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® Motivation: quantum geometry of general D-brane configurations

® Recap: closed string mirror symmetry

® | G models: contact terms vs. flat coordinates

® Open string = homological mirror symmetry

® Matrix factorizations and their deformations

® Open string mirror map from super-residue pairings

® Example
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Physics of intersecting brane geometries

® Open string mirror symmetry is by far not as well
developed as for closed strings!

So far, mostly non-generic (non-compact, non-intersecting) brane
configurations were considered; almost nothing has ever been computed
for intersecting branes eg. on Calabi-Yau threefolds.

e Phenomenological interest: 4 )

® Chiral fermions
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® Exponentially suppressed Yukawa's




Effective superpotential for quivers

boundary changing operator
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Quiver diagram Disk world sheet in TCFT

F-term superpotential ~ closed paths in quiver
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space-time T .
fields closed and open string

moduli ~ const + O(e %, e %)
instanton corrections = open GW invariants: how to compute?
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Math: Homological mirror symmetry Contsevich 1994

e Open string mirror symmetry becomes (really) non-trivial for intersecting branes

There is an infinitely richer diversity of world-sheet instantons,
ie., Gromov-Witten invariants.

e Eg. the elliptic curve is almost trivial from the
point of view of closed string instantons: 75 — 75
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However in the open string sector with intersecting branes,
an arbitrary number of polygon-shaped disk instantons may
contribute to the superpotential!



Lightning recap: closed string mirror symmetry

[Type lIA String on Calabi Yau Y@[Type lIB String on Calabi Yau Xj

e Moduli space of
N=2 vector SM: OM .

Y, t) ~ MPEH(X,z)

e 3-pt functions:

T dddmk abe(2) 0zq 0zp O0zc
Cklm—/Jk/\Jl/\J _|_Z ..... dy, Gk Hqgi< )pb() b

Y 0 1 — T, ¢ 1 [[A(2) 8ty Oty Oty
A-model: deformed quantum geometry from B-model: classical geometry
world-sheet instantons = holom maps P; — itf

q=-e

® Mirror map:

t; 1= /Jz.l’l(Y)—l—... +—> / Q%9(X) =: Inz.(t) + O(2)

a

- Period mtegral =
[flat coordinates on QM " (Y)j flat coo on M 5 (X)
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Math: Gauss-Manin system

® The period integrals satisfy certain flatness diff. equations that arise from
the variation of Hodge structures.

Essentially this boils down to a linear system of the form
1
[ w )
_ k k .
VI = (850, + (Co)s* — (T0);") .

A \ S/,

Yukawa’s/ring OPE coeffs T

period vector

Gauss-Manin connection

Calabi-Yau definedby X : W(x;,2) =0
e I' = 0 defines flat coordinates (and thus the mirror map): z = z(t)

... as well as flat operator bases via @;(x,t) = Oy, W(x, 2(t))



Physical realization: superconformal B-twisted TCFT

All this has a concrete realisation in field theoretical models:

® W(x,z) is the superpotential of a N=(2,2) Landau-Ginzburg model

¢i(x,t) = Oy, W (x, 2(t)) forms a flat basis of the chiral ring
(prp;) = const.

® |n terms of these, all correlators are given in terms of residue integrals:

2 1
Cklm(t) — (qbkqblqueftiqb’(i )> — %(dW(ZB ¢k(m9t)¢l(wvt)¢m(wat)

1))

= 04,04,0:,, F(t) integrability

Cklmnl..n,,q (t)

8tn1 .o °8tn'r' Cklm (t)

“Special Geometry”



Math-Phys: Contact terms versus flat coordinates

® The Gauss Manin egn. encodes contact terms:

0 =T = 0,¢; —U(di¢;)

where U plays the role of the closed string propagator

Hrp > H

O(z,2) GoG
U(O(z, 2)) Edwk< (@, 2) ) ~ 2070 5
_I_

d. Wi(x,z) Lo

—

® Functional dependence reflects renormalization by iteratively
integrating out massive fields:

o(t) = ¢(0) +tU () +1/2t° U(¢U(99)) + -+ = 9:W (x, 2(t))

Summing up all nested trees in one swoop!
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Saito’s higher residue pairings

® Reformulate by avoiding period integrals while emphasizing contact terms:

Localize path integral with insertion e~ *(LotuU) for A— 0
produces residue pairings K [u](dr, d1) = D png W KO (i, 1)

where u is a spectral parameter that counts the number of c.t. and

n 0 — n

Z( 1) T(U (U on)-) TU O 1))

dzx
(dW)r «

KW (o, 1) = 7{

® |n terms of these, the Gauss-Manin diff eqs can be written compactly:

K© (ona Qol) = 7t = const, K (£>0) (ona (Pl) = 0,
oW

Uu

K[u|(Vipa, pp) = Klu|(pa; Vigs) =0, V= 0



More explicitly....

e Consider elliptic curve where II = (f [ V“?z)

K samples all components of the Gauss-Manin connection:
<Hi, VHJ> — <H7;, (8 + C — F)HJ>

_ (K(qb,Vl) K(1,¢)—1>ij _ (0 0)

K($,V$) K(1,V4) 0 0),.
K1(¢a 8¢) _K2(¢a ¢¢) Ko(la 8¢) _Kl(la ¢¢)
= K°(¢,U (8¢ — U(¢p9))) = K°(1,0¢9 — U(¢9))

These inner products can be easier generalized to open strings where
the fields become matrices
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Now on to open strings...

® Mirror symmetry between A- and B-models

———— Homological mirror symmetry between
categories of A- and B-type branes

® Hodge theory of CY-spaces

———"> Non-comm. Hodge theory on Ao categories

e LG field theoretical realisation based on W

——— Boundary LG model based on
Matrix factorizations of W



Homological Mirror Symmetry for Poor Physicist

® Mirror symmetry acts between full categories descr. A- and B-branes!

A-Model onY B-Model on X
mirror symmetry
< >
D1 branes on (p,q) cycles (N2,No) = (r,c1) of gauge bundle
... Fukaya category” of ... bounded derived category”
lagrangian cycles onY of coherent sheaves on X

Fuk(Y) +— D"(Coh(X))

® There is much more to this than just quantum numbers (K-theory),
or isomorphisms between categories
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Open string mirror symmetry

e |rrespective of fancy maths, the problem can be formulated
entirely in terms of physics (and we define HMS this way)

Math isomorphisms ———= Equality of infinitely many correlators,
= A« products

® Consider deformations by closed string perturbation t

Closed string mirror map:

A-model 5 i B-model
t(z) z(t)

Open string: Fuk(Y) «—— D°(Coh(X))

® How to tie together explicitly?
..impose appropriate flatness eqs playing the role of mirror map



Mirror symmetry of Aw products

SACH
mg(\If®3) P -
\Ij(]-a2) \11(374)
. D2 Dg
f\p(2,3)
A oA
A-Model B-Model
localizes on holomorphic maps: localizes on constant maps:
world-sheet instantons D — Y nested trees
D)
mirror symmetry ¢V Py
S TETTTTTTTTTTTTTTY »
U U

p(12) 23 §Ga) p(12) @23) G4

\11(273)

1 st

quantum Fukaya product ms3 ~ € classical Massey product
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String correlators and Ax products P
Ly
(3,1b (2,3)
Ca07a19°"9ak: — <\Ila'0\:[!a’1P/\Ilg'12) " ./qlg’]l;)—lq:lak> v L3 .
— <<\Ilao 7mk(\:[la1 D ... D \I!ak:>>
o k Mo — 07
e Multilinear, non-comm. maps my : POF - W
m; = Q,
satisfy Aw relations =Ward identities from disk factorization: Mo = ®

ml-m4(1, 2, 3, 4) = m3(m2(1, 2), 3, 4):|:m2 (mg(]., 2), m2(3, 4)):':7’)13(1, 2, m2(3, 4))

e Can be recursively solved in closed form:

U:Q-I

open string propagator

m4(1, 2, 3, 4) = mg(U°m2(]_, 2), 3, 4):|:m2(Uom2(1, 2), U°m2(3, 4)):|:m3(1, 2, U-m2(3, 4))



-

String correlators and A« products - deformed ‘1’;;;
L
® We are interested in the dependence on bulk deformations t \P“”’lw

Ca09a19"-9ak:(t) — <\PGO\IIG1P/\P£1,12) * /\Il(l) \Ilakse_tkf(b’gz))

A —1

= ((Pq, 7m;ﬁc(\I’a1 D ... 0 ¥q,))

® Deformed multilinear products satisfy “weak’” A« relations where Mg 7 0

® Form extended structure: “open/closed homotopy algebra”

= + ... =
U
¢ v P U
¢
¢

® How to compute t-dependence !




B-type, boundary LG models: matrix factorizations

Kapustin,Li
BHLS
e Consider 2d LG model with superpotential:
/ d22d9+d9_WLG(m, t) + cc. (W(x,t)=0 describes CY 3-fold X)
)y

® |f there is a boundary, B-type SUSY variations induce a “VVarner”-term.
This can be cancelled by boundary dof. whose BRST operator satisfies:

Q(wa t9 u)2n><2n * Q(wa tau)2nx2n — WLG(wa t) ]-2n><2n

® The matrices live in the Chan-Paton space and can have arbitrarily high
dimension, 2n.

The precise form encodes the brane geometry and depends on
K-charges and possible deformation moduli t,u.

® The set of all matrix factorizations of W describes all possible B-type
boundary conditions!

|7



The category of matrix factorizations Cat(MF(WV))

Math. Theorem: Kontsevich, Orlov
Cat(MF(W,X)) ~ DP(Coh(X)), Category of coherent sheaves on X
(Q22nA><2nA ® objects = chain complexes
AN TP P1
/V"W:, 2na X2np P — ( P]_ PO ) Q — (O pO)
D Po P1 0

(QB)ZnBXZnB

pi2~"tachyons” pop1 = p1po = W1
(B,C)

:pr?nBXZnC e morphisms = boundary changing operators

O«<<— (QC)chXZnC (\IIELA,B))ZTLA X2n a S Eth (X; DA? DB)

® non-triv. cohomology ¥(4B) ;g . ¢A:B) — o ®AB) £ g.
where d . ¥(A:B) = QA\II(A’B) T ‘I’(A’B)QB

* (non-comm.) composition maps W{4B) . \III()B’C) = Cop° 1O



Correlators from matrix factorizations

® Easy part:
Construct representatives ¥ € ker d/Im d and recursively compute my.

Cao,ai,...an () = ((Pao, mtk(‘I’al D...Vu,D)))

with inner product = supertrace residue pairing

((A, B)) = %str <(ji§f)®NA-B>

()

Kapustin-Li

e Can always choose representatives such that the two-point fct is const:
A,B (B;A)\\ __
(BB, 7)) = dap
e Difficult part: what is the proper flat, renormalized operator basis!?

U, =3 go(t)¥,, ®o — ga(t) ' &, A priori freedom of rescaling....

...leaves corrs undetermined, eg: (T, TW)) ~ g(t)°
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Analog of Gauss-Manin eqs at the boundary?

e Generalization to non-commutative Hodge-Theory has been a major
theme in math literature. Kontsevich, Pantev, Katzarkov, Sheridan, Shklyarov ,....

However, it turned out (after much agony!) that much of these works seems
almost orthogonal to what we want to do!

® There is no degree-2 spectral parameter u at the boundary
® Open-closed maps kill precisely the boundary changing sectors we are
interested in (need more than Hochschild cohom)

® Crucial phys. extra ingredients:

® Coupled bulk-boundary deformation problem
® Mixed bulk-boundary contact terms
® Generalization of residue pairings to matrix factorizations

20



Coupled bulk-boundary deformation problem

e Due to bulk-boundary contact terms, the bulk perturbation ¢ = 0, W
must be accompanied by a “Warner” boundary counter term ¥ = 0:Q

ree{ o

This combo perturbation preserves Q(t)? = W (t)1 so is unobstructed.
It is the natural Q-invariant pairing in relative (co-)homology of disk.

e What matters are the contacts term of Y with the other boundary ops Y:

v
Qtot © ‘I’ =

v
Qtot o ‘I’ = ‘I} + Z
QtotoZQaw U +g' /g ZQ)



Higher supertrace residue pairings

® Construct higher Kapustin-Li pairings to systematically capture contact terms

= 04p = const
(1) (D™ S~ k(D) N
K1 (Wa, Pp) = (n+ D! ; Z( 1)FUFalFD N e i X
b=1
d; i Q dp¥, d; ., d;
27{5‘51' 1Q... o1 Q dr k’+Q... nQ b,
di,W ' diy W W diy W di, W
. d’LlQ dsz T} d’ik,_|_1Q ’Ln 1Q d q)b
di,w ' d, W “d;, W d;, Wd,W
Instead of bosonic spectral parameter u of degree 2, U= G,%—fo
we have (formally) a fermionic parameter of degree | {7, — Go
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Finally, flatness equations for matrix factorizations

e Taking all together, we get “relative bulk-boundary” diffegs.
which play the role of the Gauss-Manin eqs familiar from
standard bulk mirror symmetry:

K (ViWa, @) = KO (0: W0, @)+ K¢} (0,7 @ )—— K, (Z i War D)

= 0

These supposedly determine the proper flat boundary changing
representatives Y(t) incl. moduli dependent renormalisation factors

When combined with the A structure, the latter eventually determine
the t-moduli dependence of all correlation functions!
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Example: elliptic curve T>

: : : . complex struct modulus
® Simplest |-dim Calabi-Yau: the cubic curve P

1
Ty : W(x,z(t)) = g(a:13 + x2° + x3°%) — 2z(H)x12273 = 0

2Fi(1/3,2/3,1;1 — 1/2°)
2F1(]_/3, 2/3, ]_; 1/23)

Mirror map: ¢(z) = i/V/3

e B-type D-branes are composites of D2, DO branes, ... R
characterized by /N /N A

(N2, Nos;u) = (rank(V),c1(V);u)

e We will consider the
" long-diagonal” branes with charges

(N2, No)c, = {(—1,0),(—1,3),(2,—3)}

24



Seidel lagrangian

® Actually the LG model describes the orbifold T2/Z3 (pair of pants),

where the 3 branes map into one single, triply self-intersecting brane

® Need to go to equivariant matrix factorization to describes branes on T>

In practice only labels change

25



Matrix factorization corr to Seidel Lagrangrian

...is given by following 8x8 matrix: ) = < 0 p0>

x1
( 3

:1:3 — x1232(1)

Po = :1:3 — x1222(1)
\ 0

( r? — x2w32(t)

| 22 — xix32(t)

b1 = 3 — x1x22(t)

\ 0

... Which satisfies

Qz = Wi(x,2(t))1

L2
roxzz(t) — :L'%
0

3 — x1x22(t)
x2

3

£

T
3
0
3 — x1x22(t)

26

p1 O




Open string BRST cohomology

e |Solving for the BRST cohomology yields explicit
moduli dependent matrix valued morphisms, eg.

AA 0
WA —g(t) ( %O>

q1
1 0 0
B %wgz(t) 3z, 0
do = sT22(t) 0 3331 0
0 —azzz(t) ——wgz(t) 1
—3x, 0 0
o — %wgz(t) —1 0 0
V7 Sxp2(t) 0 —1 0 %
’ 2O sxaz(t) —Zwsz(t) —3x [Q’ ( )]

® Again, the issue is to determine the flattening,
moduli dependent renormalisation factor g(t)

Solving the previous “relative bulk-boundary” diffeqs yields

g(t) =n(q)'/3, q=e*"*
27



A-model instantons

® This defines via open string mirror symmetry a quantum Fukaya product ma:

y 13O
n(t) Functional complexity
is entirely due to
renormalization factor g(t)!
ﬂ_z(A,B) WJ(B,C) n1/3\I,Z(A,B) 771/3\1];5’,0)
A-Model B-Model

® Phys. interpretation in top. A-model: 3 point function counts instantons
Cave(t) = (D, ma (¥ D)) = earen(q)

n(q) =q>* [ @ —q™)
n>0

3D _::{,:'__‘_\JE_\‘_:L{__XQ

'\Dg _ 2 minimal area:
L, N SERN |/24 of fundamental domain

D, N N N



Further B-model correlators

e Define boundary chain

\IJS — —]_/SZS,,;\I’?;

Compute m3via nested trees and propagators U
n(t)
m WS QS @S — S t ]. ‘Ils \I’S
3( ’ ’ ) C(t) ( ’ )

_ /(1)
= o

Weakly obstructed deformation, as expected

Matches results on the A-model side Cho, Hong, Lau...
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Summary and Outlook

® math: Cat of matrix factorizations «<—— D(Coh(M))

phys:  Boundary B-type TCFT <—> B-type D-branes

e Field theoretical LG model allows to explicitly compute non-
trivial correlation functions also for intersecting branes

® Main issue: find suitable Gauss-Manin type differential eqgs that
determine the proper flat operator bases

Main tool: matrix analogs for higher residue pairings
® Generalization to M = CY 3-folds, eg. for quintic:

/v" X Wesr = Cxxy (t) TrXXY + Cxxyxxy (t) Tr(XXY)? + ...

Qeacesue K ------- \ /

¢ Yi t... Kahler modulus, interpolates between
;“M X Gepner-point (BCFT) and geometrical phase

Oww—0 ... infinitely many new results in enumerative geometry
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