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Mirror Symmetry and N=1 Supersymmetry

Exactly computable quantities are typically “BPS”:
holomorphic objects protected by SUSY

N=2:  prepotential                (+ infin sequence       ) 

N=1:  superpotential     ,  gauge coupling       
                                        (+ infin sequence          ) 

Non-pert. exact results for string and YM theories !

(matrix theory, Chern-Simons, mirror symmetry....)

Reminds of the well-known computation of F for N=2 SUSY:
“special geometry”, “TFT”, “geometric engineering”

We will show how to put the computation of N=1 
superpotentials on an analogous footing:

                         
           N=1 Special Geometry

(main new ingredient: D-branes)

Recent progress:

τW

F Fg

Fg,h

W.Lerche, Trieste Spring School 2003Part 1
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Motivation: Quantum Geometry of D-branes

Notions of classical geometry (eg., “branes 
wrapping p-cycles, with gauge bundles on top”) 
make sense only at large radius/weak coupling

instanton corrections wipe out
classical geometry

Moduli space

“Gepner point”:  rational CFT description

Monodromy:
brane configuration maps into “different” one

involving “other” branes and 
fluxes

Stability:
brane configuration may become unstable

brane-
antibrane pair

brane-
brane pair
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To address such problems, we need to have full
analytical control of F,W, over the full parameter
space ....which is more than just a series expansion
at weak coupling !

Note however:

N=2 SUSY:       moduli space

N=1 SUSY:       W = obstruction to moduli space

STRING THEORY ON CALABI-YAU MANIFOLDS, 
By Brian R. Greene, http://arxiv.org/abs/hep-th/9702155

ON THE GEOMETRY BEHIND N=2 SUPERSYMMETRIC EFFECTIVE 
ACTIONS IN FOUR-DIMENSIONS. 
By A. Klemm, http://arxiv.org/abs/hep-th/9705131

http://arxiv.org/abs/hep-th/9702155
http://arxiv.org/abs/hep-th/9705131
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Overview

Part 1   
Recap: N=2 special geometry and mirror symmetry

Type II strings on Calabi-Yau manifolds

Mirror map

Topological field theory

Hodge variation and DEQ for period integrals

Part 2   
Fluxes and D-branes on Calabi-Yau manifolds

Superpotentials from fluxes

Mirror symmetry and D-branes

Quantum D-geometry

Part 3   
N=1 SUSY and open string mirror symmetry

Superpotentials from D-branes

Relative cohomology and mixed Hodge variations

Differential equations for exact superpotentials
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Recap: Type II Strings on Calabi-Yau 3-folds

For preserving N=2 SUSY in d=4, the compact 
6dim manifold X should be Kahler and moreover, a{

c1(R) = 0

Holonomy group SU(3)

global holom 3-form  Ω (3,0)
Calabi-Yau manifold

gij̄ = ∂ i∂̄ jKmetric Kahler potential

The string compactification is described by a 2dim
N=(2,2) superconformal sigma model on X with
c=9, plus a free space-time sector

The induced N=2 SUSY effective action in d=4 
contains massless fields, including hyper- and
vector supermultiplets

Its bosonic sector gives a sigma model with 
target space

M = MV × MH

“decoupling”:

(special Kahler) (quaternionic)

J (1,1) = igij̄dzidz̄j̄Kahler (1,1) form
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These massless scalar fields correspond to
deformation parameters (moduli) of the CY, X.

Kahler moduli (size parameters)

There are two sorts of moduli:

These are associated with (p,q) differential forms

which are closed but not exact, ie., are non-
trivial elements of the cohomology groups

Hp,q

∂̄
(X, C) ≡

{ω (p,q)|∂̄ ω (p,q) = 0}
{η (p,q)|η (p,q) = ∂̄ ρ (p,q−1)}

How do the moduli map to the fields in the effective
Lagrangian ?

Complex structure moduli (shape parameters)

(hp,q = “Hodge numbers”)

ω (p,q) ≡ ω i1,...,ip,j̄1,...,j̄q
dzi1 ∧ . . . dzip ∧ dz̄j̄1 ∧ . . . dz̄j̄q

These give zero modes of Laplacian: ∆ ∂̄ = ∂̄ ∂̄ † + ∂̄ †∂̄

ti ∼ ω
(1,1)
i , i = 1, ..., h1,1 ≡ dimH1,1

za ∼ ω (2,1)
a , a = 1, ..., h2,1 ≡ dimH2,1

(massless fields in 4d)
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Mirror Symmetry of CY threefolds

For “every” Calabi-Yau    , there exists a mirror    
such that the Kahler and complex structure
sectors are exchanged:

H1,1(X) ∼= H2,1(X̂)

H2,1(X) ∼= H1,1(X̂)

The physical meaning is:

Type IIA strings compactified on    are
indistinguishable from Type II strings 
compactified on the mirror of  

IIA / X ← → IIB / X̂

MH = MCS(X) = MKS(X̂)

MV = MKS(X) = MCS(X̂)

(We will consider here only the vector 
supermultiplet moduli space)

X

X̂

X X̂

i.e., hp,q(X) = h3−p,q(X̂)

(-dilaton)
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size of 2-cycles 
governed by Kahler 
param  

Type IIA Type IIB 

X̂X

world sheet instantons
wrapping 

size of 3-cycles 
governed by CS 
param  

γ 2
i

γ 2
i

ti za

Important quantities: quantum volumes (”periods”)

no instantons can
wrap !

Why is mirror symmetry useful ?

... basic idea:

“A-model”:
 corrected

“B-model”:
 exact !

Π A

γ 2
i

∼ tk + O(e−t) ∼ ln(z)k + O(z)

γ 3
A

γ 3
A

∫
γ 2k

(∧ J (1,1))k + ... = Π A =

∫
γ 3

Ω (3,0)
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Significance:
The periods are the building blocks of the prepotential.

Pick an integral basis of homology 3-cycles with

intersection metric
                                                      structure

Thus one can split:         

and write:

In terms of these ‘’symplectic sections”, one has
for the prepotential:

What remains to do is to insert the mirror map:

which gives:

Σ =

(
0 1

−1 0

)

ti(z) = − ln(za) + . . . → za = qi(1 + O(q))

Lis(q) ≡
∑

k

qk

ks

︸ ︷︷ ︸ ︸ ︷︷ ︸
classical instanton 

corrections

Integers counting maps

P 1 → X

(q ≡ e−t)

F(t) =
1

3!
c0

ijkt
itjtk +

∑
n1...nr

Nn1...nr
Li3(q1

n1...qr
nr)

Sp(2h2,1 + 2, Z)

{γ A} → {γ a, γ b}

Π A(z) =
(
Xa, Fb

)
≡

( ∫
γ 3

a

Ω (3,0),

∫
γ 3

b

Ω (3,0)
)
(z)

F(z) =
1

2
XaFa(z)
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Special Geometry of the N=2 Vector-Moduli space

The prepotential F can be understood from three 
inter-related viewpoints:

as 4d N=2 space-time effective 
Lagrangian  of vector supermultiplets

A)

gauge couplings
“Yukawa” couplings
Kahler potential

τ ij(t) = ∂ i∂ jF(t)
cijk(t) = ∂ i∂ j∂ kF(t)

2d world-sheet topological field theoryB)

 F = generating function of TFT correlators

cijk(t) ≡ 〈OiOjOk〉 = ∂ i∂ j∂ kF(t)

Oi · Oj =
∑

k

cij
k(t)OkOPE: “chiral ring”

chiral,              primary        chiral fields:

G+
−1/2Oi|0〉NS = G±

+1/2Oi|0〉NS = 0

{G+
−1/2, G−

1/2}Oi|0〉NS = (2L0 − J0)Oi|0〉NS = 0

From N=2 algebra follows:

h(Oi) = 1/2|q(Oi)|Thus: (no pole in OPE)

K(t, t̄) = − ln[X̄aFa − XaF̄a]

R

However: need consider pairing of left-, right-moving 
sectors ....  (c,c)  and (a,c) rings
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Topological Sigma-Model on Calabi-Yau Manifold

N=(2,2) supercharges:

Topological twist:
Redefine spins such that two of these supercharges
become scalars to serve as BRST operator with

S =
1

4π α ′

∫
Σ

d2z
[
1/2gmn∂ Xm∂̄ Xn+

+i gījλ
īDzλ

j + i gījψ
īDz̄ψ

j + Rīijj̄ψ
iψ īλ jλ j̄

¯
Q+ = gjl

Xj Q
¯−

= gil
iX

QBRST
2 = 0

This condition projects to a finite number of 
physical states in the TFT

Idea: the physical spectrum corresponds to the non-
trivial cohomology elements on X, via

QBRST ↔ d = ∂ + ∂̄

Ambiguity in choosing which supercharges 
correspond to          !
    There are 2 inequivalent possibilities:

“A-model”:

“B-model”:

∂ , ∂̄

QBRST = Q+ + Q̄−

QBRST = Q+ + Q̄+

Q+ =

∮
gījψ

ī∂ Xj Q− =

∮
gij̄ψ

i∂ Xj̄

Q̄+ =

∮
gījλ

ī∂̄ Xj Q̄− =

∮
gij̄λ

i∂̄ Xj̄
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A-Model:

Observables:

The Kahler moduli correspond to

correspond to differential forms on X via:

λ i ↔ dzi, ψ j̄ ↔ dz̄j̄

BRST non-trivial operators           correspond to 
cohomology classes

O
(p,q)
A

H0,q

∂̄
(∧ pT ∗ ) ∼= Hp,q

∂̄
(X)

O
(1,1)
A = ω

(1,1)

ij̄
λ iψ j̄ ∈ H1,1

and generate the (c,c) chiral ring via the OPE:

QBRST = Q+ + Q̄−

The 3-point correlators look:

=

∫
X

ω
(1,1)
i ∧ ω

(1,1)
j ∧ ω

(1,1)
k

 classical 
“intersection”

Instanton corrections

{u} = holomorphic rational maps 

+
∑
{u}

e−
∫

u∗ J

∫
u∗ ω

(1,1)
i

∫
u∗ ω

(1,1)
j

∫
u∗ ω

(1,1)
k

P 1 → X

O
(p,q)
A = ω

(p,q)

i1...ipj̄1...j̄q
λ i1...λ ipψ j̄1...ψ j̄q

cijk(t) = 〈O(1,1)
A,i O

(1,1)
A,j O

(−2,−2)
A,k 〉

R(c,c) : O
(1,1)
A,i · O

(1,1)
A,j =

∑
k

cij
k O

(2,2)
A,k
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B-Model:

Observables:

The complex structure moduli correspond to

correspond to differential forms on X via:

BRST non-trivial operators           correspond to 
cohomology classes

and generate the (a,c) chiral ring via the OPE:

The 3-point correlators look:

QBRST = Q+ + Q̄+

λ i ≡ gij̄λ
j̄ ↔ d/dzi, ψ j̄ ↔ dz̄j̄

O
(p,q)
B

H0,q

∂̄
(∧ pT ) ∼= H−p,q

∂̄
(X)

O
(−1,1)
B = ω (−1,1)i

j̄λ iψ
j̄ ∈ H−1,1 ∼= H2,1

=

∫
X

(Ω (3,0)ω (−1,1)
a ∧ ω

(−1,1)
b ∧ ω (−1,1)

c ) ∧ Ω (3,0)

This is an exact, classical result !  
(constant maps only)

Note: a negative degree can be converted to
a positive via contraction with the holom 3-form:

Ω (3,0) : ω (−p,q) → ω (3−p,q)

[ ]

O
(p,q)
B = ω (p,q)i1...ip

j̄1...j̄q
λ i1...λ ip

ψ j̄1...ψ j̄q

R(a,c) : O
(−1,1)
B,a · O

(−1,1)
B,b =

∑
c

cab
c O

(−2,2)
B,c

cabc(z) = 〈O(−1,1)
B,a O

(−1,1)
B,b O

(2,−2)
B,c 〉
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Recap: Classical and quantum cohomology rings

B-Model:

(a,c) chiral ring 

is isomorphic to the classical cohomology ring

O
(−1,1)
B,a · O

(−1,1)
B,b =

∑
c

cab
c O

(−2,2)
B,c

H2,1(X) ∪ H2,1(X) → H1,2(X)

A-Model:

(c,c) chiral ring 

is isomorphic to a quantum deformation of the 
cohomology ring

O
(1,1)
A,i · O

(1,1)
A,j =

∑
k

cij
k O

(2,2)
A,k

H1,1(X) ∪ H1,1(X) → H2,2(X)

because of the instanton corrections

Mirror symmetry:

A model on     is equivalent to the B-model on  X X̂

c
(A)
ijk (t) =

∑ ∂ za

∂ ti

∂ zb

∂ tj

∂ zc

∂ tk

c
(B)
abc(z(t))

classical

∂ i∂ j∂ kF(t)

=

quantum 
corrected

R(c,c)(X) ∼= R(a,c)(X̂) ∼= H3
∂̄ (X̂)

(complex structure moduli)

(Kahler moduli)
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C)

Consider in B-model the variation of the 
holomorphic 3-form under deformations of
the complex structure:

Viewpoint of variation of Hodge structures

Ω (3,0)(z) ∈ H(3,0)

δ zΩ
(3,0)(z) ∈ H(3,0) ⊕ H(2,1)

(δ z)
2Ω (3,0)(z) ∈ H(3,0) ⊕ H(2,1) ⊕ H(1,2)

(δ z)
3Ω (3,0)(z) ∈ H(3,0) ⊕ H(2,1) ⊕ H(1,2) ⊕ H(0,3)

(notion of complex 
     structure changes)

Sequence terminates when H3 is exhausted,
so higher derivatives are not independent    

Fixing a basis of H3, we can thus write a matrix DEQ:

Recursive elimination of the higher components
gives a set of higher order “Picard-Fuchs” operators”
acting on integrals of the holom 3-form:

(true modulo exact pieces)

La ·
∫

γ 3
A

Ω (3,0) ≡ LaΠ A = 0

The solutions are thus nothing but the periods
we were looking for !

! ≡


Ω (3,0)

ω (2,1)
a

ω (1,2)
a

Ω (0,3)

∇ a! ≡
[
∂ za

− Aa(z)
]

· ! = 0
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Flatness of moduli space:

The matrix first oder operator can be decomposed:

Γ a =


∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗



One can show that 
[
∇ a, ∇ b

]
= 0

“Gauss-Manin”-connection chiral ring structure 
constants

which means that there are “flat” coordinates,
for which the connection vanishes, Γ a = 0

These flat coordinates are precisely the Kahler
parameter of the associated A-model,          !

For these coordinates one has:

ti(za)

=
(
1, ti, ∂ iF , 2F − tj∂ jF

)

so indeed:

∇ a ≡ ∂ za
− Aa(z) = ∂ za

− Γ a − Ca

Ca =


1
(ca)bc

1



F(t) =
1

2
XaFa(z(t))

Π A(z(t)) =
(
X0, Xi, F i, F0

)
(z(t))

∼
(
1, t, t2 + O(e−t), t3 + O(e−t)

)
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The charge vectors q are the most basic data of 
“toric” Calabi-Yau’s  X: LSM formulation is canonical

Idea: describe 2d superconformal non-linear sigma-
models as IR limits of a linear sigma model (A)
or Landau-Ginzburg model (B)

A-Model on    :

LSM = 2d U(1) gauge theory with fields      ,  charges

D-term potential: V = D2,

φ n

Fayet-Iliopoulos parameters = Kahler moduli of X

X

qi
n

D =
∑

n

qi
n|φ n|2 − ti = 0

Periods and DEQs for toric Calabi-Yau manifolds

Linear Sigma Model

(LSM)

Landau-Ginzburg 

Model (LG)

non-linear Sigma 

A-type Model  

non-linear Sigma 

B-type Model  

Type IIA on   X Type IIB on   ̂X

IR IR

mirror

mirror

(i = 1, ..., h1,1(X))
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B-Model on     :

Mirror geometry is described by IR limit of a 2d
Landau-Ginzbug (LG) model, which is defined entirely
in terms of the charge vectors      of the A-model !

X̂

LG superpotential:

qi
n

with constraint:

(a = 1, ..., h2,1(X̂) ≡ h1,1(X))

za ∼ e−ta + ...

WLG =
∑

n

anyn∏
n

yn
qa

n = 1

X̂

The {an} parametrize the complex structure deformations 

of       via ∏
n

an
qa

n = za

(mirror map)

Note: yn ∈
{

C X̂  if      compact

  if     non-compactC ∗ X̂ (yn = e−ϕ n)

We will consider only non-compact CY in the following

holomorphic 3-form Ω (3,0)(a(z)) =
∏
n

dyn

yn

e−WLG(y,a)

satisfies Picard-Fuchs equation:

La Ω (3,0) ≡

 ∏
n|qa

n>0

( ∂

∂ an

) qa
n−

∏
n|qa

n<0

( ∂

∂ an

) qa
n

 Ω (3,0) = 0

All what remains to do is to change variables a -> z(a)

PF equations immediate once the defining toric data
(charge vectors q) of the Calabi-Yau are given ! 
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linear sigma model on P2
:

Example: normal bundle on P2

linear sigma model on O(-3)P2
:

q1
n = (1, 1, 1)

q1
n = (−3, 1, 1, 1)

add extra non-
compact coo to get CY

B-model LG potential:

WLG = a0y0 + a1y1 + a2y2 + a3

y0
3

y1y2

have used constraint

PF operator:

rewriting in terms of                    gives:              

y1y2y3

y0
3

= 1

z =
a1a2a3

a0
3

...is of generalized hypergeometric type

Solutions for the periods:

∂ tF (z) ∼ G3,1
3,3(−z||1/3) + G3,1

3,3(−z||2/3) ∼ ln(z)2 + ...

invert t(z) and insert, integrate:

F(t) = −1/18t3 +
∑

n

NnLi3(e
−nt)

indeed integers... counting world-sheet instantons in P2

c1 ∼
∑

qn = 0

(θ ≡ z∂ /∂ z)

L1 =
∂

∂ a1

∂

∂ a2

∂

∂ a2

−
( ∂

∂ a0

) 3

L1(z) = θ 3 + 3zθ (1 + 3θ )(2 + 3θ )

t(z) ∼ ln(z) + 3
∑

(−)n(3n − 1)!(n!)−3zn
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Recap: N=2 Special Geometry and Mirror Symmetry

Quantity of interest:  N=2 prepotential of 
type II compactifications on CY threefolds

Building blocks: periods

(classical)

∂ i∂ j∂ kF(t) = cijk(t) =

(instanton corrections)

~ deformed chiral ring structure constants

Mirror symmetry implies

R(c,c)(X) ∼= R(a,c)(X̂) ∼= H3
∂̄ (X̂)

in practice obtained as solution of PF diff eqs;
these are obtained directly from the toric CY data

F(t) =
1

2
XaFa(z(t))

Π A(z) ≡
(
Xa, Fb

)
=

∫
γ 3

A

Ω (3,0)(z)

= c
(0)
ijk +

∑
nl

Nninjnk
ninjnk

∏
m qm

nm

1 −
∏

m qm
nm

(A-model)

R(c,c) : Oi · Oj =
∑

k

cij
k(t)Ok


