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1 Introduction

The last year has seen a remarkable progress in understanding non-perturbative proper-
ties of supersymmetric field and string theories. This quite dramatic development was
initiated by the work of Seiberg and Witten on supersymmetric Yang-Mills theory [1],
and by Hull and Townsend on heterotic-type Il string equivalence [2], after interest in
non-perturbative duality has been revived by the work of Sen [3]. Now, one year later,
many non-perturbatively exact statements can be made about various N =2 supersym-
metric Yang-Mills theories with and without matter [4, 5], and similar exact statements
about N =2 string theories [6] that include gravity [7]; not even to speak about N =4

string theories.

It is becoming evident that the main insight is of conceptional nature and goes far
beyond original expectations. The picture that seems to emerge is, essentially, that the
various perturbatively defined string theories represent non-perturbatively equivalent, or
dual, descriptions of one and the same fundamental theory; moreover, it seems that
strings do not play a privileged role in this theory besides p-branes, which now appear
on a footing quite similar to strings [8, 9]. It may well turn out, ultimately, that there
is just one theory that is fully consistent at the non-perturbative level, or a very small
number of such theories. Though the number of free parameters (“moduli”) may a priori
be very large —which would hamper predictive power—, it is clear that investigating this
kind of issues is important and will shape our understanding of the very nature of grand

unification.

Because a full treatment of these matters is outside the scope of these lecture notes, but
some of the relevant concepts play a role already in supersymmetric Yang-Mills theory, we
like to confine ourselves to a very basic discussion of the work of Seiberg and Witten, and
some generalizations of it. Specifically, since a detailed review that emphasizes monopole
physics and duality symmetries has appeared recently [10], we intend to present the
subject here, in a complementary way, from the view point of analytic continuation and

the underlying Riemann-Hilbert problem.

So, in a nutshell, what is all the excitement about that has made furor even in the mass
media 7 As one of the main results one may state the exact non-perturbative low energy
effective Lagrangian of N =2 supersymmetric Yang-Mills theory with gauge group SU(2);

it contains, in particular, the effective, renormalized gauge coupling, g, and theta-angle,
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Here, A is the scale at which the gauge coupling becomes strong, and « is the Higgs



field. This effective, field dependent coupling arises by setting the renormalization scale,
i, equal to the characteristic scale of the theory, which is given by the Higgs VEV:
gefi(ft) — gemi(a). Specifically, the running of the perturbative coupling constant can be
depicted as follows:

B<0

A a 1

Figure 1: At scales above the Higgs VEV a, the masses of the non-abelian gauge bosons,
W#*, are negligible, and we can see the ordinary running of the coupling constant of an
asymptotically free theory. At scales below a, W¥ freeze out, and we are left with just
an effective U(1) gauge theory with vanishing ($-function.

The general form of the full non-perturbatively corrected coupling (1.1) has been
known for some time [11], where one has made use of the fact that all what can come
from perturbation theory arises to one loop order only [12], and of the known amount of
R-charge violation (given by 8/) of the (-instanton process. The unknown piece of (1.1) are
the precise values of the infinitely many instanton coefficients ¢;, and it is the achievement
of Seiberg and Witten to determine all of these coefficients explicitly. This gives infinitely
many predictions for zero momentum correlators involving ¢ and gauginos in non-trivial
instanton backgrounds. Such correlators are topological and also have an interpretation
in terms of Donaldson theory, which deals with topological invariants of four-manifolds. It
is the easy determination of such topological quantities that has been the main reason for
excitement on the mathematician’s side. The fact that highly non-trivial mathematical
results can be reproduced gives strong evidence that S&W’s approach for solving the Yang-
Mills theory is indeed correct, even though many details, like a rigorous field theoretic

definition of the theory, may not yet be completely settled.

It is, however, presently not clear what lessons can ultimately be drawn for non-
supersymmetric theories, like ordinary QCD. The hope is, of course, that even though
supersymmetry is an essential ingredient, it is only a technical requirement that facili-
tates computations, and thus that the supersymmetric toy model displays the physically

relevant features.

Let us thus list some typical benefits of supersymmetric field theories:



e Non-renormalization properties: perturbative quantum corrections are less violent; this

is related to a

e Holomorphic structure, which leads to vacuum degeneracies, and allows to use powerful

methods of complex analysis.

o Duality symmetries between electric and magnetic, or weak and strong coupling sectors

are more or less manifest, depending on the number of supersymmetries.
The maximum number of supersymmetries is four in a globally supersymmetric theory:

e N=/ supersymmetric Yang-Mills theory is conjectured to be self-dual [13], ie., completely
invariant under the exchange of electric and magnetic sectors. However, though interest-
ing, this theory is too simple for the present purpose of investigating quantum corrections,

since there aren’t any in this theory.

o N=1 supersymmetric Yang-Mills theory, on the other hand, is presumably not exactly
solvable, since the quantum corrections are not under full control; only certain sub-sectors
of the theory are governed by holomorphic objects (like the chiral superpotential), and

thus are protected from perturbative quantum corrections.

o N=2 supersymmetric Yang-Mills theory is at the border between "trivial” and "not fully
solvable”, in that it is (in the low-energy limit) exactly solvable. It is governed by a holo-
morphic function, the “prepotential” F, for which the perturbative quantum corrections

are under control, ie., occur just to one loop order.

Having motivated why it should be fruitful to study N =2 Yang-Mills theory, we now

turn to discuss it in more detail.

2 Semi-classical N=2 Yang-Mills theory for G = SU(2)

The field content for pure N =2 Yang-Mills theory is given by vector supermultiplets in

the adjoint representation of the gauge group. For convenience, one often rewrites such



multiplets in terms of N =1 chiral multiplets, W, & as follows:
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The bottom component, the scalar field ¢, feels the following potential:
1
Vig) = 7 Te[o, 6" . (2.1)

It displays a typical feature of supersymmetric theories, namely flat directions along which
V(¢) = 0. That is, field values
¢ = aos (2.2)

do not cost any energy. Of course, if a # 0, we have a spontaneous symmetry breakdown:
SU(2) — U(1). A more suitable “order” parameter is given by the gauge invariant
Casimir

u(a) = Tré* = 24 . (2.3)
It is in particular invariant under the Weyl group of SU(2), which is, physically, the
discrete remnant of the gauge transformations that act within the Cartan subalgebra:
a — —a. The quantity u represents a good coordinate of the manifold of inequivalent
vacua, which is usually called “moduli space”. Since u can be any complex number, the
moduli space is given by the complex plane, which may be compactified to the Riemann

sphere by adding a point at infinity. The moduli space, M., of the classical theory is
depicted in Fig.2.

U= 00
semi — classical region

u:()‘

strong coupling region

Me

Figure 2: The classical moduli space of SU(2) N =2 gauge theory has singularities at
u =10 and co.

In the bulk of M. there is just an unbroken U(1) gauge symmetry, only at the origin
it will be enhanced to SU(2). What we are after is a “Wilsonian” effective lagrangian
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description of the theory, for any given value of u. Such an effective lagrangian can in
principle be obtained by integrating out all fluctuations above some scale p (that, as we
have indicated earlier, we choose to be equal to «). In particular, we would integrate out
the massive non-abelian gauge bosons W=, to obtain an effective action that involves only
the neutral gauge multiplet, W° = (A = ®° WY). It is clear that, semi-classically, this
theory can possibly be meaningful only outside a neighborhood of u = 0, since at © = 0
the non-abelian gauge bosons W¥ will be massless, and the effective description in terms
of only W° will not be accurate — actually, it will become non-local. This means that

u = 0 will be a singular point on M., besides the point of infinity.

Note that it is clear from Fig.1 that because of asymptotic freedom, the region near
u = oo will correspond to weak coupling, so that only in this semi-classical region reliable
computations can be done in perturbation theory. On the other hand, the theory will be
strongly coupled near the classical SU(2)-enhancement point u = 0, so that a priori no

reliable quantum statements about the theory can be made here.

It is known (just from supersymmetry) that the low energy effective lagrangian® is

completely determined by a holomorphic prepotential F and must be of the form:

L= ilm[/d“@ K(A,A) + /dzé(%ZT(A)WaWa)} . (2.4)
Here, ® =: Aos, and
KA = 224 (2.5)

is the “Kahler potential” which gives a supersymmetric non-linear o-model for the field

A, and

() = 2 (26)
That is, the bosonic piece of (2.4) is, schematically,
£ = Imr{0ada+F F}+Rer F-F + ..., (2.7)
from which we see that R
o) = "2 (2.8)

represents the complexified effective gauge coupling and that Im7 is the o-model metric on

M.. Classically, F(A) = %TOAQ, where 7g is the bare coupling constant. The full quantum

1By this we mean the piece of the effective lagrangian that is leading for vanishing momenta, ie., that
contains at most two derivatives. There are of course infinitely many higher derivative terms in the full
effective action; these are not governed by holomorphic quantities, and we cannot say anything about
them in the present context.



prepotential will receive [12] perturbative (one-loop) and non-perturbative corrections,
and must be of the form [11]:

(2.9)

By taking two derivatives, F gives rise to the effective coupling (1.1) mentioned in the
introduction. Note that indeed for large @ = Alj—¢, the instanton sum converges well,

and the theory is dominated by semi-classical, one-loop physics.

A crucial insight [1] is that the global properties of the effective gauge coupling 7(a)

are very important. Specifically, we know that near v = co:
0
T = const + il log {i} + single-valued . (2.10)
s A?

This implies that if we loop around u = oo in the moduli space, the logarithm will produce

an extra shift of 27¢ because of its branch cut, and thus:
T — T—4. (2.11)

From (2.8) it is clear that this monodromy just corresponds to an irrelevant shift of the
f-angle, but what we learn is that 7, as well as F, are not functions but rather multi-
valued sections. Actually, the full story is more complicated than that, in that also the

imaginary part, Imr = f]—g, will be globally non-trivial.

More specifically, we see from (2.7) that Im7 represents a metric on the moduli space,
and the physics requirement of unitarity implies that it must be positive throughout the
moduli space:

Im7(u) > 0. (2.12)

It is now a simple mathematical fact that since Imr is a harmonic function (ie., d9Imr =
0), it cannot have a minimum if it is globally defined. Thus, in order not to conflict with
unitarity, we learn that Im7 can only locally be defined — a priori, it is defined only in the
semi-classical coordinate patch near infinity, cf., (2.10). We thus conclude that the global
structure of the true "quantum” moduli space, M,, must be very different as compared
to the classical moduli space, M.. In particular, any situation with just two singularities
must be excluded.

3 The exact quantum moduli space

The question thus arises, how many and what kind of singularities the exact quantum

moduli space should have, and what the physics significance of these singularities might



be. Seiberg and Witten proposed that there should be two singularities at u = £AZ
where A is the dynamically generated quantum scale, and that the classical singularity at

the origin disappears:

<

M. M,

Figure 3: The transition from the classical to the exact quantum theory involves splitting

and shifting of the strong coupling singularity away from u = 0 to u = £A?.

Though this will prove to be a physically motivated and self-consistent assumption
about the strong coupling behavior, it cannot, at present, be rigorously derived from
first principles. But there is a whole bunch of arguments, with varying degree of rigor,
why precisely the situation depicted in Fig.3. must be the correct one. For example, the
absence of a singularity at « = 0 (which implies that there are, in the full quantum theory,
no extra massless gauge fields W¥) is motivated by the absence of an R-current that a
superconformal theory with massless gauge bosons would otherwise have [1]. Furthermore,
the appearance of just two, and not 2n? strong coupling singularities reflects that the
corresponding N =1 theory (obtained by explicitly breaking the N =2 theory by a
mass term for @) has precisely two vacua (from Witten’s index, Tr(—1)!" = n for SU(n)).
More mathematically speaking, the singularity structure poses, as will be explained later,
a particular non-abelian monodromy problem, and apparently there is no solution for this

problem for any other arrangement of singularities.

The most interesting question is clearly what the physical significance of the extra
strong coupling singularities is. One expects in analogy to the classical theory, where at
u = 0 the singularity is due to the extra massless gauge bosons W¥, that the strong cou-
pling singularities in the quantum moduli space should be attributed to certain massless
excitations as well. Guided by the early ideas of 't Hooft about confinement [14], Seiberg
and Witten postulated that near these singularities certain 't Hooft-Polyakov monopoles

must become light.

There is in fact a powerful tool to get a handle on soliton masses in theories with

extended supersymmetry, namely the BPS-formula [15]:

m? > |Z|*, (3.1)

?The number of singularities must be even to be consistent with global R-symmetry, which acts as
u— —u.



where Z is the central charge of the superalgebra in question. For N =2 supersymmetry,

this formula immediately follows from unitarity (Q ) > 0), and from the anti-commutator

{QuirQp;} = 8ijvhsPu + dapeiiU + (5 )apeisV (3.2)

where |Z|? = U*4 V2. The important point is that the BPS bound (3.1) is saturated by a
certain class of excitations, namely the “BPS-states” that obey Q|¢) = 0. The idea is that
if a state obeys this condition semi-classically, it obeys it also in the exact quantum theory,
because the number of degrees of freedom of a “short” (or “chiral”) multiplet that obeys
@|Y) = 0 is smaller as compared to the degrees of freedom of a generic supersymmetry
multiplet, and the number of degrees of freedom is supposed not to jump when switching
on quantum corrections. In particular, since 't Hooft-Polyakov monopoles do satisfy the
BPS bound semi-classically, they must obey it in the exact theory as well. From semi-
classical considerations we can also learn that the monopoles lie in N =2 hypermultiplets,

which have maximum spin %

For N=2 supersymmetric Yang-Mills theories, the central charge takes the form
/Z = qa+gap, (3.3)

where (g, ¢) are the (magnetic,electric) quantum numbers of the BPS state under consid-
eration. Above, ap is the "magnetic dual” of the electric Higgs field a and belongs to the
vector multiplet (Ap, W, p) that contains the dual, magnetic photon, A%,. By studying
the electric-magnetic duality transformation, under which the ordinary electric gauge po-
tential A* transforms into A%, it turns out [1] that in the N =2 Yang-Mills theory the
dual variable ap is simply given by:
0

ap — %.7:(@) . (34)
That is, the general idea is that at the singularity at « = A?, one would have a # 0 but
ap = 0, such that (by (3.3)) a monopole hypermultiplet with charges (¢,q) = (£1,0)
would be massless. On the other hand, one would have that v = 0 does not imply
a = 0 in the exact theory, such that, in contrast to the classical theory, no gauge bosons
(with charges (0, £2)) become massless. This in particular would imply that the classical

relation u = 2a? can hold only asymptotically in the weak-coupling region.

The point is to view ap(u) as a variable that is on a equal footing as a(u); it just belongs
to a dual gauge multiplet that couples locally to magnetically charged excitations, in the
same way that a couples locally to electric excitations (such as W#). A priori, it would
not matter which variable we use to describe the theory, and which variable we actually
use will rather depend on the region of M, that we are looking at. More specifically, in

the original semi-classical, “electric” region near u = oo, the preferred local variable is a,



and an appropriate lagrangian is given by (2.9). As mentioned above, the instanton sum

converges well for large a ~ /u/2.

However, if we try to extend F(a) to a region far enough away from u = oo, we will
leave the domain of convergence of the instanton sum, and we cannot really make any
more much sense of F. That is, in attempting to globally extend the effective lagrangian
description outside the semi-classical coordinate patch, we face the problem of suitably
analytically continuing F. The point is that even though we cannot have a choice of
F that would be globally valid anywhere on M, (it would conflict with positivity, cf.,
(2.12)), we can resum the instanton terms in F in terms of other variables, to yield another
form of the lagrangian that converges well in another region of M,. The reader might
already have guessed that while a is the preferred variable near u = oo, it is ap that
is the preferred variable in the “magnetic” strong coupling coordinate patch centered at
u = A% More precisely, near u = A? we expect to have the following, dual form of the

effective lagrangian:

Ly, 9 Ap I oS prtApyt
fD(AD) == 57’0 AD — EAD log {T} — —A ZZ:;CZ (T) . (35)
Indeed, the infinite sum converges well because at this singularity ap — 0. From the
coefficient of the logarithm we see that the theory is non-asymptotically free (positive
f-function), and thus weakly coupled for ap — 0 (though strongly coupled in terms of

the original variable, a).

Specifically, the coefficient of the logarithm tells us that this dual theory is simply
given by an abelian U(1) gauge theory (contributing zero to the S-function), coupled to
charged matter that is integrated out and is massless at ap = 0. The coefficient of the 3-
function reflects that there should be a single matter field with unit charge coupling to the
(dual) photon, which belongs to a N =2 hypermultiplet (contributing positively to the 3-
function). Of course this extra matter hypermultiplet is just the dual representative of the
massless magnetic monopole. To the dual magnetic photon related to ap, the monopole
looks like an ordinary, elementary (local) field, in spite of that it couples to the original
electric photon in a non-local way. It is this dual, abelian reformulation of the original
non-abelian instanton problem what leads to substantial simplifications, especially to the

mathematician’s profit.

Note that the infinite sum of correction terms in (3.5) reflects the effect of integrat-
ing out infinitely many massive BPS states, and though their physical meaning is com-
pletely different, they carry the same information as the instanton terms in the original
lagrangian, (2.9). Note also that the situation at the other singularity, v = —A?, does not
present anything new, in that it is isomorphic to the the situation at v = A? and related
to it by simply replacing ap in Fp(ap) by ap — 2a. The whole scheme can therefore be
depicted as follows:



Fp= Fp(ap = ap — 2a) F(a) = Elog [X—;} + a - ZC((%)“

ap? a P iap.e
M, fD(aD):ﬁlog[TD}* jgcf)(TD)

Figure 4: The exact moduli space is covered by three distinct regions, in the center
of each of which the theory is weakly coupled when choosing suitable local variables.
A local effective lagrangian exists in each coordinate patch, representing a particular
perturbative approximation. No local lagrangian exists that would be globally valid: the

three perturbative regions involve quantities that are mutually non-local.

The astute reader will, however, have noticed that so far nothing concrete was achieved
yet — instead, we have introduced a another set of infinitely many unknowns, ¢, and also
that we have just guessed the coefficient of the logarithm in (3.5). Indeed, this specific
coefficient cannot be derived at this point, but rather is part of the assumption that a

single monopole with unit charge becomes massless at u = AZ?.

The issue is now to obtain the values of all the unknown coefficients in F, Fp (2.9),(3.5)
from the assumptions that govern the local, ie., perturbative behavior of the theory in
each of the three coordinate patches in Fig.4. The local behavior is determined by the
coefficients of the logarithms, which can reliably be computed in one-loop perturbation
theory and obviously reflect the charge quantum numbers of the fields that are supposed

to be light near a given singularity.

More precisely, the key idea is that it is the patching together of the local data in a
globally consistent way that will completely fix the theory (up to irrelevant ambiguities
like #-shifts). That is, the logarithmic term determines the local monodromy around a

given singularity that acts on the section (“?) as follows:
ap(u) ap(u)
M . 3.6
(a(u)) — (a(u)) (3.6)

In particular, from our knowledge of the asymptotic behavior of ap(u),a(u) at semi-

classical infinity,

(aD(u)) ~ (%\/ﬁlog(u//\z))) (3.7)

a(u) V2u

we infer that for a loop around u = oo:

M, = (_01 _41) : (3.8)



As for the strong coupling singularities at « = &A? we choose a different strategy: we
know on general grounds that the monodromy of a dyon with charges (g, q) that becomes

massless at a given singularity is given by:

l+q9 ¢
M) — ( 21 (3.9)

This can be seen in various ways, one of which will be explained later at the end of section

4.

The global consistency condition on how to patch together the local, perturbative data
is then simply
Mipz - M_p2 = M, (3.10)

since we can smoothly pull the monodromy paths v around the Riemann sphere (ug is an

arbitrary base point):

Voo

<

SR —
° 'Y+A’C7. Ug
A2 +A2

Figure 5: Monodromy paths in the u-plane.

One may view equation (3.10) as a condition on the possible massless spectra at

u = + A% For matrices of the restricted form (3.9), its solution is:

My = M®O
M_p. = M®G=2 (3.11)

which is unique up to irrelevant conjugacy. From this we can read off the allowed (mag-
netic, electric) quantum numbers of the massless monopoles/dyons. They indeed give
back the coefficient of the logarithmic term of Fp that we had anticipated in eq. (3.5).

If we would consider a situation with more than two strong coupling singularities, we
would have to solve an equation like (3.10) with the corresponding product of matrices.
However, a cursory investigation indicates that such equations for more than three ma-
trices do not have any solution; this can probably be made rigorous, by taking the special

(parabolic) form (3.9) of the matrices into account.
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4 Solving the monodromy problem

The physics problem has now become a mathematical one, namely simply to find multi-
valued functions a(u),ap(u) that display the required monodromies Myy2 ., around the
singularities (and that lead to a coupling 7 = 0d,ap with Im7 > 0). This is a classical
mathematical problem, the “Riemann Hilbert” problem, which is known to have a unique?

solution.

The RH problem can be accessed from two complementary point of views: either by
considering @, ap as solutions of a differential equation with regular singular points, or
from considering a, ap as certain “period” integrals. The latter approach, to be discussed
momentarily, allows an easy implementation of the right monodromy properties, while
the differential equation approach, to be considered later, is more useful for obtaining

explicit expressions.

Any two of the monodromy matrices Myy2 ., generate the monodromy group L'y,
which constitutes the subgroup I'g(4) of the modular group SL(2,7) and consists of

matrices of the form
['o(4) = { (Z Z) € SL(2,7Z), b =0 mod 4} : (4.1)

This group represents the quantum symmetries of the theory. In particular, we see that
S = (_01 10) (which acts as 7 — —%) is not part of I'ys, and this means that the theory
is not self-dual (in contrast to N=4 Yang-Mills theory); however, other transformations

do exist that relate weak and strong coupling sectors.

The quantum moduli space can therefore be viewed as
M, = HT [To(4) | (4.2)

where H™ is the upper half-plane. Now, motivated by the appearance of a subgroup of the
modular group (which is the group of the discontinuous reparametrizations of a torus),
the basic idea is that the monodromy problem can be formulated in terms of a toroidal
Riemann surface, whose moduli space is precisely M, [1]. Such an elliptic curve indeed

exists and can be algebraically characterized by:

v (r,u) = (2 —u)®—A* (4.3)

: [I(= = eiu, A)) - (4.4)

=1

3Unique up to multiplication of (af ) (u) by an entire function; this can however be fixed by considering
the asymptotic behavior.
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The point is to interpret the gauge coupling 7(a) as the period “matrix” of this torus, and
this has the added bonus that manifestly Im7 > 0, by virtue of a mathematical theorem

called “Riemann’s second relation”. As such 7 is defined by a ratio of period integrals:

@p(u)
= 4.
o) = 22 (4.5
where
wplu) = ?{w ) w(u) = ?{ w (4.6)
B o
with w = y(i—l’u). Here, o, B are the canonical basis homology cycles of the torus, as shown
as follows:

Figure 6: Basis of one-cycles on the torus.

From the relation 7 = d,ap we thus infer that

dap(u)
ou

w(u) = v (4.7)

@wp(u) =

That is, the yet unknown functions ap(u),a(u), and consequently the prepotential F =
[, ap(a), are supposed to be obtained by integrations of torus periods. Note that (4.7)

implies that we can also write

ap(u) = ?ix, a(u) = ?ix, (4.8)

where J
A= 22— (4.9)
y(z,u)

(up to normalization and total derivatives) is a particular meromorphic one-form.

What needs to be shown is that the periods, derived from the specific choice of elliptic
curve given in (4.4), indeed enjoy the correct monodromy properties. The periods (4.6)
and (4.8) are actually largely fixed by their monodromy properties around the singularities
of M, and obviously just reflect the monodromy properties of the basis homology cycles,
a and (. It therefore suffices to study how the basis cycles a, 3 of the torus transform

when we loop around a given singularity.

For this, we represent the above torus in a convenient way that is well-known in

the mathematical literature: we will represent it in terms of a two-sheeted cover of the

13



branched z-plane. More precisely, denoting the four zeroes of y*(x,u) = 0 by

er. = —Vu-+A?, es = —Vu— A? (4.10)
es = Vu-—A?, s = Vu+A?, (4.11)
(4.12)

we can specify the torus in the following way:

B

RAWMNANANANG
el (D)

RNV
es €4

Figure 7: Representation of the auxiliary elliptic curve in terms of a two-sheeted covering
of the branched x-plane. The two sheets are meant to be glued together along the cuts
that run between the branch points e;(u). Shown is our choice of homology basis, given

by the cycles o, 3. This picture corresponds to the choice of the basepoint ug > A? real.

The singularities in the quantum moduli space arise when the torus degenerates, and
this obviously happens when any two of the zeros e; coincide. This can be expressed as

the vanishing of the “discriminant”

4
Ar = JJ(ei —€)® = (20)°%(uw® — AY) . (4.13)
i<
The zeroes of A, describe the following degenerations of the elliptic curve:
iy) u — +A? for which (e; — €3), i.e., the cycle vy 2 = 3 degenerates,
i_) u — —A?, for which (e; — €4), i.e., the cycle v_,: = 8 — 2 degenerates,

1) A*/u — 0, for which (e; — e3) and (e3 — e4).

Is is now easy to see that a loop v4,2 around the singularity at u = A? makes e; and
es rotate around each other, so that the cycle a gets transformed into o — 3, as can be

seen from Fig.8. This means that on the basis vector (5), the monodromy action looks

1
(_1 (1)) = MU = M, . (4.14)
Similarly, from Fig.8 one can see that the monodromy around u = —A? is given by
-1 4
( | 3) = MO = M_, . (4.15)
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Figure 8: Vanishing cycles on the torus that shrink to zero as one moves towards a

degeneration point.

To obtain the monodromy around A%/u — 0, one can compactify the u—plane to P', as we
did before, and get the monodromy at infinity from the global relation M., = M 2 M_ 42
(cf., Fig.5.).

We thus have reproduced the monodromy matrices associated with the exact quantum
moduli space directly from the the elliptic curve (4.4), and what this means is that the
integrated torus periods ap(u), a(u) defined by (4.7) must indeed have the requisite mon-
odromy properties. However, before we are going to explicitly determine these functions
in the next section, let us say some more words on the general logic of what we have just

been doing.

We have seen in Fig.8 that when we loop around a singularity in M,, the branch
points e;(u) exchange along certain paths, v, which shrink to zero as ¢; — €;. Such paths
are called “vanishing cycles” and play, in a quite general context, an important role for the
properties of BPS states. Indeed many features of a BPS spectrum can directly be studied
in terms of the singular homology of an auxiliary Riemann surface (or more generally, a
K5 surface or a Calabi-Yau threefold, depending on the specific physical model under

consideration).

More concretely, assume that a path vanishes at a given singularity that has the

following expansion in terms of given basis cycles:
v = gB+qa. (4.16)

Then obviously, assuming that A does not blow up, we have
0:?{)\:9?{)\—|—q?{)\:gap—l—anZ, (4.17)
v 5] o
so that we have at the given singularity a massless BPS state with (magnetic,electric)

charges equal to (g, ¢). That is, we can simply read off the quantum numbers of massless

states from the coordinates of the vanishing cycle! Obviously, under a change of homology
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basis, the charges change as well, but this is nothing but a duality rotation. What remains

invariant is the intersection number
viov; = V- Qv =64 —gi¢ € X, (4.18)

where o is the intersection product of one-cycles and € is the symplectic (skew-symmetric)
intersection metric for the basis cycles. Note that this represents the well-known Dirac-
Zwanziger quantization condition for the possible electric and magnetic charges, and we
see that it satisfied by construction. The vanishing of the r.h.s. of (4.18) is required for
two states to be local with respect to each other [14, 16]. This means that only states that
are related to non-intersecting vanishing cycles are mutually local. In our example, the
monopole with charges (1, 0), the dyon with charges (1, —2) and the (massive) gauge boson
W with charges (0,2) are all mutually non-local, and thus cannot be simultaneously

represented in a local effective lagrangian.

Furthermore, there is a closed formula for the monodromy around a given singularity
associated with a vanishing cycle v: the monodromy action on any given cycle, v &€
Hi(X,7), is directly determined in terms of this vanishing cycle by means of the “Picard-
Lefshetz” formula [17]:

M,: v — v—(yov)v. (4.19)
This implies that for a vanishing cycle of the form (4.16), the monodromy matrix is

precisely as given in (3.9), as promised.

5 Picard-Fuchs equations

In order to obtain the effective action explicitly, one needs to evaluate the period integrals
(4.6). However, instead of directly computing the integrals, one may use the fact that the
periods form a system of solutions of the Picard-Fuchs equation associated with the curve
(4.4). One then has to evaluate the integrals only in leading order, just to determine the

correct linear combinations of the solutions.

Concretely, in order to derive the PF equations, let us first write the defining relation

of the curve (4.4) in a homogenous form:
Wi(z,y,z,u) = (2 —uz?)? -2 —y*> = 0, (5.1)

where we have set A = 1. We also introduce the following integrals over certain globally

defined one-forms:

1
1'222
QQ = g W2 dw, (53)
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where 7 is a one-cycle that winds around the surface W = 0, and dw is a volume form.

Then one easily finds:

0 B 222 (2% — u 2?)

u z
_ d .
u2—1 ?{2 W (5.5)

where we have used in the second line the following expansion into “ring elements and

vanishing relations”:

20,2 2y — 2,2~
2z%(a" —uz®) = (uz—l)x z 2(u2_1)282W. (5.6)

Integrating by parts we can cancel W in the second term to get

0 2 u
0 = -——- -+
! 22w —1)

du (u?2 — 1) - (5.1

We can repeat a similar game for ()3, and obtain, after multiple partial integrations and

expansions similar to (5.6), the following differential identity:

0 0. W
a—uﬂg = ?gxfl e dw
- o+ 0. (5.8)

8(u? —1) 2(u? — 1)

We now can eliminate Q5 from (5.5) and (5.8) to obtain a differential equation for the

fundamental period: £0; = 0, with £ = (A* — v*)9? — 2ud, — . This Picard-Fuchs

1
equation is supposed to be satisfied by all the periods, in particular by (wp(u),w(u)) =

2

(Ouap, dya). In terms of the variable a = u? overA?, the PF differential operator turns

into (0, = ad,)

£=0.(0,— %) a0, + i)? , (5.9)

which constitutes the hypergeometric system F(%,1:1:q).

L1
PR

[N

It is also possible to derive a second order differential equation for the section (ap,a)
directly. In fact, one easily verifies that £d, = 9,L with

L£L=0,0,—=)—a(f, — 1)2 : (5.10)

and this forms the hypergeometric system F(—
that £-§ X =0.

«). One may also verify directly

nO =

1 _ 1
47 47

The solutions of £ (ap(u),a(u)) = 0 in terms of hypergeometric functions, and their

analytic continuation over the complex plane, are of course well known. For |u| > |A] a
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system of solutions to the Picard-Fuchs equations is given by wg and w, with

A (Dn(=5)n

anlu) = G e, ety = R (.11
wn ) = wo(u)log( ) 4 Y0 () () (5.12)
where
1 1 1 1
dn) = elm)(2((0) — ¥ln + 1))+ 000+ 1)~y - —w-hy 5ag)

and where (a),, = ['(a + m)/I'(a) is the Pochhammer symbol. Matching the asymptotic

expansions of the period integrals one finds
A A
() = Zswolu),  an(u) =~

which transform under counter-clockwise continuation of v along v.. (c.f., Fig.5) precisely

(w1(u) + (4 — 6log(2))wo(u)), (5.14)

as in (3.8). These expansions correspond to particular linear combinations of hypergeo-

metric functions, the most concise form of which are

33

i
ap(a) = ZA(a—l)gFl(Z,Z,Z;l ~a) (5.15)
1 13 1
G(Oz) = 1_|_ZA(1_Q)1/42F1(_Z’Z’l’m) . (516)

From these expressions, the prepotential in the semi-classical regime near infinity in

the moduli space can readily be computed to any given order. Inverting a(u) as series for

large a/A yields for the first few terms ula) _ 9 (%)2 + L (A)z + ﬁ (A)Ei + O((%)m)-

A2 T 16 \a a
After inserting this into ap(u), one obtains F by integration w.r.t. a as follows:

Z'a2 CL2 0 A 40
= —|2log — — log 2 — — . A
Fla) 5 ( 08 13 6 + 8log ZZ:;Q(CL) ) (5.17)
It has indeed the form advertised in (2.9). Specifically, the first few terms of the instanton
expansion are:

1 2 3 1 5 6 7 3
53 1469 4471 40397 441325 866589165
95 gu o8 sl 9at.p 913 ity 261

One can treat the dual magnetic semi-classical regime is an analogous way. Near the
point u = A? where the monopole becomes massless, we introduce z = (u — A?)/(2A?)

and rewrite the Picard-Fuchs operator as

L= =0, — %)2 +0.(0. — 1) (5.18)
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At z =0, the indices are 0 and 1, and we have again one power series

wolz) = N em ¥, eln) = (1) (5.19)
and a logarithmic solution
wi(z) = wo(z)log(z) +>_d(n)z"t" — 4, (5.20)
with
dn) = e(n) (20 + )~ (D) + U0~ b(n+ 1) +0(2) v +2) . (521)

For small z one can easily evaluate the lowest order expansion for the integrals (5.16) and
thereby determine the analytic continuation of the solutions from the weak coupling to

the strong coupling domain:

ap = 2/:3)\ — Az 4...) = iAw() (5.22)
a = 2 :2 A= %(4 + 2(1 +4log(2)) — zlog(z) +...) (5.23)
= (2~ (L + log(2)wo2)). (5.24)

This exhibits the monodromy of (4.14) along the path ~v,,2. Inverting ap(z) yields
z(ap) = —2ap + 1a}, + 5ap + O(ap), with ap = iap/A.  After inserting this into

a(z) we integrate w.r.t. ap and obtain the dual prepotential Fp as follows:

Fplap) = g ( log [ Vap| + ch aD) (5.25)

where the lowest threshold correction coefficients 2 are

1 2 3 4 5 6 7 8

D 3 1 5 11 63 527 3129
c 4 - = = —  —

¢ 4 94 29 912 916 218 . 5 924

They reflect properties of the massive BPS spectrum near v = AZ.

6 Generalization to SU(n): classical theory

The above construction can be generalized to include extra matter fields [1], and also to

other gauge groups [4, 5]; an approach via integrable systems was presented in [19, 18].
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We will here just outline some of the group theoretical aspects for G = SU(n), and
present the discussion in a particular way that follows [20]: namely by starting with the
classical theory. Indeed many interesting features appear in a simplified fashion already at
the classical level, and some of these features play an important role in the generalization
to string theory. We will only briefly explain how the quantum theory fits into the general

picture, and refer the reader for more details to the literature.

Just like as for G = SU(2), the scalar superfield component ¢ labels a continuous
family of inequivalent ground states that constitutes the classical moduli space, M.. One
can always rotate ¢ into the Cartan sub-algebra, ¢ = 72 apHy, with Hy, = Fpp —
FEri1k+1, (Eri)ij = 0ixdj. For generic eigenvalues of ¢, the SU(n) gauge symmetry is

"~ whereas if some eigenvalues coincide, some larger,

broken to the maximal torus U(1)
non-abelian group H C G remains unbroken. Precisely which gauge bosons are massless

for a given background a = {a}, can easily be read off from the central charge formula,
Zya) = q-a, with miq) = |7, (6.1)
where we take here for the charge vectors ¢ the roots o € Ar((G) in Dynkin basis.

The Cartan sub-algebra variables aj are not gauge invariant and in particular not in-
variant under discrete Weyl transformations. Therefore, one introduces other variables for
parametrizing the classical moduli space, which are given by the Weyl invariant Casimirs
ug(a). These variables parametrize the Cartan sub-algebra modulo the Weyl group, ie,
{up} 2 C"1/S(n), and can be obtained by a Miura transformation:

f[l(:zj — Zy(a)) = 2" — tz__: Up2(a) e Wi, _ (x,u) . (6.2)

Here, A; are the weights of the n-dimensional fundamental representation, and Wy, _, (z, u)

is nothing but the “simple singularity” [17] associated with SU(n), with

uk(a) = (—1)k+1 Z Z/\]1 Z/\]2 ce Z/\]k (a) . (63)
n#FEk
These symmetric polynomials are manifestly invariant under the Weyl group S(n), which

acts by permutation of the weights ;.

From the above we know that whenever 7, (a) = Z,,(a) for some ¢ and j, there are,
classically, extra massless non-abelian gauge bosons, since Z, = 0 for some root «. For
such backgrounds the effective action becomes singular. The classical moduli space is
thus given by the space of Weyl invariant deformations modulo such singular regions:

Mo = {ur}\Xo. Here, ¥g = {uy : Ag(ug) = 0} is the zero locus of the discriminant

n

Ao(u) = [[(Za(w) = 2y, (w)* = J](Z)*(u), (6.4)

’L<] positive
roots a
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of the simple singularity (6.2). We schematically depicted the singular loci ¥¢ for n =
2,3,4 in Fig.9.

M. (SU(2)) M. (SU(3))

Figure 9: Singular loci ¥y in the classical moduli spaces Mgy of pure SU(n) N = 2
Yang-Mills theory. They are nothing but the bifurcation sets of the type A,_1 simple
singularities, and reflect all possible symmetry breaking patterns in a gauge invariant way
(tor SU(3) and SU(4) we show only the real parts). The picture for SU(4) is known in

singularity theory as the “swallowtail”.

The discriminant loci ¥4 are generally given by intersecting hypersurfaces of complex
codimension one. On each such surface one has Z, = 0 for some pair of roots e, so
that there is an unbroken SU(2). Furthermore, since 7, = 0 is a fixed point of the
Weyl transformation r,, the Weyl group action is singular on these surfaces. On the
intersections of these surfaces one has, correspondingly, larger unbroken gauge groups.
All planes together intersect in just one point, namely in the origin, where the gauge
group SU(n) is fully restored. Thus, what we learn is that all possible classical symmetry

breaking patterns are encoded in the discriminants of Wy, _ (x, u).

In previous sections we have seen that SU(2) quantum Yang-Mills theory is charac-
terized by an auxiliary elliptic curve. In a more general context, one may it view as a
“spectral”, or “level” manifold. The relationship between BPS states and cycles on an
auxiliary manifold seems actually to be generic; indeed one may introduce a similar con-
cept here and characterize BPS states (the non-abelian gauge bosons) of classical SU(n)
N =2 Yang-Mills theory by some auxiliary manifold X. This level manifold X is zero

dimensional and simply given by the following set of points:
X s H{a Wy, _(z,u)=0} = {Z,(u)}. (6.5)

It is singular if any two of the Z,,(u) coincide, and indeed, the vanishing cycles are just
given by the differences: v, = 72\, — 7\, = Z,, ie., by the central charges associated
with the non-abelian gauge bosons. It is indeed well-known [17] that v, generate the root

lattice: Ho(X,Z) = Ar. We depicted the level surface for G = SU(3) in Fig.10.

Pictures like Fig.10 have a very concrete group theoretical meaning. In fact, if we
choose as here a special region in the moduli space where only the top Casimir, w,,, is non-
zero, the picture becomes Z,, symmetric and actually a certain projection of the weights A;.

More precisely, a solution vector € to the equations: ui(é) =0 (k=2,...,n—1), u,(§) =1
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Figure 10: Level manifold for classical SU(3) Yang-Mills theory, given by points in the
x-plane that form a weight diagram. The dashed lines are the vanishing cycles associated
with non-abelian gauge bosons (having corresponding quantum numbers, here in Dynkin
basis). The masses are proportional to the lengths of the lines and thus vanish if the

cycles collapse. This kind of pictures also has an interpretation in terms of D-branes.

is indeed known [24] to be a projection vector that projects the n — 1-dimensional weight
space on the Coxeter eigenspace with eigenvalue ™/ (further group theoretical aspects
were discussed in [23]). It thus follows trivially that the level surface (6.5)

{Zn(vur =0u, =1} = {X-€} (6.6)
consists precisely of the projected weight vectors.

We thus see a close connection between the vanishing homology of X and SU(n)
weight space. Indeed, the intersection numbers of the vanishing cycles are just given by
the inner products between root vectors, v, 0 v, = (a4, ;) (self-intersections counting
+2), and the Picard-Lefshetz formula (4.19) coincides in this case with the well-known
formula for Weyl reflections, with matrix representation: M,, = 1—«a; @ w; (where w; are
the fundamental weights). Most of the above considerations apply more or less directly to
the other simply laced Lie groups of type D and FE, for which simple simple singularities
of the corresponding type are relevant [17, 5].

Note that the corresponding “classical” situation arises in string theory when one com-
pactifies a type IIA string on A'3; the euclidean SU(n) weight space is then effectively
replaced by the lorentzian lattice of vanishing two-cycles v; € Hy( K3, Z) (which is isomor-
phic to the Narain lattice I'yg 4 of the dual heterotic string formulation|[2, 21, 22]). Locally,
near a point of SU(n) enhanced gauge symmetry, the K3 surface has a singularity of type
A, and looks:

X Wy, (zu)+ 22 +w?= 0} . (6.7)

We thus see some sort of universality at work, in that only the local neighborhood of the
singularity is relevant. Indeed, the local vanishing homology of the ALE space (6.7) can
be represented by the same kind of pictures as Fig.10 [22]. The dashed lines will however
in this case not correspond to vanishing 0-cycles, but to vanishing two-cycles; locally,

Ho(Ks, ) — Hy(ALE, ) 22 Ap(SU(n)).
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Actually, one can give in this context pictures like Fig.10 a very concrete physical
interpretation: in an appropriate dual formulation of the type ITA string theory compact-
ified on K3, the dots simply represent locations of 5-D-branes and the dashed lines (the
vanishing cycles) open strings [22]. It seems indeed to be a quite general rule that level
surfaces, with vanishing cycles sitting on them, represent in some dual way a physical

arrangement of extended physical objects.

7 Quantum SU(n) gauge theory

We now turn to the quantum version of the N =2 Yang-Mills theories, where the issue
is to construct curves X whose moduli spaces M, give the supposed quantum moduli
spaces. We have seen that the classical theories are characterized by simple singularities,
so we may expect that the quantum versions should also have something to do with them.

Indeed, for GG = SU(n) the appropriate manifolds were found in [4] and are given by
X2 = (Wa (o) — A7 (7.1)

which corresponds to special genus ¢ = n — 1 hyperelliptic curves. Above, A is the

dynamically generated quantum scale.

Since y* factors into Wy, & A”, the situation is in some respect like two copies of
the classical theory, with the top Casimir w, shifted by +A". Specifically, the “quantum”
discriminant, whose zero locus ¥, gives the singularities in the quantum moduli space

M, is easily seen to factorize as follows:

An(up, A) = TI(Zf — 28225, = Z5)* = const. A™ 6,4, (7.2)
i<y
dx(ug, A) = Ao(uz, .oy tp_q,u, £A") (7.3)

is the shifted classical discriminant (6.4). Thus, X5 consists of two copies of the classical
singular locus Y, shifted by £A" in the w, direction. Obviously, for A — 0, the classical
moduli space is recovered: Y, — Y. That is, when the quantum corrections are switched
on, a single isolated branch of ¥ (associated with massless gauge bosons of a particular
SU(2) subgroup) splits into two branches of ¥z (reflecting two massless Seiberg-Witten
dyons related to this SU(2)). For GG = SU(3), this is depicted in Fig.11.

Moreover, the points 7, of the classical level surface (6.5) split as follows,
i (u) — Zi(u,/\) = 7 (ugy ooy ttpog, uy A" (7.4)

and become the 2n branch points of the Riemann surface (7.1). The curve can accordingly
be represented by the two-sheeted z-plane with cuts running between pairs Z;; and 7.

See Fig.12 for an example.

23



\ -
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Figure 11: When switching to the exact quantum theory, the classical singular locus splits
into two quantum singularities that are associated with massless dyons; this is completely

analogous to Fig.3. The distance is governed by the quantum scale A.
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Figure 12: The level manifold of quantum SU(3) Yang-Mills theory is given by a genus
two Riemann surface, which is represented here as a two-sheeted cover of the z-plane. It
may be viewed as the quantum version of the classical, zero dimensional level surface of
Fig.10, whose points transmute into pairs of branch points. The dashed lines represent
the vanishing cycles (on the upper sheet) that are associated with the six branches of the
singular locus Y5 (SU(3)); these give rise to six kinds of massless dyons. The quantum
numbers reter to (g,q) (where g, q are weight vectors in Dynkin basis), and can easily be

determined from the weight space projection.

Just like for the classical level surfaces, the vanishing cycles of the Riemann surfaces
(7.1) have a concrete group theoretical meaning. Not only can one determine the quantum
numbers of the massless dyons by just expanding the vanishing cycles in some appropriate
symplectic basis, one finds that one can even more directly associate the cycles in the

branched z-plane with projections of roots and weights.

More precisely, Fig.12 can be thought of as a quantum deformation of the classical
level surface of Fig.10, whose points, associated with projected weight vectors A;, turn
into branch cuts (whose length is governed by the quantum scale, A). In fact, one obtains
two, slightly rotated copies of the weight diagram. A basis of cycles can be chosen such
that the coordinates of the “electric”, a-type of cycles are given by precisely the weight

vectors A;. Moreover, the classical cycles of Fig.10 turn into pairs of “magnetic”, 3-type
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of cycles, and we can immediately read off the electric and magnetic quantum numbers

of the massless dyons: both electric and magnetic charges are given by root vectors.

References..

1 N. Seiberg and E. Witten, Nucl. Phys. B426 (1994) 19, hep-th/9407087; Nucl.
Phys. B431 (1994) 484, hep-th/9408099.

2 C. Hull and P. Townsend, Nucl. Phys. B438 (1995) 109, hep-th/9410167.
3 A. Sen, Int. J. Mod. Phys. A9 (1994) 3007.

4 A. Klemm, W. Lerche, S. Theisen, and S. Yankielowicz, Phys. Lett. B B344 (1995)
169, hep-th/9411048;
P. Argyres and A. Faraggi, Phys. Rev. Lett. 74 (1995) 3931, hep-th/9411057;
M. Douglas and S. Shenker, Nucl. Phys. B447 (1995) 271, hep-th/9503163;
P. Argyres and M. Douglas, Nucl. Phys. B448 (1995) 93, hep-th/9505062;
A. Klemm, W. Lerche and S. Theisen, Nonperturbative Effective Actions of N=2
Supersymmetric Gauge Theories, preprint CERN-TH/95/104, LMU-TPW 95-7,
hep-th/9505150.

5 U. Danielsson and B. Sundborg, Phys. Lett. B B358 (1995) 273, hep-th/9504102;
A. Hanany and Y. Oz, Nucl. Phys. B452 (1995) 283, hep-th/9505075;
P. Argyres, M. Plesser and A. Shapere, Phys. Rev. Lett. 75 (1995) 1699,
hep-th/9505100;
A. Brandhuber and K. Landsteiner, Phys. Lett. B B358 (1995) 73, hep-th/9507008;
P. Argyres and A. Shapere, The Vacuum Structure of N=2 SuperQCD with Classical
Gauge Groups, preprint RU-95-61, UK/95-14, hep-th/9509175;
A. Hanany, On the Quantum Moduli Space of N=2 Supersymmetric Gauge Theories,
preprint TASSNS-HEP-95/76, hep-th/9509176.

6 A. Strominger, Nucl. Phys. B451 (1995) 96, hep-th/9504090;
B. Greene, D. Morrison and A. Strominger, Nucl. Phys. B451  (1995) 109,
hep-th/9504145;
S. Kachru and C. Vafa, Nucl. Phys. B450 (1995) 69, hep-th/9506024;
S. Ferrara, J. Harvey, A. Strominger, and C. Vafa, Phys. Lett. B 361 (1995) 59,
hep-th/9505162, hep-th/9505162;
C. Vafa and E. Witten, Dual String Pairs With N=1 And N=2 Supersymmetry In
Four Dimensions, preprint HUTP-95/A023, TASSNS-HEP-95-58, hep-th/9507050;
S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, Nucl. Phys. B459 (1996)
537, hep-th/9508155.

25



7

10

11

12

13

14

15

16

17

18

19

20

21

A. Ceresole, R. D’Auria and S. Ferrara, Phys. Lett. B B339 (1994) 71,
hep-th/9408036;

A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, Nucl. Phys. B444 (1995)
92, hep-th/9502072;

M. Billo’, A. Ceresole, R. D’Auria, 5. Ferrara, P. Fre’, T. Regge, P. Soriani, A. Van
Proeyen, A Search for Non-Perturbative Dualities of Local N=2 Yang—Mills Theories
from Calabi-Yau Threefolds, preprint SISSA 64/95/EP, POLFIS-TH 07/95, CERN-
TH 95/140, IFUM 508/FT, KUL-TF-95/18, UCLA/95/TEP /19, hep-th/9506075.

P.K. Townsend. p-Brane Democracy, preprint R/95/34, hep-th/9507048.

K.&M. Becker and A. Strominger, Fivebranes, Membranes and Non-Perturbative
String Theory, hep-th/9507158.

C. Gomez and R. Hernandez, Flectric-Magnetic Duality and Effective Field Theories,
preprint FTUAM 95/36, hep-th/9510023.

N. Seiberg, Phys. Lett. B 206(1988) 75.

V. Novikov, M. Schifman, A. Vainstein, M Voloshin and V. Zakharov, Nucl. Phys.
B229 (1983) 394; V. Novikov, M. Schifman, A. Vainstein and V. Zakharov, Nucl.
Phys. B229 (1983) 381, 407; M. Schifman, A. Vainstein and V. Zakharov, Phys.
Lett. B 166(1986) 329.

C. Montonen and D. Olive, Phys. Lett. B 72 (1977) 117.
G. ‘t Hooft, Nucl. Phys. B190 (1981) 455.
D. Olive and E. Witten, Phys. Lett. B 78 (1978) 97.

P. Argyres and M. Douglas, as in ref. [4].

See e.g., V. Arnold, A. Gusein-Zade and A. Varchenko, Singularities of Differentiable
Maps I, 11, Birkhauser 1985.

E. Martinec and N. Warner, Integrable systems and supersymmetric gauge theory,

preprint EFI1-95-61, USC-95/025, hep-th/9509161.

A.Gorsky, I.Krichever, A.Marshakov, A.Mironov and A.Morozov,Phys. Lett. B 355
(1995) 466.

A. Klemm, W. Lerche and S. Theisen, last reference in [4].

E. Witten, Nucl. Phys. B443 (1995) 85, hep-th/9503124.

26



22 M. Bershadsky, V. Sadov and C. Vafa, D-Strings on D-Manifolds, preprint HUTP-
95/A035, IASSNS-HEP-95-77, hep-th/9510225.

23 W. Lerche and N.P. Warner, Nucl. Phys. B358 (1991) 571.

24 B. Kostant, Am. J. Math. 81 (1959) 973.

27



