Quantum Geometry of D-Branes

W.L. Vienna Nov. 2004

- In stringy geometry, geometrical notions are in general ambiguous ...

One and the same theory may have many different dual geometric interpretations. For example gauge theory:

i) heterotic

ii) type II

iii) type I

Moduli Space $=$ Space of Vacuum States, VEV's

- Lagrangian description makes sense only in "local coordinate patches" covering the parameter space \mathcal{M} :

These describe different local approximations of the same theory in terms of different weakly coupled physical degrees of freedom.

The perturbative physics (local QFT) may look very different in the various local patches (eg, different gauge groups, different brane configurations)

- As a general rule, there is no global description that would be valid throughout the whole parameter space; no particular theory is more fundamental than the other ones.

Quantum Properties of D-Branes

- Classical geometry ("branes wrapping p-cycles") makes sense only at weak coupling/large radius:

- Moduli (parameter) space $\mathcal{M}=\mathcal{M}(u) \quad u \sim<\operatorname{Tr} \phi^{2}>$
ϕ...complex adjoint Higgs field
Seiberg-Witten: Effective gauge coupling gets renormalized, and depends on the Higgs VEV:

$$
\tau_{e f f}(\phi)=\frac{1}{2 \pi} \theta_{e f f}(\phi)+2 \pi i \frac{1}{g_{e f f}^{2}(\phi)}
$$

- Example: "monodromy"

Looping around singularities returns "different" brane configuration

- Example: "quantum volume"

- Example: "orientifold plane"

In the quantum theory, it splits into a pair of nonperturbative D-branes; no CFT description !

Quantum Curves and Calabi-Yau Manifolds

Central Charges and Period Integrals

- S\&W: Interpretation of SYM parameter space as moduli space of an elliptic curve Σ :

The loci where massless non-perturbative states appear correspond to singular curves.

What is their meaning?

- This has a natural interpretation in string theory compactified on some Calabi-Yau manifold X (suitable field theory limit reproduces Σ).

There is a proliferation of physical degrees of freedom, obtained from wrapping strings ($p=1$), membranes $(p=2)$, general p-branes around noncontractible p-cycles of X.

At a given singularity in the parameter space $\mathcal{M}(X)$, a compactification manifold X becomes singular in that some p-dimensional "vanishing cycle γ " shrinks to zero size:

Supersymmetric ("BPS") configurations saturate the BPS bound:

$$
m^{2} \geq|Z|^{2}
$$

$$
\left\{Q_{\alpha}, Q_{\beta}\right\}=\gamma_{\phi \beta}^{\mu} p_{\mu}+\delta_{q \beta} Z
$$

- Central charges have a topological character:

$$
Z(u)=N_{A} \Pi^{A}(u)
$$

$$
\Pi^{A}(u)=\int_{\gamma_{A}} \omega(u) \ldots \text { period integrals, "quantum volumes" }
$$

$$
N_{A} \ldots \text { el, mag U(1) RR charges of D-brane }
$$

u ... modulus of CY, massless scalar VEV

- Eg., in $\operatorname{SU}(2) \mathrm{N}=2$ SUSY gauge theory, the mass of a BPS state is governed by

... if the volume of this cycle vanishes, we get an extra massless state in the theory
- Central charge (tension) of B-type brane
- Eg, brane configurations D in Type II string theories:

world volume
3+1d N=1 SUSY "brane world"

Consider here only internal, wrapped piece of D-brane

There are two kinds of supersymmetric (BPS) branes:
"A-type" branes: wrap special lagrangian cycles $\gamma_{A}^{(p=3)}$ "B-type" branes: wrap holomorphic cycles $\gamma_{A}^{(p=0,2,4,6)}$
gauge bundle data V encoded in RR charge vector:

$$
\begin{aligned}
& Q=\operatorname{tr} e^{F} \sqrt{\widehat{A}(R)} \\
& \int_{\gamma^{(2 i)}} Q=\left\{\operatorname{tr} 1 \equiv N_{6}, \operatorname{tr} F=c_{1}(V) \equiv N_{4}, N_{2}, N_{0}\right\} \\
& Z^{(B)}(t)=\int_{X} e^{J} Q+\ldots \\
& =N_{0}+N_{2} \int_{\gamma^{(2)}} J+N_{4} \int_{\gamma^{(4)}} J \wedge J+N_{6} \int_{\gamma^{(6)}} J \wedge J \wedge J+\ldots \\
& =N_{0}+N_{2} t+N_{4} t^{2}+N_{6} t^{3}+\mathcal{O}\left(e^{-t}\right) \\
& \text { Instanton corrections from world-sheets wrapping 2-cycles ! } \\
& \quad \exp \left(-S_{\text {inst }}\right)=\exp \left(-\int_{P^{1}} J\right) \equiv \exp (-t)
\end{aligned}
$$

- Fortunately, there is mirror symmetry:

| B-branes wrapped over
 holom. $(0,2,4,6)$ cycles
 of Calabi-Yau \boldsymbol{X} |
| :--- | | A-branes wrapped over |
| :--- |
| special lagrangian 3- |
| cycles of mirror CY |
| \boldsymbol{X} |

We can thus equate central charges:

$$
Z_{X ; D}^{(B)}(t)=Z_{\widehat{X} ; \widehat{D}}^{(A)}(u(t))
$$

and quantitatively study the implications of the instanton corrections

Monodromy of RR Charges

From mirror symmetry, we have for the BPS tension
$Z(u(t))=N_{A} \Pi^{A}=$
$N_{A} \int_{\gamma_{A}^{(3)}} \Omega^{(3,0)}(u(t))=N_{0}+N_{2} t+N_{4} \partial_{t} \mathcal{F}(t)+N_{6} \mathcal{F}_{0}(t)$

- Periods $\Pi_{A}=\left(\boldsymbol{X}_{a}, \mathcal{F}^{b}\right)$ are multi-valued sections

Non-trivial loops in the moduli space will thus induce monodromy
$\Pi^{A} \longrightarrow R \cdot \Pi^{A}, \quad R \in S p\left(2 h^{2,1}+2, Z\right)$
$N_{A} \longrightarrow N_{A} \cdot R^{-1}$
which for generic paths will completely mix up the RR-charges = brane wrapping numbers N_{A} !

The notion of a p-dimensional cycle, perhaps with a gauge bundle configuration V on top of it, looses its geometric meaning away from the semi-classical large radius limit!

A related phenomenon is tied to the phase of the central charge, the grading:

$$
\phi^{(D)}(u)=\frac{1}{\pi} \operatorname{Im} \ln \left(Z_{(D)}(u)\right)
$$

- For a single brane D it plays no role, but for two branes, it determines the mass and charge of an open string stretched between the branes:

$$
\begin{aligned}
& q_{A B}=\phi^{\left(D_{A}\right)}-\phi^{\left(D_{B}\right)} \quad m_{A B}^{2}=\frac{1}{2}\left(q_{A B}-1\right) \\
& \quad D_{A}|\underset{\operatorname{manm}}{ }|^{D_{B}}
\end{aligned}
$$

- Note that the open string can become tachyonic, signalling bound state formation
- These quantities depend continuously on the Kahler moduli, and it is important to follow them over the full moduli space.
- In general, there won't be a globally valid notion of what a brane and an anti-brane is!

Stability and SUSY Breaking

O In the open string sector, SUSY is typically broken
Anti-D-brane
D-brane
$\overline{\mathcal{D}}_{B}$

$$
\mathcal{D}_{A}
$$

Open string is a tachyon $\mathcal{T}_{A B}$ which implies an unstable vacuum

Problem of SUSY vacuum structure is equivalent to bound state problem for wrapped branes

- Global flow of gradings: $\quad m_{A B}^{2} \sim \operatorname{Im} \ln \left[Z_{A} / Z_{B}\right]$

$$
m_{C}<m_{A}+m_{B} \quad m_{C}=m_{A}+m_{B}
$$

Line of marginal stability:
bound state decays

SUSY broken

SUSY restored

The Derived Category

- Have seen: geometrical notions such as the dimension of a p-cycle, bundle configurations, RR charges become blurred once we leave the large radius/weak coupling limit.
... need to develop formalism capable of describing the physics of general D-brane configurations (here: topological B-type D-branes)
\Rightarrow derived category (of coherent sheaves on CY)

Quiver diagram

- more general than K-theory (RR $\mathrm{U}(1)$ charges)
- keeps track of brane locations
- treats branes and anti-branes on equal footing
- easily describes bound state formation/tachyon condensation:

If $\phi^{[q]} \in \boldsymbol{E x} \boldsymbol{t}^{q}\left(\boldsymbol{D}_{A}, \boldsymbol{D}_{B}\right)$ is tachyonic, A and B will form a bound state C (analogous for A, C and B, C)

Boundary Landau-Ginzburg Theory

Minimal models

- The caterogy-theoretical framework seems very abstract, and one may ask for what it is good for in practice ?

It turns out that a certain open string topological field theory, namely boundary LG theory, provides a very concrete physical realization of it.

- Action:

$$
S=\int_{D} d^{2} z d^{2} \theta W_{L G}(x)+\int_{\partial D} d \tau d \theta \Lambda J(x)
$$

$$
D \Lambda=E(x)
$$

- BRST operator/ supercharge: $Q=\left(\begin{array}{cc}0 & J \\ E & 0\end{array}\right)$ fermionic boundary superfield
- B-type BPS branes are characterized by

$$
W_{L G}=\frac{1}{2} Q^{2}=J E
$$

that is, by all polynomial matrix factorizations of the LG superpotential!
...may be viewed as building blocks of more complicated TFT's, like ones describing Calabi-Yau's.
Bulk (closed string) sector is described by superpotential ("level k"):

$$
W_{L G}(x)=\frac{x^{k+2}}{k+2}
$$

B-type D0-branes M_{ℓ} are described by the factorizations:

$$
J(x)=x^{\ell+1}, \quad E(x)=\frac{x^{k-\ell+1}}{k+2}, \quad \ell=-1,0, \ldots,\left[\frac{k}{2}\right]
$$

- It turns out that this LG model realizes precisely a certain Z2 graded category defined by Kontsevich

$$
\text { Objects }=\text { D0 branes } M_{\ell} \cong\left(P_{1}^{(\ell)} \underset{E^{(\ell)}}{\stackrel{J^{(\ell)}}{P}} P_{0}^{(\ell)}\right)
$$

- One can study explicitly and exactly all details of bound state formation (cone construction), and determine the effective action (in terms of deformation parameters $\mathrm{s}, \mathrm{t})$:

$$
W_{e f f}(s, t)=\oint W_{L G}(x, t) \log \operatorname{det} J(x, s)
$$

D-branes on the Elliptic Curve

- Simplest Calabi-Yau: the cubic torus
$T_{2}: \quad W_{L G} \equiv x_{1}{ }^{3}+x_{2}{ }^{3}+x_{3}{ }^{3}+a x_{1} x_{2} x_{3}=0$
B-type D-branes: $\left(N_{2}, N_{0}\right)=\left(\operatorname{rank}(V), c_{1}(V)\right)$
...are mirror to A-type D1-branes with wrapping numbers

$$
(p, q)=\left(N_{2}, N_{0}\right)
$$

- Simplest are matrix factorizations $J_{i} \boldsymbol{E}_{i}=\boldsymbol{W}_{L G}$ corresponding to branes \mathcal{L}_{i} with $(\mathrm{p}, \mathrm{q})=(-1,1),(2,1),(-1,1)$

$$
\begin{aligned}
& J_{i}=\left(\begin{array}{l}
\alpha_{1}^{(i)} x_{1} \alpha_{2}^{(i)} x_{3} \alpha_{3}^{(i)} x_{2} \\
\alpha_{3}^{(i)} x_{3} \alpha_{1}^{(i)} x_{2} \alpha_{2}^{(i)} x_{1} \\
\alpha_{2}^{(i)} x_{2} \alpha_{3}^{(i)} x_{1} \alpha_{1}^{(i)} x_{3}
\end{array}\right) \\
& \alpha_{\ell}^{(i)} \sim \Theta\left[\left.\frac{1-\ell}{3}-\frac{1}{2}-\frac{1}{2} \right\rvert\, 3 u_{i}, 3 \tau\right]
\end{aligned}
$$

u... brane locations, Wilson lines

- Solving the BRST cohomology yields the open string spectrum:

Explicit matrix representation of the morphisms, eg for the fermionic open strings:
$\Psi_{21}^{(i)}=\left(\begin{array}{cc}0 & F_{21}^{(i)} \\ G_{21}^{(i)} & 0\end{array}\right), i=1,2,3$.
with

$$
\begin{aligned}
F_{21}^{(1)} & =\left(\begin{array}{ccc}
\zeta_{1} & 0 & 0 \\
0 & 0 & \zeta_{2} \\
0 & \zeta_{3} & 0
\end{array}\right) \\
G_{21}^{(1)} & =-\left(\begin{array}{l}
\frac{\zeta_{1}}{\alpha_{1}^{(1)} \alpha_{1}^{(2)}} x_{1} \frac{\zeta_{3}}{\alpha_{1}^{(1)} \alpha_{2}^{(2)}} x_{2} \frac{\zeta_{2}}{\alpha_{1}^{(1)} \alpha_{3}^{(2)}} x_{3} \\
\frac{\zeta_{1}^{(2)}}{\alpha_{1}^{(2)} \alpha_{3}^{(1)}} x_{2} \frac{\zeta_{1}}{\alpha_{2}^{(2)} \alpha_{3}^{(1)}} x_{3} \zeta_{3}^{(1)} \zeta_{3}^{(1)} \alpha_{3}^{(2)} x_{1} \\
\frac{\zeta_{3}}{\alpha_{1}^{(2)} \alpha_{2}^{(1)}} x_{3} \frac{\zeta_{2}}{\alpha_{2}^{(1)} \alpha_{2}^{(2)}} x_{1} \frac{\zeta_{1}}{\alpha_{2}^{(1)} \alpha_{3}^{(2)}} x_{2}
\end{array}\right) \\
\zeta_{\ell} & \sim \Theta\left[\left.\frac{1-\ell}{3}-\frac{1}{2}-\frac{1}{2} \right\rvert\, 3 u_{2}-3 u_{1}, 3 \tau\right]
\end{aligned}
$$

- compute disk correlation functions:

= Yukawa couplings on intersecting branes

$$
\begin{aligned}
C_{i j k} & =\left\langle\Psi_{13}^{(i)} \Psi_{32}^{(j)} \Psi_{21}^{(k)}\right\rangle \\
& =\frac{1}{2 \pi i} \oint \operatorname{Str}\left[\frac{\partial_{1} Q \wedge \partial_{2} Q \wedge \partial_{3} Q}{\partial_{1} W \partial_{2} W \partial_{3} W} \Psi_{13}^{(i)} \Psi_{32}^{(j)} \Psi_{21}^{(k)}\right]
\end{aligned}
$$

Result:

$$
\begin{aligned}
& C_{111}(\tau, \xi)=e^{6 \pi i \xi_{1} \xi_{2}} q^{3 \xi_{2}^{2} / 2} \sum_{m} q^{3 m^{2} / 2} e^{6 \pi i m \xi} \\
& C_{123}(\tau, \xi)=e^{6 \pi i \xi_{1} \xi_{2}} q^{3 \xi_{2}^{2} / 2} \sum_{m}^{m(m+1 / 3)^{2} / 2} e^{6 \pi i(m+1 / 3) \xi} \\
& C_{132}(\tau, \xi)=e^{6 \pi i \xi_{1} \xi_{2}} q^{3 \xi_{2}^{2} / 2} \sum_{m}^{m} q^{3(m-1 / 3)^{2} / 2} e^{6 \pi i(m-1 / 3) \xi} \\
& \left(\xi \equiv u_{1}+u_{2}+u_{3}\right)
\end{aligned}
$$

Interpretation:

In A model mirror language, these are contributions from disk instantons whose world-sheets are bounded by the three D-branes. $\quad q \sim \exp \left(-S_{i n s t}\right) \sim \exp (-A r e a)$

Works analogously for Calabi-Yau threefolds!

