
 	A� 	B are basis cycles of H�	M� IR
�

More generally
 the complete solution matrix V��
�A of the �rst order system 	���


can be interpreted as the period matrix of M


$��
�A �

	BBB

R

� �A

�R
� �A

��R
� �A

��R
� �A

�
�CCCA � #�� #A � �� � � � � 	�n� �
 � 	���


It is well�known ���� that the period matrix is de�ned only up to local gauge

transformations

$ 
 S $ � S �

	B


 � � �


 
 � �


 
 
 �


 
 
 

�CA � B � 	���


� �� �



and this is precisely the gauge symmetry 	����
 of the �rst order system� Thus


we can represent the period matrix also in the holomorphic gauge 	����

 where

the non�holomorphic sections V� U�� U�� V are replaced by holomorphic basis

elements 	V� V�� V
�� V �
 of H��

In addition
 the period matrix is equivalent under conjugation by an in�

tegral matrix
 %� $ 
 $%� These transformations % � Sp	�n � ��ZZ

 which

correspond to changes of integral homology bases
 preserve the symplectic bi�

linear intersection form Q of H�	M�ZZ

 that is� %Q%T � Q 	the subset of

these transformations that leave F invariant up to rede�nitions constitute the

�duality group�
 as we will see in the sequel
� This intersection form is at the

origin of the symplectic structure of the period matrix� More precisely
 denot�

ing the 	n� �
� 	�n� �
�dimensional submatrix $�
�A
 � � �� � � � � n by b$
 then

one has in general
	

���� b$Q b$T � � � 	���


This equation is analogous to Riemann�s bilinear identity for period matrices

of �d surfaces
 and is satis�ed for $ � Sp	�n � �
� This is indeed a general

property of the solution matrix V 	����
 in special geometry
y

�

On the other hand
 in special geometry there is no intrinsic notion of

homology cycles� Rather
 the symplectic structure arises from the appearance

of Q in the K�ahler potential


K � � lnh� j� i � � ln�V 	�iQ
V y� � 	���


where hx j y i � RM x�y and V is equal to the �rst row of the symplectic matrix

V� As we have seen in the previous sections
 the existence of such a solution

matrix is guaranteed by the fact that the connection in the �rst order system

� For d�dimensional complex manifolds
 the invariance group of Q is Sp�bd� if d is even


and is equal to SO�bd� � b
d

�� is d is odd ����	 As a consequence of this and according to

our discussion in section �
 it follows that in the di�erential equations for one variable

one necessarily has wn � � for odd n ��
�	 This generalizes w� � � for Calabi�Yau

spaces	

y Of course
 not every solution matrix V of special geometry needs to correspond to

a period matrix of some Calabi�Yau space� this is a variant of the Schottky problem	

Thus
 special geometry is more general than compacti�cationon Calabi�Yaumanifolds	

� �� �

	���
 is symplectic� This matrix equation
 in turn
 is a consequence of W��� �

��X
A��X
B��X
CFABC � It is this identity that is ultimately responsible for

the symplectic structure of special geometry�

Of particular physical interest are the Yukawa couplings
 C��� �

eKW��� � According to ���
���
 for a given K�ahler potential 	���
 the holo�

morphic sections W��� can be written as�

W��� � h�j�������i � 	���


It is crucial to note that equations 	���
 and 	���
 determine the gauge of

W��� in terms of the gauge of K
 so that there is no ambiguity in the physical

couplings C��� � One can easily check that the derivatives in 	���
 can be

replaced by covariant derivatives for free
 re�ecting the fact that W��� is K�ahler

and reparametrization covariant� From the �rst order systems 	����
 or 	���
 it

is clear that di�erentiation by �� on H� is equivalent to multiplication by the

matrix A�� Thus
 the holomorphic couplings can be written as

W��� �

�
A�A�A�
� V

V

hV jV i � 	���


Considering the form of A� in either the non�holomorphic gauge 	����
 or in the

holomorphic gauge 	����

 it is easy to see that eq� 	���
 is indeed identically

satis�ed�

Let us now discuss how W��� and K can be computed explicitly� One

method is to evaluate the period integrals 	���

 using XAFA � �F to obtain

F � This is how the Yukawa couplings for the quintic have �rst been computed in

���! this technique was subsequently generalized ��
��
��
��
��� and now allows

to compute the Yukawa couplings for a large variety of Calabi�Yau manifolds�

Another method is to solve ��
�� the Picard�Fuchs equations
 and this is the

method we will focus on below� These equations
 though
 just represent identi�

ties ultimately expressing the fact that W��� � ������F 
 and depend explicitly

on the unknowns W��� � Thus
 one needs additional information in order to pin

down the explicit form of these equations� This additional input makes use of

the fact that the period matrix can be represented in a very speci�c way�

� �� �



To be more precise
 consider �rst the perturbed
 quasi�homogeneous po�

tential
W	yi� ��
 � W�	yi
�
X

�� p�	yi
 � � � �� � � � � h�
� � 	���


where W � � describes the Calabi�Yau manifold in question 	for simplicity
 we

restrict our discussion to hypersurfaces in weighted projective ��space
� Above


p�	yi
 denote the marginal operators 	which are polynomials in the homoge�

neous coordinates yi
 in some given basis
 and the dimensionless moduli ��

are certain functions of the �at coordinates ta� As is well�known
 W can be

viewed as the superpotential of a Landau�Ginzburg theory that describes the

underlying N �� superconformal �eld theory ����
 but this interpretation is not

necessary in the present context�

The non�trivial point is that the period matrix can be represented
 in a

particular gauge
 as follows �����

$��
�A �

Z
� �A

���	yi


W�����	yi� ��

� � 	���


Here
 the homology cycle 	 �A is a basis element of H�	M� IR

 � an appropriate

volume form and �	#�
 depends on the degree of the homogeneous polynomial

���	yi
� In general
 these ���	yi
 can be any basis of the local ring R of W
 but

we restrict here only to those polynomials that represent the third cohomology

of the Calabi�Yau space� They generate a subring which we denote by R����

More speci�cally
 we choose R��� � f���g � f�� p�� p�� �g
 where p� are the

marginal operators in 	���

 � is the unique top element of R
 and p� can be

de�ned such that p� p
� � ����� Clearly
 ��� � �� p�� p
�� � are associated with

di�erential forms belonging to H��
���H��
���H��
���H��
��
 respectively�

For example
 for the quintic discussed in ��� with W �
P�

i
�	yi

� � �X

	where X � y�y�y�y�y�

 the subring R��� consists of elements ��� � X ��


#� � �� � � � � �
 which are associated with H�����
���
 respectively�

� �� �

The period matrix 	���
 identically satis�es the following holomorphic
 �rst

order �Gau&�Manin� system�

h
��
�

���

� A�	�

i

$ � � � where $ �

	BB

R

�
W �R p�

W� �R
p�

W� �R �
W� �

�CCA � 	����


and A� � I�� �C�
 with

I�� �
	B


 �


 
 �


 
 
 �


 
 
 

�CA � C� �
	B


�

	W
�p�

� 
��

�
�CA � 	����


This system can be seen as a gauge and coordinate transform of the holomorphic

special geometry system 	���
 	and also of the non�holomorphic system 	����

�

The matrices C� are the structure constants of the subring R���
 and the cou�

plings 	W
�p�

� 
�� are determined by simple polynomial multiplication modulo

the vanishing relations
 ie�
 by p�p� � W
�p�

���p
� mod rW� The crucial point is

that also the components of I�� can be easily computed
	

directly from W 	this

is explained in detail in ��
��
�

One way to solve the system 	����
 is to go to �at coordinates ta � Xa�X�

where the Gau&�Manin connection vanishes� As was shown in detail in ���


imposing this condition gives a di�erential equation that determines explicitly

the dependence of the Landau�Ginzburg couplings �� on the ta� 	The precise

form of this complicated
 non�linear di�erential equation is not important here

and can be inferred from ����
 In such �at coordinates and in an appropriate

gauge
 the �rst order system takes the form 	���
� In going to 	���

 we implicitly

compute eq� 	���

Wabc	t
 � W
�p�

���
���

�ta
���

�tb
���

�tc
hV jV � i � 	����


� They arise from the rW piece
 by partial integration	 Note that the above expansion

of p�p� is in general by no means unique
 re�ecting the gauge freedom in ��	���	

� �� �



where V �
R

�
W � and V � �
R
�

W��� One can view 	����
 as a change from a

topological basis 	with indices �� �� 	
 to a �at basis 	with indices a� b� c

 and

hV jV � i as a change of K�ahler gauge� It can be inferred from ���� that

hV jV � i �

Z
�	

�

��W � � ���W d�x � hh � ii � 	����


where �� is the direct product of �ve one�dimensional contours that wind around

the �ve curves �iW � �
 and hh ii denotes the Grothendieck residue ���
����

It has the property� hhH ii � � 	up to a constant

 where H is the Hessian of

the superpotential
 H � det��yi�yjW	yk
�� In general
 � and H di�er by some

holomorphic function and vanishing relations
 � � fHH mod rW
 so that

hV jV i � hh � ii � fH � 	����


For example
 for the quintic� W �p�
��� � � and fH 
 �
���	 � It followsW��� 
 �����

���	 


which is the result of ��� 	in a particular gauge
� Note that W 
 �
���	 can be

inferred directly from the speci�c form 	���
 of the Picard�Fuchs equation for

one variable� up to a change of basis
 W is given directly in terms of the

coe�cient of the �rd derivative

a� � �W�� dW
��

dz

� 	����


In topological Landau�Ginzburg theory ���
��� one considers three�point

correlators�

hh'a'b'c ii � W
�top�

abc hhH ii � 	����


where hh ii has exactly the same meaning as in 	����
 and where the �at �elds

are de�ned ���� by� 'a	yi� t
b
 � � �

�taW	yi� �	tb

� Referring back to the form

of the superpotential 	���

 one quickly sees that one indeed computes here

absolutely the same thing as in 	����

 that is
y

� W
�top�

abc � Wabc
 and the K�ahler

potential in the corresponding gauge is� K � � loghV jV i�

y A similar result was obtained in ����
 but the precise relation of W �top�

abc

to special

geometry remained unclear	

� �� �

This is of course as expected
 since also W �top�

abc can be represented as triple

derivative of some function F ����� One might think that this fact already

proves the equality of W
�top�

abc and Wabc of special geometry
 de�ned in 	���
�

However in ���� it was shown that there generally exist at least two di�erent

coordinate systems where W��� � ������F with two di�erent and inequivalent

K�ahler potentials that solve the de�ning equations 	���
 of special geometry�

Given this potential ambiguity
 we feel
 therefore
 more comfortable to display

explicitly the relationship between the couplingsW �top�

abc computed in topological

�eld theory on the one hand
 and Wabc and K of special geometry on the other�

Note that rescaling W � ef�t�W gives an equivalent superpotential� From

	���
 we see that this just amounts to a K�ahler transformation
 � � e�f��

Therefore the correct way to specify �at �elds in the presence of moduli is

'�	yi� t
b
 � �br�W	yi� t
b
 � �� �� � �� bK �W	yi� t
b
 �

where �� bK � ��� log X� �

	����


such that '� � ef'�� This transformation behavior is actually required for

consistency of 	����
 as Wabc � e��fWabc and H � e�f �

� Target space duality and monodromy properties of

Picard	Fuchs equations

In this chapter we brie�y review the monodromy properties of the Picard�

Fuchs system when the number of moduli is equal to one� We consider two ex�

amples
 the torus 	��dimensional Calabi�Yau manifold
 and the quintic Calabi�

Yau manifold 	worked out by Candelas et al� ���
� This pedagogical review also

allows us to make some subsequent remarks on the discrete translational sym�

metry of the special coordinates ta
 for any number of moduli� Furthermore


recalling that the map ta � ta	�
 describes the mirror map between the Calabi�

Yau manifold and its mirror
 we are able
 making use of the special geometry

form of the Picard�Fuchs system
 to derive the general algebraic structure of

the monodromy generators around ta � i�! this corresponds to the large radius

limit of the Calabi�Yau manifold� This puts into evidence that the monodromy

� �� �



around such points is essentially determined by the intersection numbers of the

Calabi�Yau manifold�

Let us recall that the Picard�Fuchs system as determined by special geom�

etry can be written as a Gauss�Manin system given by equations 	���
�	����
�

The data appearing in 	����
 are the Yukawa couplings W��� and the holomor�

phic connections �� bK and b���� � Since we do not know these data a priori
 we

have to resort to the algorithms described in ��
��
 	originally due to Dwark and

Gri�ths

 which allow us to detemine the Picard�Fuchs system once the de�n�

ing polynomial equation W � � of the Calabi�Yau manifold is given� Notice


however
 that once such equations have been obtained
 in principle the Yukawa

couplings W��� can be read out from the coe�cients of the fourth derivatives


by comparing the actual equations with the special geometry equations 	����
�

In the following we concentrate on the global structure of the moduli space


which is encoded in the monodromy properties of the Picard�Fuchs system�

Following ���
 let us denote by � the target space duality group 	quan�

tum modular group
 and by �W the invariance group of the superpotential

W 	yi� �a
� �W consists of these di�eomorphisms of the moduli �a which leave

W � � invariant except for a 	quasi
�homogeneous change of the coordinates

of CPd�� �

W 	yi� ��
 � � ��
�W

W 	eyi	y
! e�a	�

 � � � 	���


where eyi � U i
jy
j and i� j run over all chiral �elds with same U 	�
 charge�

Alternatively
 one may de�ne �W as the group of di�eomorphisms of �a that

leave the Picard�Fuchs equations invariant up to rescaling�

Moreover
 let us denote by �M the monodromy group of the Picard�Fuchs

system� To de�ne it in the simplest way
 we restrict our attention to the case of

one single modulus
 where the Picard�Fuchs equations are ordinary di�erential

equations 	the general de�nition of the monodromy group for n moduli is given

in the sequel
�

If we denote by 	f�	z
� ���� fn	z

 a basis of solutions of the di�erential

equation at a point z
 then by analytically continuing 	f�� ���� fn
 along a closed

� �� �

loop around a singularity z� of the equation we arrive at a new solution at z��

This must be expressible as a linear combination of the basis 	f�� ���� fn
�

	f�� ���� fn
 � 	 bf�� ���� bfn
 � 	f�� ���� fn
 Az� � 	���


where the n� n non�singular matrix Az� characterizes the monodromy around

z�� If the equation has r singular points we obtain r monodromy matrices

Az� � ���� Azr
 and if we compose closed loops around zi and zj in the usual way

it is clearly seen that to the loop 	i � 	j � 	ij encircling zi and zj corresponds

the monodromy matrix Azj �Azi � More generally Az� � ���� Azr generate a group


the monodromy group �M of the di�erential equation� 	The inverse A��zi is

the matrix obtained by running around zi in the opposite direction
 and �

corresponds to a circuit contractible to a point�


For one modulus
 it seems that the full target space duality group � can

in general be obtained by extending the monodromy group �M with the LG

superpotential invariance group
 �W ���� In the remainder of this section
 we

will demonstrate this reconstruction of � for two examples with one modulus�

In the subsequent section
 we will give a computation of � for a model with two

moduli
 which serves as a counter example� here the duality group will not be

the semi�direct product of �M with �W 
 but rather a central extension of �M �

For further examples with two moduli
 see ���
����

The examples with one modulus are�

�
 the ��dimensional torus described by a cubic polynomial in CP��

W �
�

�
	y�� � y�� � y��
� � y�y�y� � � 	���


�
 the ��dimensional Calabi�Yau manifold described by a quintic polynomial

in CP��

W �
�

�
	y�� � y�� � y�� � y�� � y��
� � y�y�y�y�y� � � � 	���


Above
 yi� i � �� ���� d� � are homogeneous coordinates in CPd�� 	d being the

complex dimension

 and � is a complex structure modulus� Note that while

for the torus the space of complex structure deformations is one�dimensional
 it

is ����dimensional for the quintic� The distinguished ��dimensional subspace

� �� �



de�ned by 	���
 preserves the permutation symmetry among the coordinates


and consequently f�� y����y�� 	y����y�
�� 	y����y�
�g forms a closed subring of the

ring R��� that describes the three�froms� This symmetry is the underlying

reason why the Picard�Fuchs equation will be only of fourth and not of higher

	generically ���th
 order�

Let us start with the torus� Using the simple algorithm described in ��
��


one obtains from 	���
 the following Picard�Fuchs system�

d
d�

�
��

��
�

�

�
� �

�
����

���

����

��
��

��
�

	���


This can be traded for a single �nd�order di�erential equation for ��
� d�
d��
� ���

�� ��

d
d�
� �

�� ��



�� � � � 	���


which exhibits four regular singular points at �� � �� � � ��

The monodromy group of this equation can be studied as follows� First of

all we note that it is su�cient to compute the monodromy matrix T� around

� � �� Indeed the e�ect of a closed loop around � � � and � � �� 	� � e��i��


can be computed from the monodromy matrix T� around � � � by conjugation

with A
 where A represents the operation � � ���

T� �A�T�A��

T� �A�T�A��

	���


Furthermore a closed loop which encloses all the singular points
 including �


is contractible and therefore

T�T�T�T� � � � T� � 	T�T�T�

�� 	���


To compute T� it is convenient to perform the substitution z � �� in the

di�erential equation 	���
� We obtain

n
�z	�� z

d�

dz�
� 	�� ��z

d

dz
� �
o

� � � 	���


� �� �

This is a standard hypergeometric equation with parameters a � b � ���� c �

��� 	in the usual notation

 and thus a set of independent solutions around

z � �� � � is given by���U� � �������

������ F 	���� ���� ���!��


U� � �������

������ �F 	���� ���� ���!��

� 	����


where F 	a� b� c! z
 denotes the hypergeometric function� The two solutions can

be continued around �� � � by known formulae ����� one �nds

U� � � log	�� z
F 	���� ���� �! �� ��
 �B�	� � ��


U� � � log	�� z
F 	���� ���� �! �� ��
 �B�	� � ��


	����


where B� and B� are regular series around �� � �� 	The logarithmic factor in

	����
 can be traced back to the equality of the roots around z � �� � �
� A

closed loop around � � � gives�
U�

U�
�

�
�

U ��
U ��

�
�
�

U�
U�

�
� ��i F 	

�
�
�

�
�
� �! �� ��

�

�
�

�
	����


The Kummer relations ���� among hypergeometric functions allow us to express

F 	�� �
�

� � �! �� ��
 in terms of the original basis 	U�� U�
 around � � �


F
��

�
�

�
�
� �! �� z



�

�	�
�



��	�
�


F
��

�
�

�
�
�

�
�

! z



�
�	��
�



��	�
�


F
��

�
�

�
�
�

�
�

! z



� 	����


Therefore
 using the relation �	z
�	� � z
 � �
sin �z one obtains�

U ��
U ��

�
�

�
� � i tg ��� i tg ���

i tg ��� i� i tg ���
� �

U�
U�

�
� 	����


which means that the monodromy matrix around � � � is

T� �
�

�� i
p

� i
p

�

�ip� � � i
p

�
�

� 	����


� �� �



In order to �nd T�� T� we need to represent A � � � �� on U�� U�� From 	���



	���
 and 	����
 we see that under � � �� the di�erential operator is invariant

while �
U�

U�
�

�
�

� �

� �
��

U�
U�

�

	����


Since we are interested in a projective representation of the monodromy group


we may rescale our basis in such a way that detA � � 	note that T� already

satis�es detT� � �
� Hence we have

A �
�

����� �

� ����
�

	����


and from 	���


T� �
�

�� i
p

� ���i
p

�

��ip� � � i
p

�
�

T� �
�

�� i
p

� ���i
p

�

���i
p

� � � i
p

�
�

	����


Let us recall that the modular group is given by the group of transformations

acting on � that leave the theory invariant� The monodromy group �M of

the Picard�Fuchs system must therefore be a subgroup of the modular group�

The modular group of the torus is of course known to be � � SL	�!ZZ

 and

therefore it must be possible to perform a change of basis on the periods Ui

such that the entries of the generators T�� T�� T� are integer numbers� Actually

it is known since the last century that �M is isomorphic to �	�

 which is the

group of matrices equivalent to the identity modulo �� The basis 	F��F�
 where

�M � �	�
 is obtained by the following linear transformation �����F�
F�

�
�

�

�	� � �����

�

����� ��

� � ���� �� � �
� �

U�
U�

�
	����


The transformed monodromy generators bTi then take the following form�

bT� �
�

� �

� �
�

! bT� �
��� ��

�� �
�

! bT� �
��� �

�� �
�

bT� � 	 bT� bT� bT�
�� �
�

� �

�� �
�

	����


� �� �

We now consider the invariance group �W � The transformation A � � � �� is

obviously an invariance of W � � 	and of the di�erential operator 	����

 since

it can be undone by the coordinate transformation yi � �����yi� Less evident

is the invariance under the transformation

B � �� � �� � �

�� �
� 	����


which can be undone by the change of coordinates ����	
 y��
y��

y��
�A �

ip
�

	
 � � �

� � ��

� �� �
�A	
 y�

y�
y�

�A � 	����


The representation of the transformationA on the transformed periods
 	F��F�


is given by bA �
�

� ��

� ��
�

� 	����


We note that the �W generators A�B satisfy the relations A� � B� � 	AB
� �

��
 and these are precisely the de�ning relations of the tetrahedral group


( � SL	��ZZ�
� So indeed we have ���M � �W � SL	��ZZ
��	�
 � (
 as

advertised�

We now consider the second example
 which is given by the quintic 	���
�

The Picard�Fuchs equation for the periods is given by ����

d�V
d��
� ����

�� ��
d�V

d��
� ����

�� ��
d�V

d��
� ����

�� ��
dV

d�
� �

�� ��

V � � � 	����


The four independent solutions of this equation represent the four periods of

the 	�
�
�form �� The periods are de�ned byZ
�A

� � XA	�
 !
Z

�A
� � FA	�
 � 	����


where

V � 	X�� X�� F�� F�
 � 	XA� FA
 � 	����


� �� �



and where 		A� 	
B
 is some basis of homology ��cycles that satis�es

	A � 	B � �	B � 	A � �AB ! 	A � 	B � 	A � 	B � � � 	����


The basis is de�ned only up to Sp	�!ZZ
 transformations
 which leave the inter�

section numbers 	����
 invariant�

Let us �rst consider the duality group �W of the de�ning polynomial equa�

tion
 given in 	���
� It is obvious that A � � � ��
 where � � e��i��
 is a

symmetry of W � � since it can be undone by a rescaling of the CP� homo�

geneous coordinates� 	y�� y�� y�� y�� y�
 � 	���y�� y�� y�� y�� y�
 	alternatively


one easily sees that 	����
 invariant under � � ��
� Obviously A� � � and

this excludes a priori the possibility that the duality group is a subgroup of

SL	�!ZZ

 because that group does not possess elements of order �� There are

no other ��transformations which can be undone by linear transformations of

the y�is
 hence �W � ZZ�� According to our previous discussion
 in order to

reconstruct the full duality group we must now also compute the monodromy

group �M of 	����
�

The monodromy group �M will be represented by � � � matrices acting

on the periods V in 	����
� The same is true for �W since A � � � �� leaves

invariant the di�erential operator of eq� 	����
 and therefore induces at most a

linear combinations of the periods� By �xing the gauge 	����

 	or
 the special

geometry gauge

 we may represent �W by Sp	�!ZZ
�matrices as well�

Let us now compute �M � We sketch brie�y the procedure
 for further

details see ref� ���� The di�erential equation 	����
 is a Fuchsian equation with

regular singular points at � � �k
 	k � �� �� �����

 � � e��i��
 and � � �� Like

for the torus
 it is su�cient to study the monodromy matrix T� around � � �


since around � � �k the corresponding monodromy matrices Tk� k � �� �� �� �

are given by

T� � Tk � AkT�A
�k 	����


where A represents � � �� 	we represent here the period vector as a row


according to eq� 	����

� The monodromy around � � � depends on the other

group elements around � � � through the relations T�T�T�T�T�T� � ��

� �� �

Like for the torus
 it is convenient to transform eq� 	����
 into a generalized

hypergeometric equation through the substitution z � ���� We obtainn d�
dz�
� �	�z � �


z	� � z

d�

dz�
� ��z � ��

�z�	�� z

d�

dz�
� ��z � �

�z�	�� z

d

dz
�

� ��

���z�	�� z

o

V 	z
 � �

	����


which has singular Fuchsian points at z � �� ��� with associated Riemann

P�symbol

P
���������

� � �

� ��� �

� ��� � !���

� ��� �

� ��� �

��������� 	����


We notice that in the variable z � ��� we have introduced a new singular point

around � � �
 so that the monodromy around z � � corresponds exactly to the

representation of � � �� on the periods� In other words the duality generator

A becomes part of the monodromy generators of the new equation 	����
 	this

can be done for the torus too�
 A solution of 	����
 around z � � 	� � �
 is

given by

��	�
 � �F�
��

�
�

�
�
�

�
�
�

�
�

! �� �� �!���



	����


In order to represent A in a simple way one may construct a basis of solutions

around � � � as follows ���� One �rst continues ��	�
 around � � � by using

a Barnes�type integral representation and obtains�

��	�
 � � �

� � ����
�X

n
�
��	n� 


�	n

	�n � �
�	��
n 	j� � �
 	����


Then one recalls that � � �� leaves the di�erential operator 	����
 invariant

so that

�j	�

�

� ��	�
j�
 j � �� �� �� ��� 	����


are also solutions of 	����
� The �ve functions �j are subject to the linear

relations
P�

n
� �j � �
 as it follows from their explicit expression by the power

series 	����
 and the analogous ones derived from 	����
�

� �� �



If we take ��� ��� ��� �� as a basis of solutions around � � � it follows

immediately that � � �� is represented on 	��� ��� ��� ��
t as follows

A �
	B

�� �� �� ��

� � � �

� � � �

� � � �
�CA � 	����


Next we examine the monodromy T� around � � �� For this purpose we

observe that since z � � has the double root � � � for the indicial equation


the continuation of the series �j	�
� j�j � �� to the neighbourhood j� � �j � �

will contain logarithms� Indeed one can write

�j	�
 �

�
��i
cje�	�
 log	� � �
 � reg� 	����


where e� is a linear combination of regular solutions around � � �� It turns out

that

e�	�
 � � �
c�

	��	�
 � ��	�

 �

�
c�

	� � �
 � O	� � �
�
 	����


It follows

d�j
d�

�

�
��i
cj
�de�

d�
log	� � �
 � e�	�


�
� � �

� ������



����

�
��i

cj
c�

log	� � �
 � � � �

	����


We see that in order to compute the monodromy coe�cients cj 
 one has to

compute the asymptotic behaviour of
d�j

d� and look at the coe�cient of log	��

�
� Using the series expansion for �j derived from 	����
 and 	����
 one �nds

	see ��� for details


cj � 	�� ����� ����
 	����


From eqs� 	����
�	����

 one easily �nds that the monodromy matrix around

� � � acting on the basis 	��� ��� ��� ��
t is given by

T� �
	B


� � �� �

� � � �

� �� � �

� � �� �
�CA 	����


� �� �

The matrices A and T� given by eqs� 	����
and 	����
 are integer�valued
 but

not symplectic
 since the �j�basis is not a symplectic basis� According to our

previous discussion there must exist a matrix m such that

bT� � mT�m
�� ! bA � mAm�� 	����


are not only integer�valued but also symplectic�

A solution
 which is unique up to Sp	�!ZZ
 transformations
 has been found

in ref����� Our choice of basis corresponds to the matrices

bA �
	B


� �� �� �

� � � �

� �� �� �

� � � �
�CA � bT� �
	B


� � � �

� � � �

�� � � �

� � � �
�CA � 	����


which act on the right of the row vector 	����
� The other monodromy genera�

tors bTk
 bT� around � � �k and � � � are �nally computed from eqs� 	����


and T� � 	T�T�T�T�T�

���

Summarizing
 the duality group � of the moduli space of the Calabi�Yau ��

fold 	���
 can be given an integer�valued and symplectic representation on some

basis of the periods� It is given by the subgroup of Sp	�!ZZ
 that is generated

by bA and bT�
 where bA is a representation of �W � ZZ� � Sp	�!ZZ
 and wherebT� generates the monodromy group of the Picard�Fuchs equation 	����
�

It was already mentioned that the duality group � cannot be a subgroup

of SL	��ZZ
 since SL	��ZZ
 does not contain elements of order �� One may

however represent � as a subgroup of SL	�� IR
 since ZZ� � SL	�� IR
� To �nd

a representation
 one needs to �nd a complex variable 		�
 such that � can

be represented as a subset of PSL	�� IR
 transformations acting on the upper

	�plane� A determination of 		�
 and the associated � � � representation of

� � SL	�� IR
 has been given in ref� ���� We give here a di�erent
 but closely

related derivation
 which is entirely based on the monodromy structure of the

Picard�Fuchs equation 	����
�

� �� �



Let us observe that if we denote by V 	�		

 the four�dimensional row

vector of the periods as a function of 	
 then we must have�

V
�

�
�ai	 � bi

ci	 � di




� V 	�		

�i 	����


where �i is any of bA� bTk and Si � ai��bi

ci��di

 the corresponding ��dimensional

action on 	� If V is required to be a uniform function of 	
 then � � �		
 must

be uniform and such that the entire ���plane is mapped into a fundamental

region of the 	�plane for the group � � fSig� That amounts to say that 	 is a

modular variable and � is an automorphic function of 	 with respect to �� There

is a general procedure to construct the uniformizing variable 	 directly from

the Picard�Fuchs equation for V � It consists in associating to the di�erential

equation
 eq� 	����

 a second order di�erential equation with the same singular

points 	z � �� ��� in our case
 and with exponents determined as follows�

If all the integrals of the main equation are regular around the given singu�

larity 	no two roots of the indicial equation di�er by integers
 and if all the roots

are commensurable quantities multiple of ��k 	k integer

 then the di�erence of

the roots of the indicial equations of the associated �nd�order equation is taken

equal to ��k� In all the other cases the di�erence of roots is taken equal to zero�

The uniformizing variable 	 is then given by the ratio of two solutions of the

associated �nd�order equation� Let us see how this works for us� To adhere to

the same notations as in ���
 we perform the substitution z � �
z
in the equation

	����
� The P�Riemann symbol 	����
 transformes into

P
	BBB


� � �

��� � �

��� � � !��

��� � �

��� � �

�CCCA � 	����


From 	����
 we see that at z�� � �� � �
 all the roots are multiple of �
k � �
�

and do not di�er by integers� At z�� � � and z�� � � instead we have at

least two coincident roots� Therefore calling �� �� � the di�erences of the roots

of the indicial equation for the associated �nd�order equation we have

� � ��� ! � � � � � 	����


� �� �

Given the exponents we can immediately write down the associated �nd�order

equation
 which
 having regular singular points at z � �� ��� is a hypergeo�

metric equation of parameters

a �
�

�
	�� �� �� �
 �

�
�

! b �
�

�
	�� �� �� �
 �

�
�

! c � �� � �
�

�
� 	����


that is�

z	�� z
F �� �
��

�
� �

�
z



F � � �
��
F � � 	����


The uniformizing variable is then given by

	 �
F�

F�

	����


where

F� �
��	�� 


�	�� 

F 	���� ���� ���!��
 	����


F� �
��	�
�



�	�� 

F 	���� ���� ���!��
 	����


are two linearly independent solutions of 	����
� From the theory of the auto�

morphic functions we know that 	 maps the ���plane onto a couple of adjacent

triangles inside the circle j	j� � � with internal angles 	�� �� ���
! they consti�

tute a fundamental region for the projective action of the modular group �
 and

the inverse function � � �		
 is automorphic with respect to ��

It is now easy to derive the explicit representation ofA and T� as a subgroup

of SL	�� IR
 on F��F�� one has simply to study the monodromy group of the

di�erential equation 	����
 exactly as for the torus
 eq� 	���
� One obtains�

A �
�

e�i��� �

� ei���
�

! T� �
�

�� itg ��� itg ����itg ��� � � itg ���
�

	����


and
Tk � AkT�A
�k 	k � �� �� �� �
! T� � 	T�T�T�T�T�

�� � 	AT�

�� 	����


� �� �



Note that the matrices quoted in ��� are related to those given in 	����
 by a

change of basis �
Z�

Z�
�

�
�

i �i��

� ���
��F�

F�
�

� 	����


which maps the interior of the circle j	j� � � into the upper half�plane Im	 � ��

So far we have considered the representation of the modular group � acting

on the periods in terms of � � � Sp	�!ZZ
 matrices
 or in terms of SL	�! IR


matrices that act projectively on the unformizing variable 	� There is another

important variable
 which is the special variable t
 in terms of which we may

give a further representation of ��

Let us reconsider equation 		����


 which de�nes the �at coordinates in

terms of the periods as follows�

eta �

eXaeX�
�
Aa
BX
B � BaBFB

A�
BX
B �B�BFB
	t
 � 	����


Here and in the following
 we change our conventions for the symplectic metric

Q which
 instead of being given by eq� 	A���
 of Appendix � is now given by�
	 �

�� 	
�

� 	����


As a consequence
 the �� � sub�matrices of M in eq� 	����
 now satisfy

AtB � BtA

CtD � DtC

AtD � BtC � �
� 	����


Recalling that FA � �F
�XA where F 	X
 is a homogeneous function of degree

two
 we have

F 	XA
 � 	X�
�F	ta


F�	X
A
 � �F

�X�
� X���F	ta
 � ta�aF	ta
�

Fa	X
A
 � �F

�Xa

� X��aF	ta
 �

	����


� �� �

and substituting this in 	����
 we �nd

eta �
Aa
b t
b �Aa

� � BabFb � Ba�	�F � tbFb


A�
bt
b � A�

� �BabFb � B��	�F � tbFb
 � 	����


where Fa � �aF � We can now restrict the Sp	�n � �� IR
 matrix M to belong

to � � Sp	�n � ��ZZ

 so that we obtain the representation of � on the �at

coordinates ta� In particular
 the subgroup of Sp	�n � �� IR
 that consists of

matrices of the form �
A C

� D
�

D � 	At
��

C � ACt	At
��

	����


acts on the ta
�

s as linear fractional transformations� For the quintic
 the gener�

ators A and T� act as follows on the �at coordinate�

A � et �
X� � 	X� � F �


X� � F �

�
t� �� 	�F � tF �


�F � tF � 	����


T� � et �

X�

X� � F�
�

t

�� �F � tF � 	����


Furthermore
 we have from 	����


	T�A
�� �
	B


� � � ��

� � �� ��

� � � �

� � �� �
�CA � 	����


so that

et � eX�eX�
�
X�

X�
� � � t� � � 	����


Note that while 	T�A
�� corresponds to a circuit around z � �
 the monodromy

around � � � is represented by 	T�A
�� � et� t� ��

� �� �




�� An abelian subgroup of the duality group

Integer shifts such as in 	����
 play a distinguished r#ole in string compact�

i�cations� Indeed
 the following term in the 
�model�Z
W�S�
d�
��Y
i��Y
j

Bij�
�� �
Z

T
BijdY
i � dY j

	����


	where T is the image of the world�sheet in the Calabi�Yau ��fold
 is topologi�

cal
 and the Bij are analogous to the ��parameters of Q�C�D� If the complexi�ed

K�ahler 	�
�
�form is parametrized as

gij � iBij � �i
nX

a
�
taLaij � 	����


where La
ij
is a basis of the 	�
�
�cohomology
 then shifts

T � ta � ta � na ! na � ZZn 	����


induce topologically non�trivial mappings from the world sheet to the Calabi�

Yau manifold 	world�sheet instantons
� Such integral shifts are supposed to be

an invariance of the quantum action
 and thus one would expect T to be always

contained in ��

Recalling the homogeneity relation �F 	X
 � XAFA
 one �nds for generic

Sp	�n � �
�transformations 	����
 �����

� eF 	 eX
 � 	XA� FA

�

ACt ADt

BCt BDt
��

XA
FA

�

� �F 	X
 � �FA	BCt
ABX
B � XA	ACt
ABX
B � FA	BDt
ABFB

	����


where we have used the conditions of symplecticity of the transposed matrix

M t in order to reconstruct F 	X
 on the r�h�s� of 	����
�

If M � �
 then eF � F 
 since a modular transformation is a discrete

isometry� In particular for a translation 	����
 gives

F 	XBAA
B
 � F 	XA
 �XA	ACt
ABX
B 	����


� �� �

since B � � and A �
�

� na

� �ab
�

� In terms of the �at variables 	����
 becomes

F	ta � na
 � F	ta
 � 	ACt
abt
atb � �	ACt
�bt
b � 	ACt
�� 	����


Thus F 	or F
 is periodic in the XA 	or ta
 up to quadratic additions�In particu�

lar the Yukawa coupling Wabc � ��F

�ta�tb�tc
is periodic
 Wabc	t
a�na
 � Wabc	t
a



and thus can be expanded in a multiple Fourier series in qa � e��it
a

�

Wabc	qa
 �

X
�m�ZZn

dabc	�m
$n
a
�q
ma

a � 	����


Note that qa � � means ta � i�
 which is the large radius limit! this corre�

sponds to the �classical� intersection numbers dabc	�
� The terms with �m 	� �

give the instanton corrections to the classical result� For the quintic
 d���	m


has been related with the number of rational curves of degree m on the quintic

����
An interesting observation is that the n abelian elements of the quantum

duality group are entirely determined by the intersection numbers dabc	�
� This

can be explicitly shown for one modulus
 using the monodromy properties of

the Picard�Fuchs equation around qa � �� It has also been veri�ed for a model

with two moduli by Candelas et al� �����

For one modulus
 the monodromy matrices can actually be computed di�

rectly from the Gau&�Manin connection of the linear system 	���
� Using the

change of variable � � t� �
��i log q
 the linear system becomes�

h
q
�

�q
�

�
��i
A	q

i

V 	q
 � � 	����


The monodromy generator T around q � � is then given by 	see Morrison
 ref�

��� 
�

T � exp�A	q � �
� � 	����


and has the property� 	T � �
� � �
 which corresponds to the maximal nilpo�

tency dictated by the order of the di�erential equation�

� �� �



If we now recall the structure of the Gau&�Manin connection in special

coordinates 	see 	����

	���
 with A � �
�

d
dt
V � C	t
V �

	B

� � � �

� � Wttt �

� � � �

� � � �
�CAV � 	����


then we see that for any W �
	exp�C�� �
� � � � 	����


where
 as discussed in section �
 the matrix C satis�es C� � � 	cf�
 ����
�

Therefore the symmetry 	T�A

��

� t � t � �
 is identi�ed
 up to a symplectic

transformation
 with exp�C	t � i�
�
 with W 	i�
 � d����

More generally
 for n moduli the matrixes C� satisfy the relations

C�C�C�C� � � and �C� � C� � � �
 and therefore the n�monodromy gen�

erators Ti � exp�Ci	i�
� � � � Li
 obey�

�Li�Lj� � �

LiLjLk � dijkE

LiLjLkLl � �

	����


Here
 E is the matrix with an ��� in the upper right corner�

� Duality group of an example with two moduli

��� Introduction

In this chapter we present an e�cient method for determining the duality

group
 by considering the following ��moduli deformation of the quintic�

W � W� � a y��y
�

� � b y��y
�

� � 	���


This deformation is a special subspace of the general ����dimensional deforma�

tion space of W�
 which gives rise to zero Yukawa couplings for the associated

� �� �

e�ective Lagrangian� Because of that
 it constitutes only a toy model as far

as the low energy Lagrangian is concerned� However
 it provides an example

with two moduli for which the duality group can be easily determined
 and thus

allows to display the power of some general techniques of algebraic geometry

which were previously developed and applied to the study of the monodromy

groups of Feynman integrals ����
����� In ref� ����
 ���� the target space duality

group for other examples of two�moduli deformations have been worked out

using techniques di�erent from the ones presented here�

Our result for the duality group is surprisingly simple� � is given by an

U 	�� �
 valued 	projective
 representation of B�
 the braid group on �ve strands�

In terms of the de�ning polynomial W
 the fundamental period can be

de�ned by

��	a� b
 �
I

�

�

W	y! a� b

� 	���


where � is the volume element

� �
X

	��
iyi dy� � � � � � cdyi � � � � � dy� 	���


	the hat means that the corresponding di�erential must be omitted

 and 	 is

an element of the basis for the homology cycles of H���	CP� � W!ZZ
� There

are as many independent integrals �I� as there are elements of the basis
 	I �

H���	CP� �W!ZZ
�

Quite generally
 if LN�� is the singularity locus of an algebraic variety W

parametrized by N moduli
 the monodromy group �M acting on the periods of

W is given by a representation of the fundamental group �� of the embedding

space CPN �

The computation of the homotopy group �� is based on the use of the

following two theorems ���
����

Theorem � 	Picard�Severi
� Let LN�� be the N �� complex dimensional

singular locus of a given algebraic variety� If the �complex� projective line

CP� � CPN is generic with respect to LN�� �i�e�� it avoids all singular points

of LN���� then we have the isomorphism

��
�

CP� � 	CP� � LN��
!B
�

�G � ��
�

CPN � LN��!B
�

� 	���


� �� �



where B is the base point and G is an invariant subgroup of

�� 	CP�� 	CP� � LN��
!B
�

� 	���


In other words
 ��
�

CPN � LN��!B
�

is obtained from 	���
 by imposing the

relations satis�ed by the monodromy generators� A method for deriving such

identities has been provided by Van Kampen ����
 and we shall use it in our

particular case to obtain the isomorphism of eq� 	���
� As the singular locus of

the algebraic variety W is given by an equation of the form L	a� b
 � �
 we are

interested in N � ��

The second theorem allows to understand that
 as far as the identi�cation

of the fundamental group �� is concerned
 the situation with more than two

moduli can be essentially reduced to N � �
 so that the general computation

of �� in will not be much more di�cult than the one under study� However


for several variables it is in general much harder to �nd the singular locus and

the behaviour of the algebraic variety in its neighbourhood
 and therefore the

determination of the monodromy group can be more involved�

Theorem � 	Zariski ����
� If the complex projective plane CP� is generic

with respect to LN�� and if B � �CP� � CP� �LN��
�

� then the map

��
�

CP� � CP� � LN��!B
�� ��
�

CPN � L�N���!B



	���


is an isomorphism�

We see that
 in virtue this theorem
 the study of the homotopy group of

CPN �LN�� is reduced to the study of the homotopy of the complement of the

��dimensional curve L� � CP� � LN�� on a generic two�dimensional section�

Since the singular locus of the variety 	���
 is already one�dimensional 	N � �



Theorem � is su�cient for our present purposes�

Before proceeding to the actual determination of the duality group
 we

recall what the local geometry associated to the moduli space M of W is� The

two�moduli family of Calabi�Yau deformations given in 	���
 was �rst discussed

in ref� ����
 where the underlying conformal �eld theory was constrcuted as a

tensor product of �ve copies of N �� minimal models with k � � and c � ����

� �� �

It was observed that there are restrictions due to U 	�
 charge conservation


which imply W��� � � for the Yukawa couplings�

Because of that
 the constraint of special geometry ���
��� 	see appendix A


R���� � g��g�� � g��g�� � e�KW���W���g
�� 	���


reduces to

R���� � g��g�� � g��g�� � �� �� 	� � � �� � � 	���


Thus
 the local geometry ofM is given by a ��dimensional K�ahler manifoldwith

constant curvature
 which according to the classi�cation of ref� ���� corresponds

to the coset space U��
��

U���	U���� On the other hand
 the global structure of the

moduli space is given by modding out the isometries given by the duality group

��

Notice that our example falls in the class of singular Picard�Fuchs sys�

tems that we have treated in section ���� Indeed
 for two moduli
 one would

expect a �N � � � ��dimensional representation of the modular group� In

fact
 the dimension of the H� cohomology group is given by �h�� � �
 where

h�� � dimH��
��
 the number of complex structure moduli of the Calabi�Yau

manifold� It turns out
 however
 that our representation is only ��dimensional


because this speci�c model is singular due to the vanishing of the Yukawa cou�

plings W��� � Thus
 the Picard�Fuchs equations for the periods of W are of sec�

ond order rather than fourth�order� The ��dimensional representation
 which

in the symplectic basis takes values in Sp	��ZZ

 splits into two ��dimensional

representations of U 	�� �

 according to the embedding � � � � � of U 	�� �
 in

Sp	�
� We shall later verify explicitly that the ��dimensional representation of

B� indeed takes values in U 	�� �
�
� �� �



��� The fundamental group of W	y! a� b


In this section we compute the fundamental group ��	CP� � L!B
 of the

algebraic variety W � �� The �rst step consists of �nding the singular locus L

of eq� 	���

 which is given by solving simultaneosly the equations

�W
�yi

� � i � �� � � � � � � 	���


A straightforward computation yields the ��dimensional complex curve

L	a� b
 � ���	a� � b�
 � ��a�b� � ���a�b� � ��ab� � � � � 	����


which represents the locus of the complex points of the original variety W � �

where two or more of the roots coincide�

For the derivation of the Van Kampen relations among the homotopy gen�

erators around the various branches of L	a� b

 it is important to know where

L	a� b
 itself has multiple points� These multiple points are found by solving

the equations L	a� b
 � �L
�a � �L
�b � �
 which give the location of the multiple

roots

	a� b
 � 	�k � ��k


	a� b
 � ��
�

	�k � ��k
 k � �� � � � � �
� 	����


where � � e��i��� The �rst set of roots in 	����
 corresponds to nodes with

two distinct complex conjugate tangents 	which are isolated points for the real

section of 	����
 represented by real values of a and b
� The second set instead

represents 	second order
 cusps
 since the Hessian ��L

�a�b
is degenerate at these

points�
We may obtain a more elegant and geometrically intuitive representation

of the curve L	a� b
 � � by choosing new coordinates 	p� q
 such that the real

section corresponding to real values of p and q exhibits the previous singular

points in the real 	p� q
 plane� It is su�cient to set�
a � p � i q

b � p � i q

	����


� �� �

and we �nd

L	p� q
 �� � � ��	p� � q�
� ���	p� � q�
� ��	p� � q�
 � ���p�

� ���p�q� � ����p�q� � ���	p�q� � p�q�
 � ����pq� �

	����


In the real plane of 	p� q
 the multiple points 	����
 take now the real values

	p� q
 � 	cos
��k

�
� sin

��k
�




	p� q
 � ��
�

	cos
��k

�
� sin

��k
�




	����


respectively� Actually
 the curve L	p� q
 � � can be put in a parametric form

by setting �����
p �

�
�

	� cos �t� � cos �t


q �
�

�
	� sin �t� � sin�t
 � � t � ��

	����


and can be recognized as a pentacuspidal hypocycloid 	the curve described by

a point of a circle of radius R � ��� rolling inside a circle of R � �

 whose

graph is represented in Fig� ��

p

q

Fig� � The pentacuspidal hypocycloid in the unit circle�

� �� �
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Fig� �

According to Picard�Severi theorem
 we now take a generic line C through

the base point B � 	�� �
 which intersects the real branch of the hypocycloid

in four 	�nite
 points Pi 	Fig� �
� To each of such representative points
 we

attach a generator of ��	C�C � L!B
 by constructing a loop which leaves B

along a straight line
 makes an in�nitesimal loop around Pi counterclockwise in

the complex plane C containing the real line
 and comes back to B again in the

opposite direction� If the straight line encounters a real branch of L
 it will be

taken to undercross it by describing a small semicircle in the complex plane� If

by varying the angular coe�cient of the straight line no critical point of L is

encountered
 the corresponding points give rise to equivalent loops� Generally

inequivalent loops are obtained if two straight lines intersect L along points

belonging to two di�erent real branches of L emanating from the critical points�

We thus obtain �� loops
 � of which go around the sides of the pentagonal �gure

described by L and �� going around the branches emanating from the cusps 	�

of them are shown in Fig� ��
�

� �� �

Fig� �

We now quote the Van Kampen relations ���� between loops which
 added

to the free group generated by the above mentioned �� generators
 make it

isomorphic to ��	CP� � L!B
�

For the nodes corresponding to transversal intersections of the real branches

of L
 we have 	see Fig� �


�

�
�’

�’

Fig� �

� �� �



�� � �� ! � � �� ! � � �� 	����


i�e�
 we can slide the representative loops across the node without any change


and the loops around two branches commute� In this way
 the �� generators

reduce to �ve independent ones�

For each cusp 	see Fig� �
 we have the relation

��� � ��� 	����


�

�

Fig� �

Let us enumerate in increasing order the �ve branches of the hypocycloid

described successively by the point of the small circle rolling inside the big circle

	Fig� �
� Then
 denoting by �i � i � �� � � � � � the loops winding around the �ve

branches of Fig� �
 we have the following set of relations among the generators

���� � ���� ������ � ������

���� � ���� ������ � ������

���� � ���� ������ � ������

���� � ���� ������ � ������

���� � ���� ������ � ������

	����


We note that the subset of relations 	����
 not involving �� coincide with the

de�ning relations of the braid group B�
 with four generators �i � i � �� � � � � �
�
�i�j � �j�i ji � jj � �

�i�i���i � �i���i�i�� i � �� � � � � �

� 	����


However
 it may be easily veri�ed that the element of B� exchanging the �rst

and the �fth strand can be written in terms of the four generators �i by the

word

�� � 	������
��	������

�� 	����


� �� �

With a little e�ort
 using the Van Kampen relations for ��� � � � � �� one checks

that the extra relations of 	����
 involving �� are indeed veri�ed� Therefore


we come to the conclusion that
 if the relation 	����
 also holds among the

monodromygenerators �i 	i � �� � � � � �
 of the hypocycloid
 then ��	C	�
�L!B


is isomorphic to B��

The reason why we do not �nd eq� 	����
 among the Van Kampen relations

is that we have not considered the critical point of L at � and the associated

generator� Rather than studying such critical point
 we shall give evidence in

the sequel that eq� 	����
 must be satis�ed by the monodromy generators
 so

that indeed B� coincides with the fundamental group associated to W�

��� Behaviour of the periods around the singular curve

Till now we have only considered the abstract presentation of the funda�

mental group in terms of its generators �i� To obtain an explicit realization

on the periods of W
 it is necessary to consider their leading behaviour in the

neighbourhood of the singularity locus L	a� b
� Let us evaluate the integral de�

�ned in 	���
 on a suitable contour� Setting y� � �
 we may rewrite it in the

following way

�� � �
I

dy�dy�dy�
I

dy�

y�� � f	a� b� y�� y�� y�

� 	����


where

f � y�� � y�� � y�� � �� �a y��y
�

� � �b y��y
�

� � 	����


Performing the last integration on the cycle jy�j � const 	posing y�� � t

 gives

immediately ��i
� 	�f
���
 so that we may write

�� � ��i
I

dy�dy�dy�

	y�� � y�� � y�� � �� �a y��y
�

� � �b y��y
�

�

���

� ��i
I

dy�dy�
I

dy�

�y�� � g	a� b� y�� y�
����

	����


where

g � y�� � y�� � �� �ay��y
�

� � �by��y
�

� � 	����


� �� �



Again
 with y� � g���u
 the last integral on the cycle jy�j � const yields

g����
I

du

	u� � �
���

	����


which is a number independent of a and b
 so that we arrive to

�� � const �
I

dy�dy�

g���

	����


After the further change of variables

y� � 
���� ! y� � 
����� 	����


we �nd

�� � const �
I

d�
�

I

d


�� � 
�h	� 
����

	����


where h	� 
 � ���� � ������ �a����� �b������ Setting at last 
 � 
h���
 the 


cyclic integral gives h��� times a purely numerical integral� Therefore we obtain

that the periods �� can be written as a simple ��dimensional integral

�ij � const �
I

�ij

d�

	�� � �a �� � �b �� � �
���

	����


along a set of suitably chosen contours 	ij � The quintic polynomial P 	� 
 �

�� � �a�� � �b�� � � has �ve roots �i
 and the possible singularities of the

integral 	����
 arise as pinching singularities due to the coincidence of two roots

encircled by a �gure�eight contour 	see Fig� �
�

. .�i �j

��plane

Fig� �

� �� �

One can check that the singular locus of the singularities of P 	� 
 is given

again by the curve L	a� b
 � � of eq� 	����
 by computing the resultant between

P 	� 
 and dP
d�
�

At this point
 we may conclude that the monodromy group is exactly B��

In fact we note that the braid group Bn can be identi�ed with the fundamental

group of the space of all unordered sets of n distinct complex numbers �i i �

� � � � � n� More precisely
 Bn � ��	C
n�SnnS�Sn

 where Sn is the permutation

group on �ve elements and S is the union of the hyperplanes �i � �j �	i� j
 �����

Identifying the numbers �i with the roots of a polynomial Pn	� 
 we see that

in our example the monodromy group of the periods �� must be a subgroup

of B�
 since P 	� 
 is a quintic polynomial� On the other hand
 B� contains the

element given by 	����
 exchanging the strands � and �� Since

�� � ���������
��

� ���� ���� 	����


satisfyes the relations 	����
 involving ��
 the group whose presentation is given

by 	����
 must actually coincide with B��

There is yet another independent argument leading to the same conclu�

sions� Given a general polynomial of ��th degree
 we may always �x � of its

� coe�cients by a M�obius transformation to arbitrary values� As P 	� 
 con�

tains only two parameters
 it is infact a gauge �xed form of a generic quintic

polynomial
 and therefore the associated subgroup of B� is really B� itself�

One can show that the set of all possible �gure eight contours 	ij encircling

a couple of roots can be expressed linearly in terms of three of them
 thus

con�rming that the number of linearly independent periods of W is indeed

equal to three� To see this
 let us denote by 	i
i�� the �gure�eight contour

encircling two consecutive roots �i� �i�� 	loops encircling non consecutive roots

are easily written as products of the 	i
i���s
 e�g�	i
i�� � 	i
i�� � 	i��
i��
 etc�



and by �i
i�� the corresponding period� Only three of them are independent


since they satisfy the following two relations

�X
k
�

�k
k�� � �

�X
k
�

e�ik�����k
k�� � �

	����


� �� �



The second relation easily follows from the fact that 	�
��	�
��	�
��	�
��	�
� is

homotopic to a single loop encircling all the �ve roots of P 	� 

 and the integral

is regular at �� The �rst relation can be obtained by observing that

�i
i�� � Ii�� � Ii 	����


where Ii is the integral around a loop winding counterclockwise around the sim�

ple root �i� Therefore
 the representation of B� on the �i
i�� is ��dimensional


thus con�rming the observation made in the introduction that the vanishing of

the Yukawa couplings reduces the ��dimensional Sp	��ZZ
�valued representa�

tion of the periods into the � � �� representation which will be later shown to

belong to U 	�� �
�

The behaviour of �ij	a� b
 around the L	a� b
 � � singularity can be now

obtained by expanding P 	� 
 in the neighbourhood of a point �� where P 	� 


vanishes together with its �rst derivative�

P 	� 
 � 	� � ��

� �H	�� a� b


lim
���

H	�� a� b
 � L	a� b


	����


If we now set � � �� � H����
 then we �nd

�ij � const L����

I
d�

	�� � �
���
� const L����	a� b
 	����


thus �nding that
 upon performing a loop around a branch of the hypocycloid


the integral acquires a phase ei��� � z�

An alternative way of reaching the same conclusion is to consider the e�ect

of analytic continuation of �i
i�� around the loop �i � B� in the 	a� b
�plane


�i
i��
�i� ei����i
i�� 	����


Indeed
 when the path �i winds around the i�th branch of the hypocycloid
 the

roots �i	a� b
� �i��	a� b
 of the polynomial P 	� 
 are exchanged� In the � plane


	i
i�� gets deformed as in Fig� �� The �nal result is a new circuit followed in

opposite direction where the base point B is on a di�erent Riemann sheet� This

gives the same integral as before except for a phase �	e��i
���� � z�

� �� �

.

. . .. .�i �i+1
�i

�i

�i+1

�i+1

. .
.

�0

�0

�0

��plane

Fig� 	

The correctness of this result can also be ascertained by studying the lead�

ing behaviour of the period �� from the Picard�Fuchs equations� Using the

methods of ��
��
 one derives the following set of three partial di�erential equa�

tions
����

�a�
�

�

�� �ab
�

�b�
����

�a�b
� �a
����

�b�
� ��b

�� �ab

�� �ab
���

�a
�

��a�

�� �ab
���

�b
�

����

�b�
�

�

�� �ab
�

�a�
����

�a�b
� �b
����

�a�
� ��a

�� �ab

�� �ab
���

�b
�

��b�

�� �ab
���

�a
�

����

�a�b
�

�

�� ��ab
�

�a�
����

�a�
� �b�
����

�b�
� ��a
���

�a
� ��b
���

�b
� ��
�

	����


The study of the singularities of eqs� 	����
 is better achieved by writing the

associated linear system� Setting

�� �
���

�a
�
I

�
y��y
�

�

W�

�

�� �
���

�b
�
I

�
y��y
�

�

W�

�

	����


and by elimination of the mixed derivatives in 	����
 we �nd

�
�a
� � A	a� b
� �

�
�b
� � B	a� b
� � � �

	
��
��

��
�A 	����


where the � � � matrices A	a� b
 and B	a� b
 are rational functions of a and b

whose denominator contains the singular locus L	a� b
� Actually
 most of the

� �� �



matrix elements of A and B also contain an extra factor of 	� � �ab
 whose

appearance would imply the extra singular locus �ab � �� However
 such sin�

gularity is a gauge artifact
 as the two systems in 	����
 are covariant under

gauge transformations

A�N��AN �N���N 	����


	and similarly forB

 where N belongs to the Borel subgroup of lower triangular

matrices of GL	��C
� The exam of the Picard�Fuchs system in the neighbour�

hood of the variable v � ab � ��� gives in fact perfectly regular solutions in

the new basis f�� � ��f�� � �� � �a���f�� � �	��a� � �
�� � 	� � ��a�
��

	����


The same conclusion is found by replacing the two linear systems in 	����
 by

two �rd order ordinary di�erential equations in a and b for ��
 with coe�cients

depending on the other variable
 where the singularity ab � ��� is absent�

Furthermore
 the Fuchsian analysis of the linear system 	����
 or of the two �rd

order di�erential equations in the neighbourhood of L	a� b
�� gives again the

behaviour L���� around the singularity
 thus con�rming our previous analysis�

��
 The monodromy generators

In this section we determine the representation R	�i
 � GL	��C
 of the

fundamental group acting on V 
 the vector space spanned by three independent

periods� The computation is made by extending the representation of the group

B� to a representation on the group ring over the complex �eld C� Noting that

�i acts on the period �i
i�� as an analytic continuation around the i�th branch

of L	a� b

 the corresponding discontinuities are given by

	R	�i
� �
�i
i�� � 	z � �
�i
i��

	R	�i
 � �
�j
j�� � � i 	� j� j � �
� 	����


Hence we introduce the 	Picard�Lefschetz
 discontinuity operators ����

R	�i
 � 	z � �
ui � � 	����


� �� �

where ui are ��dimensional projection operators obeying u�i � ui� The �rst set

of relations 	����
 imply

uiuj � ujui 	����


where i� j are non contiguous indices and we are considering �� �� �� ��� cyclicly

ordered so that � and � are contiguous� By right multiplication with uj and

left multiplication with ui we get

uiuj � ujuiuj � �uj

uiuj � uiujui � �ui

	����


where we have used the fact that since the ui are ��dimensional projection

operators
 for any operator O

uiOui � �O ui 	����


Eqs� 	����
 then imply

uiuj � ujui � � 	����


which is a relation much stronger than 	����
� Indeed
 eq� 	����
 has an intu�

itive meaning since e�g � u�� u� correspond to projection of the integral 	����


around the disconnected �gure eight circuits winding the roots ��� �� and ��� ��

respectively� From the second set of 	����
 we get

	z � �
�uiui��ui � zui � 	z � �
�ui��uiui�� � zui�� 	����


Again
 since the ui are ��dimensional projection operators
 we have

uiui��ui � � ui

ui��uiui�� � 
 ui��

	����


Multiplying the two equations in 	����
 by ui�� on the right and ui on the left

respectively
 we �nd � � 

 so that 	����
 gives

ui		z � �
�� � z
 � ui��		z � �
�� � z
 	����


or

� � � z

	z � �
�

	����


� �� �



Using the relation 	����
 in the form �������� � ��������
 we �nd from

	����

	z � �
�u�u�u�u� � 	z � �
�u�u�u� � 	z � �
u�u� � u� �

� 	z � �
�u�u�u�u� � 	z � �
�u�u�u� � 	z � �
u�u� � u�

	����


By right multiplication with u� and left multiplication with u�
 using 	����
 �

	����
 we get

	z � �
z�u�u�u�u� � u�u�u� 	����


where the �nal form of the coe�cient on the l�h�s� of 	����
 is obtained by using

the relations obeyed by the tenth roots of unity z � ei��� 	e�g� �� z� z�� z� �

z� � �
� Obviously
 equations analogous to 	����
 are also obeyed by similar

products of ui�s with indices cyclically permuted� Such relations allow us to

replace a product of four contiguous ui operators in decreasing order with 	 a

coe�cient times 
 the product of three contiguous ui�s in increasing order
 the

�rst and the last factors being the same in both expressions�

We are now ready to construct the explicit representation for the �i�s� We

select three arbitrary linearly independent basis vectors ���� ���� ��� de�ned as

the eigenvectors of u�� u�� u� corresponding to eigenvalue one

u� ��� � ��� � )��

u� ��� �

�
z � �
��� � )��

u� ��� �
�� z

z

��� � )��

	����


where the factors in front of �ij have been chosen in such a way that the action

of the cyclic permutation Z of ZZ� � B� gives Z�i
i�� � �i��
i�� with no extra

phase� The application of ui � i � �� � � � � � to any basis vector gives a linear

combination of them
 namely

uiuk)�� � pi)�� � qi)�� � ri)�� k � �� �� � 	����


It is now easy to compute the coe�cients pi� qi� ri by repeated use of the for�

mulae 	����
�	����
� For instance
 if we take i � �
 then

u�)�� � u�u�)�� � �

u�)�� � u�u�)�� � p)�� � qu�)�� � ru�)��

	����


� �� �

On the other hand


u�u�)�� � u�u�u�)�� 	����


and using 	����


u�u�u�)�� � 	z � �
z�u�u�u�u�)�� � p)�� � qu�)�� � ru�)�� 	����


Multiplying the last two sides by u� on the left we obtain

� 	z � �
z�

z

	z � �
�
u�u�)�� � qu�u�)��

� q � � z�
z � �

	����


Applying now u� on the left of 	����

 we �nd

u�u�)�� � r u�u�)�� � r � � 	����


Finally
 acting with u� in 	����
 we have

u�u�u�)�� � 	p� r
u�)��

�� z

	z � �
�
u�)�� � 	p� r
u�)�� � p �

�� z�

	z � �
�

	����


In the same way one can compute the coe�cients for the action of any other

projection operator ui� The �nal result for the monodromy operator �i on the

basis f���� ���� ���g is

R	��
 �
	
 � � �

� � �

� � z
�A � R	��
 �
	
 � � �

� � �

z� �� � z � z� z
�A

R	��
 �
	
 z z�	� � z
 z�

� � �

� � �
�A � R	��
 �
	
 z � �

�z � �

� � �
�A

R	��
 �
	
 � � �

� z �

� �z �
�A �

	����


� �� �



From eqs� 	����
 we may verify that indeed �� satis�es the relation 	����
�

Furthermore
 we can use 	����
 to compute the monodromy generator around

�
 which we have disregarded until now� It can be shown that the generator

�� can be written by the following word

�� � ������������ 	����


and we obtain

R	��
 �
	
 z� � � z� z	� � z�


�z� ��� z� �z�

�� �� ��� z
�A 	����


We note that the eigenvalues of R	��
 are f�������zg thus showing the

presence of a singularity at � with critical exponent��
� � This can also be

con�rmed by the behaviour of the integral 	����
 for large values of a and b�

We �nd

��
a
b��

I

d�

	�a�� � �b��
���
� 	����


and by the rescaling a� �
 � b� �� we �nd

�� 

I

d�

	
�� � ���
����
����� � const ����� 	����


thus con�rming the critical behaviour computed from 	����
�

��
 The duality group

It is known that the full duality group of the moduli space is given not only

by the monodromy group of the periods
 �M 
 but also by the symmetry group

of the de�ning polynomialW
 �W � We now want to show that the symmetries

of the de�ning polynomial W	y! a� b
 � � give at most a central extension for

the monodromy group B� acting on the ��dimensional basis of the periods�

It is easily seen that the transformations leaving invariant W
 are given byn a � � a

b � ��� b 	����


� �� �

with �� � � 
 as they can be undone by the linear coordinate transformationn y� � � y�

y� � ��� y�

	����


Since there is apparently no other action with this property
 we conclude that

the duality group of the superpotential is given by ZZ��

In order to �nd the representation U of the transformations 	����
 on the

periods
 we observe that on any integral
 say ���
 the transformation 	����
 can

be compensated in the integrand by the map

� � ��� 	����


On the other hand
 choosing � � e��i��
 the transformations 	����
 on the 	p� q


real plane correspond to a rotation of an angle ����
 mapping the ��th branch

of the hypocycloid into the ��st
 so that 	�� is mapped into 	��� Taking into

account that d� � ��d� 
 we �nd
U � ��� � e��i�� ��� 	����


and analogous relations for cyclically permuted indices� We now observe that

the transformation ��
� � ��
� is realized by the monodromy operator

Z � R	��������
 �
	
 � � �

� � �

z� �� � z � z� z � �
�A 	����


which corresponds to a generator of the cyclic subgroup ZZ� � B�� It follows

that

UZ � e��i�� I� 	����


on any period �i
i�� and therefore also on the selected basis f���� ���� ���g�

Thus we conclude that
 unless there is some element of B� represented by UZ


the U�transformation gives a central extension of the braid group B�� The

above central extension gives the full duality group of the moduli space of the

Calabi�Yau manifold�

� �� �



Notice that our result di�ers from the previously studied one�dimensional

examples
 where the full duality group � was given by the semidirect product

�M j� �W of the monodromy group of the periods and the symmetry group

of W
 as suggested in ���� We further remark that
 since the moduli space

is ��dimensional
 we may take as coordinates the ratios t� � ���
�	�
� t� � ��	
�	�

which correspond to a linear combination of the �special� variables of special

geometry� Hence
 on t�� t�
 the action of the full duality group is given by a

faithful projective ��dimensional representation of B��

Recalling that the full symmetry of the moduli space is given by modding

out by � the local moduli space 
 we obtain that the geometry of M is given by

M �

U 	�� �


U 	�
 � U 	�

� bB� 	����


where bB� is the previously introduced central extension of B��

Some comments are in order� We have found a ��dimensional representa�

tion of the monodromy group for the three fundamental periods ��
�� ��
�� ��
�

given by the three integrals associated to independent loops of the integral

	����

 or
 equivalently
 to the top solution of the system of di�erential equa�

tions 	����
� We know that B� must act as a group of discrete isometries on

the local moduli space U��
��

U���	U��� and therefore our matrices should belong to

the U 	�� �
 group� Infact
 it can be shown that the matrices 	����
 satisfy

R	ayi 
 gR	ai
 � g 	����


where g is the metric given by

g �
	
 � �z� �� z�

z� �� z � z� �z�

� � z� z� �

�A 	����


Since g has one positive and two negative eigenvalues
 indeed �i � U 	�� �
� As

we have already remarked
 there must exist a canonical basis for the H��� ho�

mology of the Calabi�Yau 
 where the direct sum of the � and � representations

of U 	�� �
 given by 	����
 and their complex conjugate take values in Sp	��ZZ



six being the dimension of H����

� �� �

Let us summarize our results� Starting with the family of manifolds given

in eq� 	���
 we have been able to compute exactly the duality group of the

periods associated to W	y! a� b
 by means of some very e�cient and powerful

techniques of algebraic geometry
 without resorting to the explicit computation

of the periods e�g� via solutions of the Picard�Fuchs equations� Our method is in

principle applicable also to more complicated situations where more moduli are

present and*or Yukawa couplings are non�vanishing� In fact
 the computation

of the fundamental group ��	CPN � LN��!B
 is always possible in virtue of

the fundamental theorems of Picard�Severi and Zariski
 together with the Van

Kampen relations� The actual construction of the monodromy group relies

however also on the knowledge of the behaviour of the periods around the

singular locus of the de�ning polynomial� In our example
 this computation

was derived from the study of the ��dimensional integral
 which simpli�es the

actual task� It is clear that in general one cannot expect that the periods

can always be reduced to such one�dimensional integrals
 and the exam of the

leading singularity can be more involved� Still
 it is important to realize that


as mentioned in section �
 the analysis of the singularities can always be done

in a systematic way from the linear system of Picard�Fuchs equations using

standard techniques of fuchsian analysis�

Appendix A� Special Geometry

In this appendix we �rst brie�y recall the properties of a K�ahler�Hodge

manifold as they are relevant for N � � supergravity� Then we turn to special

K�ahler manifolds on whose geometrical structure this paper is based upon�

We brie�y indicate how special geometry arises from N � � supergravity and

assemble the main formulas used in the text�

� �� �



A�� K�ahler�Hodge manifolds

The metric of an n�dimensional K�ahler manifold M is given by

g��	z� z
 � ����K	z� z
 � 	A��


where K	z� z
 is the K�ahler potential� Let us introduce the ��form Q de�ned

by

Q � � i
�

�
��Kdz� � ��Kdz�
�

� 	A��


Under K�ahler transformations
K �� K � f	z
 � f 	z
 	A��


g�� is left invariant
 while Q transforms as a U 	�
 connection 	K�ahler connec�

tion
�

Q �� Q� d	Imf
 � 	A��


Introducing the K�ahler closed ��form �

� � ig��dz
� � dz� � d� � � � 	A��


we �nd

dQ � � � 	A��


Therefore
 the �rst Chern class of the U 	�
 bundle L whose connection is Q

coincides with the K�ahler class �� A manifold with this property is called a

K�ahler�Hodge manifold�

A section �	z� z
 of L with K�ahler weight 	p� p
 is de�ned by the transfor�

mation law

�	z� z
 �� �	z� z
 e�
p

�f e�
p

�f � 	A��


Accordingly
 we de�ne U 	�
 covariant derivatives by

D�� � 	�� � p
���K
� �

D�� � 	�� � p
���K
� �

	A��


� �� �

A covariantly holomorphic section
 satisfying D�� � �
 is related to a purely

holomorphic �eld e� by e� � e
p

�K� � 	A��
e� has weight 	p�p� �
 and satis�es �� e� � �� The Levi�Civita connections and

their curvatures are de�ned by

���� � g����g�� � R�
��� � ������ � 	A���


	Analogous formulas hold for the barred quantities ��
��
and R�

���
�
 Thus for

a vector �� of weight 	p� p
 the covariant derivatives read

D��� �

�
�� � p
�
��K
�

�� � ������ �

D��� �

�
�� � p
���K
�

�� �

	A���


A�� Special K�ahler manifolds

The notion of special K�ahler geometry �rst arose in the context of cou�

pling vector multiplets to N � � supergravity 	in four space�time dimensions
�

It was shown that the K�ahler manifold spanned by the scalar �elds z� of the

vector multiplets must be suitably restricted as a consequence of N � � super�

symmetry ����� A coordinate free characterization of such restricted geometry

was given in ���� in the context of N � � supergravity and in ���
��� for a

Calabi�Yau moduli space�

In order to understand how special geometry arises from N � � super�

symmetry let 	�I�� ��I 
 be the chiral�antichiral components of the gaugino �eld

	I � �� � being an O	�
 index

 and AA
� 	A � �� �� � � � � n
 the vector superpart�

ners and the graviphoton� On general grounds
 their supersymmetry transfor�

mation laws are

��AA
� � fA� �
�I

	��
J�IJ � ��IJL
A�I�J� � h�c� �

���
�I � ��ig���J
�

C����
�I

��J � C����
�

L�
�

M�IL�JM
�

� � � �

	A���


where the dots stand for terms that are irrelevant for now� Here �I and �I�

are the 	chiral
 supersymmetry parameter and gravitino �eld respectively
 and

� �� �



�IJ is the O	�
 antisymmetric symbol� The sections LA� fA� � C��� � C��� and

their chiral partners L
A

� f
A

� � C��� � C��� are a priori unrestricted scalars and

tensors whose K�ahler weight is �xed by K�ahler covariance� The restrictions on

the K�ahler geometry arise from the on shell closure of the above supersymmetry

transformation rules� In the superspace approach
 this corresponds to imposing

the Bianchi identities on the supercurvatures� One �nds that the closure on AA
�

implies

D�L
A � � � D�L
A

� � �

D�L
A � fA� � D�L
A

� f
A

� �

D�f
A

� � g��L
A

� D�f
A

� � g��L
A �

	A���


	Note that the last set of equations is just the integrability condition of the

second set�
 Closure of the gaugino transformation implies

C��� � C��� � � �

D�f
A

� � �iC���g
��f
A

� �

D�f
A

� � �iC���g
��fA� �

D�C��� � D��C���� � � �

D�C��� � D��C���� � � �

	A���


as well as C��� being a completely symmetric tensor� As an integrability condi�

tions of eq� 	A���
 one �nds that the curvature satis�es the following constraint

R���� � g��g�� � g��g�� � C���g
��C��� � 	A���


From eq� 	A���
 we also learn that C��� obeys

C��� � D�D�D�S � 	A���


where S has weight 	����
�

The above properties lead to the following de�nition of a special K�ahler

manifold� A special K�ahler manifold is a K�ahler�Hodge manifold for which

there exists a set of n� � sections LA	z� z
 and L
A

	z� z
 of weight 	����
 and

� �� �

	��� �
 respectively
 satisfying 	A���
 and 	A���

 and a section of weight 	����


		��� �

 C��� 	C���
 which is completely symmetric in its indices and satis�es

	A���
�
Equivalently
 a special K�ahler manifold can be de�ned by introducing a ��

index symmetric tensor C��� on a K�ahler�Hodge manifold with the properties

	A���
 and furthermore restricting the curvature by the constraint 	A���
� The

existence of the sections LA and their properties then follow�

The K�ahler potential itself is most easily expressed in terms of holomorphic

sections� By using 	A��
 one de�nes XA	z
 and W��� 	z
 of K�ahler weight 	�� �


and 	�� �
 respectively�
XA	z
 � e�
K

� LA	z� z
 � ��X
A � � �

W���	z
 � e�KC���	z� z
 � ��W��� � � �

	A���


We also need to introduce a functional F 	XA
 which is holomorphic and ho�

mogeneous of degree � in the XA�

�F � XAFA	X
 � FA � �
�XAF � 	A���


In terms of XA and FA the K�ahler potential which solves the constraints 	A���


and 	A���
 reads

K	z� z
 � � ln iY � Y � XANABX
B � XAFA �X
A

FA � 	A���


where

NAB � FAB	X
 � FAB	X
 � FAB � �A�BF � 	A���


Furthermore
 C��� is given by

C��� � D�D�D�S � eK��X
A��X
B��X
CFABC �

S � ��
�
eKXANABX
B �

	A���


� �� �



From eqs� 	A���

 	A���
 and 	A���
�	A���
 it is straightforward to verify that

XA and FA satisfy the same set of constraints� Therefore we introduce the

	�n� �
 dimensional row vectors
	

V � 	XA� FA
 �� 	X�� X�� F���F�
 � 	� � �� � � � � n
 � 	A���


Using 	A���
�	A���
 we rewrite the identities 	A���
 and 	A���
 as follows

D�V � U�

D�U� � �iC���g
��U

�

D�U� � g��V

D�V � � �

	A���


It is this set of constraints we use in the main text� Similarly
 one derives the

constraints including the anti�holomorphic derivative D��

The K�ahler potential can be expressed in terms of V and V y as follows�

K � � ln
�

V 	�iQ
V y
�

� 	A���


which makes its Sp	�n � �� IR
 symmetry manifest� Above
 Q is a symplectic

metric which satis�es Q� � �� � Q � �QT � Our convention is

Q �

	B


�

���n

��n

��

�CA � 	A���


Note that the vector V in 	A���
 is symplectic with respect to this metric�

An important property which follows from eqs� 	A���
 is that the con�

nections of special geometry de�ned in eq� 	A���
 naturally decompose into

holomorphic and non�holomorphic parts ����� This fact can be displayed by

de�ning

ta	z
 �
Xa

X�
� 	A���


� We take the expression �XA� FA� always as an abbreviation for �X
� Xa� Fa��F
�	

� �� �

In terms of ta and X� one �nds

K�	z� z
 � bK�	z
 � K�	z� z
 �

����	z� z
 � b����	z
 � T �
��	z� z
 �

	A���


where

K�	z� z
 � ea�	z
Ka	z� z
 � ea�	z

�

�ta
K	t	z
� t	z

bK�	z
 � � �� lnX�	z


ea�	z
 � ��t
a	z


T �
��	z� z
 � ea�e
b

��bgadg
��dce���cb����	z
 � 	��e

a
�
e���a �

	A���


The holomorphic objects bK� and b���� transform as connections under K�ahler

and holomorphic reparametrizations respectively! moreover T�
�� is a tensor un�

der holomorphic di�eomorphisms and K� is K�ahler invariant� As a consequence

one can de�ne holomorphic covariant derivatives in analogy with 	A���
 by

bD��� � 	�� � p
���
bK
�� � b������ � 	A���


The covariant Picard�Fuchs equations precisely use this holomorphic derivative�

Moreover
 b� is a �at connection
 i�e� satis�es

bR�
��� � ��b���� � ��b���� � b����b���� � b����b���� � � � 	A���


The holomorphic metric for which b� is a connection reads

bg�� � ea�e
b

��ab 	A���


where �ab is a constant 	invertible
 symmetric matrix� 	Note that bg�� has two

holomorphic indices in contrast to the K�ahler metric g���


The �at coordinates are exactly the �special coordinates� ta � z�� In these

coordinates we �nd
ea� � �a�� b���� � �� bg�� � ��� 	A���


� �� �



	The gauge choice X� � � implies bK� � ��


In terms of ta one de�nes the K�ahler invariant function

F	ta
 � 	X�
��F 	XA
 � 	A���


The K�ahler potential can then be expressed as 	up to K�ahler freedom


K � �lni
�

�	F � F
 � 	Fa �Fa
	ta � t
a



�

� 	A���


The special coordinates ta play the double role of �at coordinates for the holo�

morphic geometry with �at connection b� and of �free falling frame� coordi�

nates for 	non�holomorphic
 special geometry� The analogous of local Lorentz

transformations in the free falling frame is given in our case by the symplectic

transformations that relate equivalent patches of special coordinates�

Appendix B� Remarks on w� � � and covariantly constant w��

We �rst show that w� � � does not imply that the solutions of eq� 	���
 are

equivalent to 	����
� Let us start from an arbitrary solution V � 	v�� v�� v�� v�
�

It is always possible to rescale the entire vector V by ��v�� This leads to V �eV � 	�� v��v�� v��v�� v��v�
 where eV satis�es an equation 	���
 with a� � ��

In the next step we perform the coordinate transformation z � ez � v��v�� In

these coordinates eq� 	���
 turns into�e�� � ea�e�� � ea�e��
 eV � � � eV � 	�� ez� f�	ez
� f�	ez

 	B��


	Again
 we have scaled out a�
� The two steps so far can be done for any fourth

order equation� It is equivalent to �xing the scale 	K�ahler
�freedom and the

coordinate frame� In these new coordinates w� is given by 	we drop the tilde


w� � ��a� � �
�
a�a� �

�
�
��a� � �
�a��a� � �
�a
�

� � 	B��


By writing a� � ��� lnW and a� � b�W 
 w� simpli�es to

w� � W 	�b� � ��W��
 � 	B��


� �� �

Thus w� � � implies the relation
b� � ��W�� � c� � 	B��


where c� is a constant� Inserting 	B��
 into 	B��
 we �nd�
��W���� � c��
�
� eV � � � 	B��


For c� � � this is solved by
��f� � W� ��f� � zW 	B��


which implies

f� � zf� � �f� � c�z � c� � 	B��


This is precisely what is true in special geometry� However
 one can easily check

	by series expansion
 that this does not apply any more if c 	� �� This means

that w� � � does not fully characterize the di�erential equation 	���
 of special

geometry�

We �nally discuss brie�y solutions of the generic fourth order equation

	���
 with covariantly constant w��
bDw� � � � 	B��


This can easily be solved in special coordinates
 where 	B��
 reduces to �w�	t
 �

�
 by setting

W 	t
 � e
p

��t � 	B��


From this we obtain w� � ��
��
� and w� � ��
 and 	���
 is solved by �rst

changing to the coordinate system u	t
 where w� � �
 that is
 where

fu� tg � ��
�
�� � 	B���


Then one solves the associated second order linear di�erential equation

��� � ��� � � � �� � e�t � �� � e��t u	t
 � ��
��

� e��t � 	B���


� �� �



In the coordinates u we have

w�	u
 �
� dt

du
��

w�	t
 �
�

�
dt

du
��

�

�
��u�
� 	B���


and the fourth order di�erential equation 	���
 becomes�

eV iv �

�
��u�
eV � � eV �
�

u�

����

V 	B���


It has solutions eV � u�i 
 where �i are the roots of

�	� � �
	� � �
	� � �
 �

�
��

� � � 	B���


Altogether we �nd�
V 	t
 � e��t
�

e����t� e����t� e����t� e����t
�

� 	B���


This is similar to the instanton�corrected solution of ���
 and more speci�cally

suggests that a covariantly constant w� characterizes single instantons
 in ac�

cordance with our considerations in sect� ����

Appendix C� Di�erential equations for cubic F �functions

It is helpful to �rst reconsider the �rst order system for one variable� We

have seen in sect� ��� that for constant Yukawa coupling and in special coordi�

nates
 where W � � and F � �
�t
�
 the matrix connection is given by the step

generator

I�w � C �
	B


� � � �

� � � �

� � � �

� � � �
�CA � J� � 	C��


of the principal SL	�
 subgroup K � Sp	�
� The diagonal generator J� belongs

to the gauge group� Thus
 in accordance with our considerations in sect ���


the moduli space is SL	�
�U 	�
�

� �� �

More generally
 consider special geometries that have a cubic F�function

F �

�
� 
Wabc
XaXbXc

X�

They correspond to special
 homogeneous K�ahlerian manifolds
 G�H pro�

videdWabc satisfy suitable restrictions������������ +They typically describe moduli

spaces of orbifolds�

Let us �x the gauge Xa � ta� X� � �� Then the �at coordinates ta are

associated to G�H� More precisely
 they are associated with the 	mutually

commuting
 broken raising generators of G in the Cartan�Weyl basis
 and thus

they are coordinates of Gc�B 	which is
 essentially
 isomorphic to G�H
� Fur�

thermore
 the subgroups H act linearly on the coordinates� One may view the

maximal compact subgroups H as being gauged by the connections b� in 	����
�

Thus the generalization to many variables is the system of coupled matrix dif�

ferential equations h
���a � Ca
i

V � �� 	C��


where Ca are the generators of G�H appropriately embedded into sp	�n � �


	with n � dimcG�H
� These equations are solved by each column of the

symplectic matrix
V � et
a
Ca �

	B

� ta Fa F

� � Fab ta Fab � Fb

� � � tb

� � � �

�CA � 	C��


whose �rst row gives the �period� vector
	


 V � 	�� ta� ��Wabct
btc� ��Wabct
atbtc
�

Observe that V � Gc�B 
� G�H re�ecting the fact that the moduli space is

given by G�H� Furthermore
 the Yukawa couplings are just the top�bottom

components of the triple product of coset generators 	cf� 	���

�

Wabc �

�
CaCbCc
�

�
��n���

� Note that the components of V are like elements of some local ringR���
 the structure

constants of which are given by the coset generatorsC�	

� �� �



The symplectic embeddings
y

ofG generalize the principal embedding ofK� Note

that in order for F to be cubic
 the representation of V must be irreducible with

respect to G�
R � �n� � of Sp	�n � �� IR
 �� r � �n� � of G �

so that the top and bottom rows of V are highest and lowest weights of r�

Otherwise
 the action of Ca vanishes on some intermediate components of V

	the highest weights

 which implies that Wabc � �� For instance
 for SU�n
��

U�n�

with n � �
 r � n� �� n� � is reducible and accordingly
 F is not cubic but

only quadratic�

As a further example
 consider

G�H �

SU 	�� �


SU 	�
 � SU 	�
 � U 	�

� dimcG�H � n � � � 	C��


Here
 G � SU 	�� �
 is maximally embedded in Sp	��
 according to �� � 	� �

�� �
antisym� The variables ta correspond to the broken generators Ca
 which

transform as 	�� �
 under SU 	�
�SU 	�
� These matrices are the following nine

commuting generators of G � SU 	�� �
 in the ���dimensional
 threefold totally

symmetric representation�	BBB

� �ji �
j

i

� �

� � �ijk�ijk �

� � � �ji �
j

i

� � � �

�CCCA 	C��


with i� i�� �� � � ��� The local symmetry group H � U 	�
 � U 	�
 is embedded

in U 	�
 � U 	�
�

y Such symplectic embeddings have also been considered in ����	

� �� �

References

��� T� Banks
 L� Dixon
 D� Friedan and S� Shenker
 Nucl� Phys� B��� 	����


����

��� E� Martinec
 Phys� Lett� B��� 	����
 ���! C� Vafa and N�P� Warner
 Phys�

Lett� B��� 	����
 ��! W� Lerche
 C� Vafa and N� Warner
 Nucl� Phys� B���

	����
 ���! D� Gepner
 Phys� Lett� B��� 	����
 ���! P� Howe and P� West


Phys� Lett� B��� 	����
 ���! S� Cecotti
 L� Girardello and A� Pasquinucci


Nucl� Phys� B��� 	����
 ���! Int� J� Mod� Phys� A� 	����
 ����! C� Vafa


Int� J� Mod� Phys� A� 	����
 ����! K� Intrilligator and C� Vafa
 Nucl� Phys�

B��� 	����
 ��! C� Vafa
 Mod� Phys� Lett� A� ���� and Mod� Phys� Lett�

A� 	����
 ����! S� Cecotti
 Int� J� Mod� Phys� A� 	����
 ���� and Nucl�

Phys� B��� 	����
 ���! A� Giveon and D�J� Smit
 Mod� Phys� Lett� A� ��

	����
 �����

��� E� Witten
 Comm� Math� Phys� ��� 	����
 ���! ��� 	����
 ��� and Nucl�

Phys� B��� 	����

 ���! T� Eguchi and S�K� Yang
 Mod� Phys� Lett� A�

	����
 ����! C� Vafa
 Mod� Phys� Lett� A� 	����
 ���! K� Li
 Nucl� Phys�

B��� 	����
 ���! B� Blok and A� Varchenko
 Int� J� Mod� Phys� A� 	����


����! R� Dijkgraaf
 E� Verlinde and H� Verlinde
 Nucl� Phys� B��� 	����


��� and Nucl� Phys� B��� 	����
 ��! A� Giveon and D�J� Smit
 Progr�

Theor� Phys� Suppl� ��� 	����
 ���! Mod� Phys� Lett� A� 	����
 ����!

Int� J� Mod� A� 	����
 ���! S� Cecotti and C� Vafa
 Nucl� Phys� B���

	����
 ����

��� P� Candelas
 G� Horowitz
 A� Strominger and A� Witten
 Nucl� Phys� B���

	����
 ��! see also M� Green
 J� Schwarz and E� Witten
 Superstring Theory

	Cambridge
 Univ� Press
 ����
�

��� P� Candelas and X�C� de la Ossa
 Nucl� Phys� B��� 	����
 ����

��� P� Candelas
 X�C� de la Ossa
 P�S� Green and L� Parkes
 Phys� Lett� ���B

	����
 ���! Nucl� Phys� B��� 	����
 ���

��� A� Cadavid and S� Ferrara
 Phys� Lett� B��� 	����
 ����

��� W� Lerche
 D� Smit and N� Warner
 Nucl� Phys� B��� 	����
 ���

� �� �



��� D� Morrison
 in Essays on Mirror manifolds 
 
 S�T� Yau Editor
 Intena�

tional Press 	����
! A� Font
 Nucl� Phys� B��� 	����
 ���! A� Klemm and

S� Theisen
 Nucl� Phys� B��� 	����
 ����

���� R� Dijkgraaf
 E� Verlinde and H� Verlinde
 Nucl� Phys� B��� 	����
 ���

���� E� Verlinde and N�P� Warner
 Phys� Lett� ���B 	����
 ��! Z� Maassarani


Phys� Lett� ���B 	����
 ���! A� Klemm
 M� G� Schmidt and S� Theisen


Int� J� Mod� Phys� A� 	����
 �����

���� P� Aspinwall and D� Morrison
Comm� Math� Phys� ��� 	����
 ���! E� Wit�

ten
 in Essays on Mirror Manifolds
 edited by S�T� Yau
 Intenational Press

	����
�

���� S� Cecotti and C� Vafa
 Nucl� Phys� B��� 	����
 ����

���� S� Ferrara and J� Louis
 Phys� Lett� B��� 	����
 ����

���� A� Ceresole
 R� D�Auria
 S� Ferrara
 W� Lerche and J� Louis
 Int� J� Mod�

Phys� A� 	����
 ���

���� M� Bershadsky
 S� Cecotti
 H� Ooguri and C� Vafa
 Harvard preprints

HUTP���*A���
 HUTP���*A����

���� P� Candelas
 X�C� de la Ossa
 A� Font
 S� Katz and D� Morrison
 Mir�

ror Symmetry for Two Parameter Models �
 preprint CERN�TH�����*��


UTTG������
 NEIP�������
 OSU�M������

���� P� Berglund
 P� Candelas
 X� de la Ossa
 A� Font
 T� H�ubsch
 D�

Jan,ci-c
 F� Quevedo
 Periods for Calabi�Yau and Landau�Ginzburg Vacua


preprint CERN�TH� ����*��
 HUPAPP���*�
 NEIP ������ 
 NSF�ITP����

��
 UTTG�������

���� S� Hosono
 A� Klemm
 S� Theisen and S�T� Yau Mirror Symmetry� Mirror

Map and Applications to Calabi�Yau Hypersurfaces
 preprint HUTMP�

��*���� and LMU�TPW�������

���� B� de Wit and A� van Proeyen
 Nucl� Phys� B��� 	����
 ��! B� de Wit
 P�

Lauwers and A� van Proeyen
 Nucl� Phys� B��� 	����
 ���! E� Cremmer


C� Kounnas
 A� van Proeyen
 J�P� Derendinger
 S� Ferrara
 B� de Wit and

L� Girardello
 Nucl� Phys� B��� 	����
 ����

� �� �

���� S� Ferrara and A� Strominger
 N�� spacetime supersymmtry and Calabi�

Yau moduli space 
 in Proceedings of College Station Workshop 	����
 ���

! S� Cecotti
 Comm� Math� Phys� ��� 	����
 ��! A� Cadavid
 M� Bodner

and S� Ferrara
 Phys� Lett� B��� 	����
 ���

���� A� Strominger
 Comm� Math� Phys� ��� 	����
 ����

���� P� Candelas and X�C� de la Ossa
 Nucl� Phys� B��� 	����
 ����

���� L� Castellani
 R� D�Auria and S� Ferrara
 Phys� Lett� B��� 	����
 ��! Class�

Quant� Grav� � 	����
 ���! R� D�Auria
 S� Ferrara and P� Fr-e
 Nucl� Phys�

B��� 	����
 ����

���� N� Seiberg
 Nucl� Phys� B��� 	��
 ����

���� S� Cecotti
 S� Ferrara and L� Girardello
 Int� J� Mod� Phys� A� 	����
 ����


Phys� Lett� B��� 	����
 ����

���� L�J� Dixon
 V�S� Kaplunovsky and J� Louis
 Nucl� Phys� B��� 	����
 ���

���� B� Blok and A� Varchenko
 Int� J� Mod� Phys� A� 	����
 �����

���� L� Dixon and D� Gepner
 unpublished! W� Lerche
 C� Vafa and N�P� Warner


Nucl� Phys� B��� 	����
 ���! B� Greene and M� Plesser
 Nucl� Phys� B���

	����
 ��! P� Candelas
 M� Lynker and R� Schimmrigk
 Nucl� Phys� B���

	����
 ���! P� Berglund and T� H�ubsch
 Nucl� Phys� B��� 	����
 ���! P�

Berglund and S� Katz
 Mirror Symmetry for Hypersurfaces in Weighted

Projective Space and Topological Couplings
 preprint IASSNS�HEP���*��


NSF�ITP�������
 OSU�M�����
 UTTG�������

���� R� D�Auria and S� Ferrara
 String Quantum Symmetries from Picard�Fuchs

Equations and their Monodromy 
 preprint CERN�TH�����*��
 POLFIS�

TH���*�� and hep�th.xxx�lanl�gov �������
 to appear on Ann� of Phys�

�

���� A� Ceresole
 R� D�Auria and T� Regge
 Duality Group for Calabi�Yau

two�Moduli Space
 preprint POLFIS�TH� ��*��
 DFTT ��*��
 in press

Nucl� Phys� B�

���� K� Kikkawa and M� Yamasaki
 Phys� Lett� ���B 	����
 ���! N� Sakai and

L� Senda
 Progr� Theor� Phys� �� 	����
 ���! V�P� Nair
 A� Shapere
 A�

Strominger and F� Wilczek
 Nucl� Phys� B��� 	����
 ���! A� Giveon
 E�

� �� �



Rabinovici and G� Veneziano
 Nucl� Phys� B��� 	����
 ���! A� Shapere

and F� Wilczek
 Nucl� Phys� B��� 	����
 ���! M� Dine
 P� Huet and N�

Seiberg
 Nucl� Phys� B��� 	����
 ���! J� Molera and B� Ovrut
 Phys� Rev�

D�� 	����
 ����! J� Lauer
 J� Maas and H�P� Nilles
 Phys� Lett� B���

	����
 ��� and Nucl� Phys� B��� 	����
 ���! W� Lerche
 D� L�ust and N�P�

Warner
 Phys� Lett� B��� 	����
 ���! M� Du�
 Nucl� Phys� B��� 	����


���! A� Giveon and M� Porrati
 Phys� Lett� B��� 	����
 �� and Nucl� Phys�

B��� 	����
 ���! Giveon
 N� Malkin and E� Rabinovici
 Phys� Lett� B���

	����
 ��! J� Erler
 D� Jungnickel and H�P� Nilles
 preprint MPI�Ph*�����!

S� Ferrara
 D� L�ust
 A� Shapere and S� Theisen
 Phys� Lett� B��� 	����


���! J� Schwarz
 Caltech preprint CALT�������� 	����

 Phys� Lett� B���

	����
 ��� and in Strings	 Stony Brook �

� 
 World Scienti�c�

���� E� Cremmer
 S� Ferarara
 C� Kounnas
 and D� V� Nanopoulos
 Phys�

Lett� ���B 	����
 ��! J� Ellis
 A� B� Lahanas
 D� V� Nanopoulos and K�

Tamvakis
 Phys� Lett� ���B 	����
 ���! J� Ellis
 C� Kounnas
 and D� V�

Nanopoulos
 Nucl� Phys� B��� 	����
 ���! R� Barbieri
 E� Cremmer and

S� Ferrara
 Phys� Lett� ���B 	����
 ����

���� E� Witten
 Phys� Lett� B��� 	����
 ����

���� T� Regge
 The Fundamental Group Of Poincar�e And The Analytic Proper�

ties Of Feynman Relativistic Amplitudes 
 Nobel Symposium Series VIII

	����
! G� Ponzano and T� Regge
 Proceedings of the Varna Conference

	����
�

���� G� Ponzano
 T� Regge
 E� R� Speer and M� J� Westwater
 Comm� Math�

Phys� �� 	����
 �� and Comm� Math� Phys� �� 	����
 ��

���� A� Forsyth
 Theory of Di�erential Equations
 Vol� �
 Dover Publications


New�York 	����
�

���� P� Di Francesco
 C� Itzykson and J��B� Zuber
 Comm� Math� Phys� ���

	����
 ����

���� S� Ferrara
 D� L�ust and S� Theisen
 Phys� Lett� ���B 	����
 ���

���� Drinfel�d and V� G� Sokolov
 Jour� Sov� Math� �	 	����
 �����

���� B� Kostant
 Am� J� Math� �� 	����
 ����

� �� �

���� J� Balog
 L� Feher
 L� O�Raifeartaigh
 P� Forga-cs and A� Wipf
 Phys� Lett�

���B 	����
 ���! Ann� Phys� ��� 	����
 ����

���� W� Lerche
 Nucl� Phys� B��� 	����
 ���! W� Lerche and W� Buchm�uller


Ann� Phys� ��� 	����
 ����

���� See eg�
 P� Gri�ths
 Ann� Math� �� 	����
 ����

���� P� Candelas
 Nucl� Phys� B��� 	����
 ����

���� S� Cecotti
 Comm� Math� Phys� ��� 	����
 ���
 Nucl� Phys� B��� 	����


���
 Int� J� Mod� Phys� A� 	����
 �����

���� P� Berglund
 E� Derrick
 T� H�ubsch and D� Jancic
 On Periods for String

Compacti
cations
 preprint HUPAPP���*�
 IASSNS�HEP���*��
 UTTG�

������

���� B� Greene
 C� Vafa and N�P� Warner
 Nucl� Phys� B��� 	����
 ����

���� C� Vafa
 Mod� Phys� Lett� A� 	����
 ����

���� A� Giveon and D��J� Smit
 Mod� Phys� Lett� A � No� �� 	����
 �����

���� A� Erd-elyi
 F� Oberhettinger
 W� Magnus and F�G� Tricomi
 Higher

Trascendental Functions
 Mac Graw�Hill
 New York
 �����

���� P� Fr/e and P� Soriani
 private communication! see also P� Soriani
 Sissa Ph�

D� Thesis�

���� W� Lerche
 D� L�ust and N�P� Warner
Phys� Lett� ��� 	����
 ����

���� M� Villasante
 Phys� Rev� D�� 	����
 ����

���� See O� Zariski
 Algebraic Surfaces 
 
 II ed�
 Springer�Verlag 	����
�

���� O� Zariski
 Ann� for Math �� 	����
 ����

���� E� R� van Kampen
 Amer� J� Math� �� 	����
 ����

���� E� Cremmer and A� Van Proyen
 Class� Quantum Grav� � 	����
 ����

���� V� I� Arnold
 S� M� Gusein�Zade and A� N� Varchenko
 Singularities of

Di�erentiable Maps 
 Vol bf II 	Birkh�auser
�

���� S� Cecotti
 Comm� Math� Phys� ��� 	����
 ��! B� de Wit and A� van

Proeyen
 Comm� Math� Phys� ��� 	����
 ��� �

���� P� Fr/e and P� Soriani
 Nucl� Phys� B��� 	����
 ��� �

� �� �



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /All
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue true
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>

    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


