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Stringy Geometry and 
Nonperturbative D-Brane Physics

W.L. 2003

In stringy geometry, geometrical notions are in general 
ambiguous ... 

One and the same theory may have many different dual 
geometric interpretations.  For example gauge theory:

D-brane

i) heterotic                        ii)   type II                            iii)   type I

X

Type IIA String

Type IIB String

SO(32) Heterotic String

E8xE8 Heterotic String

Type I open String

D=11 Supergravity

M
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Moduli Space = Space of Vacuum States, VEV’s 

Lagrangian description makes sense only in "local coordinate
patches" covering the parameter space       :

These describe different local approximations of the 
same theory in terms of different weakly coupled 
physical degrees of freedom.
The perturbative physics (local QFT) may look very different 
in the various local patches  (eg, different gauge groups)

M

As a general rule, there is no global description that would be 
valid throughout the whole parameter space; 
no particular theory is more fundamental than the other 
ones.

Concept of "fundamental degrees of freedom" is ambiguous,
                                                                                    at least...

L1

L2

L3

L4

M
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To meaningfully address such questions, we need to have 
global analytical control of (at least part of) the spectrum and 
the effective action, like eg. the superpotential.

Classical geometry ("branes wrapping p-cycles") makes sense 
only at weak coupling or large radius:

Example: "quantum volume"

Calabi-Yau
=6-cycle
is large

Example: "monodromy"

Looping around singularieties
returns "totally different" brane
configuration

A brane-anti brane pair with apparent 
SUSY breaking, turns into a SUSY 
preserving brane-brane pair 

 ?            
       Quantum corrected geometry:
       (instanton) corrections wipe out
        concepts of classical geometry

Quantum Moduli Space of D-Branes

“Gepner point” 
(CFT description)

6-cycle -> zero size 
however: 
“embedded” 2,4 cycles
 have non-zero size !

M

M

M
M
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Moduli (parameter) space                          ,  

gauge fields weakly coupled;
         

1-loop                    instanton corr

gauge fields strongly coupled;
massless monopoles weakly 
coupled, look like electrons:

monopoles strongly coupled

SU(2) gauge theory with
instanton corrections

1-loop                    non-pert corr
U(1) gauge theory with
extra electrons

Resummation of non-perturbative corrections

N=2 SUSY Gauge Theory

Seiberg-Witten: Effective gauge coupling gets renormalized, 
and depends on the Higgs VEV:

MSU(2)

τeff(φ) =
1

2π
θeff(φ) + 2πi

1

g2
eff(φ)

geff(φ) → 0 gD
eff(φ) → 0

u ∼< Trφ2 >M = M(u)
φ ...complex adjoint Higgs field

τ (φ) =
i

π
log

[φ2

Λ2

]
− i

π

∞∑
$=1

c$

(Λ

φ

)4$

τD(φD) =
−1

2π
log

[φ2
D

Λ2

]
− 1

π

∞∑
$=1

cD
$

(φD

Λ

)2$

〈φ〉 → ∞ 〈φD〉 → 0
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There is a proliferation of physical degrees of freedom, 
obtained from wrapping strings (p=1), membranes (p=2),  
general p-branes around non-contractible p-cycles of X.

At a given singularity in the parameter space             ,  a 
compactification manifold X becomes singular in that some 
p-dimensional "vanishing cycle     " shrinks to zero size:

X

S&W: Interpretation of SYM parameter space as 
           moduli space of an elliptic curve      :

Quantum Curves and Calabi-Yau Manifolds

The loci where massless 
non-perturbatived states appear 
correspond to singular curves.

What is their meaning ?

This has a natural interpretation in string theory 
compactified on some Calabi-Yau manifold X (suitable 
field theory limit reproduces     ).

Σ

Σ

M(X)

M(X)

How do we know that this
yields massless states ?

Σ

Σ

Σ

γ → 0

γ

M
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Supersymmetry allows us do to non-trivial exact computations in 
toy models, by virtue of its non-renormalization properties that 
protect many (typically holomorphic) quantities from perturbative 
corrections.
.. in particular, quantities related to "BPS"-states:     

From the algebra of supersymmetry charges          
("central charge" Z
can be eg. U(1) charge)

follows for such BPS-states that their mass is exactly given
by their charge:

Idea: Find that in semi-classical approximation some state is BPS -
this implies it has less degress of freedom than a generic state
                                                          ("short SUSY multiplet")

But under smooth perturbative and non-perturbative 
corrections, the number of degrees of freedom cannot jump
The state is BPS also in the full quantum theory, and in
particular its mass is exactly known !

The BPS property is the quintessential basis of
our modern non-perturbative techniques.

Supersymmetry and Central Charges

〈BPS|{Q, Q}|BPS〉 = 0and

{
Qα, Qβ

}
= γµ

αβpµ + δαβZ

Qα|BPS〉 = 0

m = |Z|
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Central charges have a topological character.

BPS Geometry: Period Integrals

Eg., SU(2) N=2 SUSY gauge theory,  the mass of a BPS 
state is governed by

electric                 magnetic  charge

γ ≡ N γα + M γβ

Analogously, on a 6d Calabi-Yau space X, the central charge 

Z(u) = N〈 φ 〉(u) + M〈 φD 〉(u)

=

∫
γ

λΣ(u)

Na ... el, mag RR charges of wrapped D-brane state

Πa(z) ...period integrals,  “quantum volumes” 

z ... modulus of CY,  massless scalar VEV in 4d

Significance:  periods form the effective lagrangian, ie 
the holomorphic prepotential       in N=2 superspace:

Leff(z) =

∫
d4θ F(z)

F(z) = Πa(z)GabΠb(z)

F

But what about quantum corrections ?

Z(z) =

∫
γ=Naγa

ωX(z) = Na

∫
γa

ωX(z) ≡ NaΠa(z)

γα γβ
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Apart from gravity, there are two decoupled matter sectors:    

Type II Strings on Calabi-Yau Manifolds

Kähler moduli  t :    size parameters
This is mirrored in the CY geometry: two sorts of moduli

Complex structure moduli  z:   shape parameters

There are also two sorts of supersymmetric p-cycles, that give 
rise to BPS particles in 4d when p-branes are wrapped on them:

holomorphic 0,2,4,6 cycles 
symplectic special lagrangian 3-cycles

∼ Hi,i
∂̄

(X)

∼ H3−i,i
∂̄

(X)

{γ(3)
α , γ(3)

β } ∈ H3(X)

γ(2i)
k ∈ H2i(X)

The Kähler moduli determine the volumes of the 
holomorphic, and the CS moduli determine the volumes of 
the SL cycles

Vector-supermultiplet moduli space
Hyper-supermultiplet moduli space

...  give rise to N=2 effective supergravity theory in 4d   

Which Kähler or CS sector corresponds to which
vector- or hypermultiplet sector, depends on the specific kind
of Type II string theory - more about this later

MV

MH

Special lagrangian type:

Z(z) = N (3)
a

∫
γ(3)

a

ω(3,0)(z)

Accordingly there are two sorts of quantum volumes

analogous to period integrals over 1-cycles on SW-curves
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World-Sheet Instanton Corrections

Integers, count holomorphic maps
 from 2-spheres into the CY

holomorphic type:

Q = Tr[eF ] ∧
√

Â(R)

= N (6)t3 + N (4)t2 + N (2)t + N (0) + O(e−t)

Z(t) = N (2i)
a Πa(t) =

∫
X

Q ∧ eω(1,1)
+ . . .

= (RR U(1) charges of wrapped brane)*(volumes) + corr.

In contrast to the SL 3-periods, the classical volumes of 0,2,4,6 
cycles do get corrected by world-sheet instantons:

〈 OiOjOk 〉 = ∂i∂j∂kF(t)

intersection #'s

= c(0)
ijk +

∑
nl

dninjnkninjnk

∏
m qm

nm

1 − ∏
m qm

nm

X
X

tk =

∫
X
(ω(1,1))k

Wrappings of the 1+1d string world-sheet around 2-cycles of 
the Calabi-Yau X give extra sectors of the path integral with 
action 

e−S = e− ∫
γ(2) ω(1,1)

X = q ≡ e−t

This leads to non-perturbative corrections of the correlation 
functions, and thus, the eff action:
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Mirror Symmetry

For “every” Calabi-Yau    , there exists a mirror    
such that the Kähler and complex structure
sectors are exchanged.

The physical meaning is:

Type IIA strings compactified on     are
indistinguishable from Type IIB strings 
compactified on the mirror  

(We will consider here only the vector 
supermultiplet moduli space)

X

X̂

X X̂

(-dilaton)MH = MCS
X (z(t′)) = MKS

X̂
(t′(z))

MV = MKS
X (t(z′)) = MCS

X̂
(z′(t))

IIA / X ←→ IIB / X̂
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Mirror symmetry also maps the even, holomorphic 
cycles into the SL 3-cycles, and v.v.

Type IIA string Type IIB string

X

X̂

size of 2-cycles 
governed by Kahler param  ti

size of 3-cycles 
governed by CS param  za

∼ tk + O(e−t) ∼ (ln z)k + O(z)

“mirror map”:  t = − ln z + O(z)
thus determines prepotential = effective action:

F(z(t)) = Πa(z(t))GabΠb(z(t)) =

= c t3 +
∑

n

dnLi3(e
−nt)

S2 → Xintegers count maps

Πi(t) =

∫
γ(2k)

i

(∧ω(1,1)
X )k + . . . =

∫
γ(3)

i

ω(3,0)

X̂
= Πa(z)

instanton

corrected exact

... provides global analytic control over whole moduli space !
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From mirror symmetry, we have for the central charge 
                       of a BPS state:

Monodromy of RR Charges

3-cycles on
on equal footing

quantum 0,2,4,6-cycles 
on     must be
on equal footing too !

X
X̂

= N (6)(2F − t∂tF) + N (4)∂tF + N (2)t + N (0)

Periods are in fact multi-valued sections
Non-trivial loops in the moduli space 
will thus induce monodromy:

MCS(X̂)

Consider eg looping around 
in the semi-classical, large volume regime:

Thus 

The notion of p-dimensional cycles looses its geometric 
meaning away from the semi-classical large radius limit !

Πa −→ Πa · R, R ∈ Sp(2h2,1 + 2, Z)

z ∼ e2πit → 0

t = 1
2πi

ln z → t + 1

Z = N (0) + N (2)t + . . .

→ (N (0) + N (2) + N (4) + N (6)) + N (2)t + . . .︸ ︷︷ ︸
(N(0))′

N (3)
a

∫
γ(3)

a

ω(3,0)

X̂
= N (6)t3 + N (4)t2 + N (2)t + N (0) + O(e−t)

Z = NaΠa

M
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Quantum Volume

Recall that massless state in 4d arises if 

Example: 
conifold singularity (strong coupling region)

Type IIB:   3-cycle

Type IIA:   

6-cycle quantum volume   = whole Calabi-Yau X 
shrinks to nothing! 

However, the “embedded” 0,2,4 
cycles do not have vanishing 
quantum volumes:

The classical geometric picture is completely 
swamped out by instanton corrections

Z = NAΠA → 0

γ(3)
a → 0

(1, t, ∂tF) !→ 0

(2F − t∂tF ) ∼ t3 + . . .

=

∫
γ(6)

(ω(1,1)
X )3 + · · · → 0

M
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Brane/Flux Configurations with N=1 SUSY

So far we considered Type II strings on CY threefolds X, 
which gives N=2 supersymmetry in d=4:

p-branes wrapping supersymmetric
p-cycles appear as BPS
particle excitations in the N=2 
effective theory

X

We now consider “D-manifolds” with non-compact 
branes spanning 3+1 dimensions, plus extra fluxes:

X

3+1d world-volume:
has N=1 SUSY if the brane config is BPS

This parametrizes a huge class of N=1 string geometries!

What is the non-perturbative quantum geometry, 
vacuum states, superpotential, gauge couplings ?

The effective space time physics will depend non-
trivially on the properties of the space X,
and the brane and flux configurations on top of it.



15

It can be shown that upon turning on H(3) flux, N=2
SUSY is broken to N=1 SUSY with superpotential:

Denote 3-cycle dual to flux H(3) by    
and expand in integral symplectic basis of 3-cycles:

Then

The superpotential is given a flux-dependent linear 
combination of period integrals....

Turning on RR-fluxes 

(flux numbers)

It is thus completely determined by the “bulk” closed 
string geometry:  
spont. broken N=2 SUSY (flux~ aux field)

Type IIB strings: p=3

Type IIA strings with p=0,2,4,6: mirror to the above

γ(3)
H

WIIA/X(t) =

∫
X

3∑
k=1

H(2k)
RR

( ∧ ω(1,1)
)3−k

+ inst.

= WIIB/X̂(z(t))

γ(3)
H = Naγ

(3)
a , Na ∈ Z

WIIB/X̂(z) =

∫
γ3

H

ω(3,0)(z) = NaΠa(z)

∫
γ(p)

H(p)
RR =

∫
γ(p)

dC(p−1)
RR "= 0

WIIB/X̂ =

∫
X̂

ω(3,0) ∧ H(3)
RR
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Moduli of D-brane configurations

Consider 1/2 BPS configuration      reducing to N=1 SUSY:

CY moduli

brane (and bundle) moduli 

4d N=1 SUSY eff action
depends how on moduli ?

t, z

t̂, ẑ

Seff(t, t̂, z, ẑ)

Focus on

complex structure type moduli:
sizes of 3-cycles
sizes of 3-chains w. boundary on  

Kähler type moduli:
sizes of 2-spheres

Decoupling theorems (from boundary CFT):

holomorphic
branes

SL
3-branes

W (z, ẑ), τ (z, ẑ)
D(t, t∗, t̂, t̂∗)

W (t, t̂), τ (t, t̂)
D(z, z∗, ẑ, ẑ∗)

holom. potentials
FI D-term potential

holom. potentials
FI D-term potential

{
{

X

sizes of disks ending on D-brane

D

D

t ∼ γ(2)

t̂ ∼ γ̂(2)
D

D

z ∼ γ(3)

ẑ ∼ γ̂(3)
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New ingredient: open string (disk) instantons

Complicated corrections due 
to open and closed string 
instantons

3-chain with boundary 

Mirror symmetry and D-Branes

Type IIA string Type IIB string

X X̂

D6 ! γ(3) ⊗ R3,1 D5 ! γ(2) ⊗ R3,1

∂γ̂(3) = γ(2)

exact result !

∑
n,m

dn,mLi2(e
−nte−mt̂) = M̂! ·

∫
γ̂(3)

! (ẑ)
ω(3,0)

X̂
(z)

WA/IIA(t, t̂) = M̂!Π̂! = WB/IIB(z(t), ẑ(t, t̂))

disk instanton
with size
ending on

t̂

D6
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Unifying flux and D-brane potentials

Recall:

Combine:

where

Seek: uniform description of open/closed string backgrounds 
labeled by the data

closed ;  open 
string sectors

The “relative” homology cycles are closed only up to
boundaries lying on the D-brane      .

The relative homology lattice 
is the complete charge lattice of the BPS domain 
walls in the  N=1 theory

{
X, Na; M̂!

}
(t, t̂) ∼=

{
X̂, N ′

a; M̂
′
!

}
(z, ẑ)

Wflux = NaΠa

Wtot(z(t), ẑ(t, t̂)) = MΛΠΛ =

∫
Γ(3)

Λ

ω(3,0)

X̂

WD−brane = M̂!Π̂!

= N (6) + N (2)
a ta + N (4)

a ∂aF + M̂kt̂k + M̂"W"(t, t̂) + . . .

Γ(3)
Λ =

{
γ(3)

a , γ̂(3)
"

} ∈ H3(X̂, D; Z)

H3(X̂, D; Z)

D
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The “Special Geometry” of N=1 Vacua

Basic object: “relative” period vector

Monodromy:  
mixes flux and brane numbers

“Non-renormalization” property:
boundary (open string) quantities can get modified/corrected 
by bulk (N=2, closed) string quantities, but not vice versa:                                      

(note: brane->brane+flux, not v.v)

z = z(t), ẑ = ẑ(t, t̂)

The         can be analytically continued to the strongly 
coupled, non-perturbative regime, to eg. find exact 
vacuum states (extrema of the potential).
..analogous to monopole singularities for N=2 SUSY.
Here: tensionsless domain walls.

contains the holomorphic potentials of “N=1 Special Geometry”

for flux (N=2 closed str) subsector:

for boundary (open str) subsector: do not integrate!

...reflects that N=1 SUSY theories are less constrained than their 
N=2 counterparts

ΠΛ =

∫
ΓΛ

ω(3,0) =
{
1, ta, t̂k, ∂aF(t), W#(t, t̂), . . .

}

ΠΛ

Wa(t) = ∂aF(t)

W!(t, t̂)

M
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Stability and SUSY Breaking

In the open string sector, SUSY is typically broken by

Open string is a tachyon 
which implies an unstable vacuum

eff Potential V

D-brane

Anti-D-brane

DA

D̄B

... equivalent to bound state problem for wrapped branes

Central charges play a crucial role: 

TAB

m2
AB ∼ Im ln[ZA/ZB]

ZA

ZB

ZC

mC < mA + mB

ZA
ZC

ZB

mC = mA + mB

SUSY broken
TAB

SUSY restored

Line of marginal 
stability:
bound state decays

Again: need to 
have global 
analytic control!

TAB

M
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Outlook

We have covered only one “patch” of approaches to/aspects of  
N=1 supersymmetric string vacua ....

F-theory/4-folds

N=1 Special 
Geometry

Open string BCFT

Chern-Simons SFT

topological Vertex

DV Matrix Models

homological mirror 
symmetry

AdS Correspondence

large N open/closed 
String Transitions

Quivers

supposed complete, underlying math framework to describe all
D-branes, in terms of certain derived categories (Kontsevich)

... equal footing of fundamental branes and their bound 
states, of branes and anti-branes

DA
T→ DC → DB → DA

maps = tachyons objects=(anti) D-branes

N = 1

M-theory/G2 
manifolds
orbifolds


