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[Mirror Symmetry and N=1 Supersymmetry J

Part 1 W.Lerche, Trieste Spring School 2003

@Exactly computable quantities are typically “BPS”:
holomorphic objects protected by SUSY

N=2: prepotential F (+ infin sequence F, )

@Recent progress:

N=1: superpotential W, gauge coupling 7T
(+ infin sequence F,p )

Non-pert. exact results for string and YM theories !
(matrix theory, Chern-Simons, mirror symmetry....)

~

Reminds of the well-known computation of F for N=2 SUSY:

“special geometry”, “TFT", “geometric engineering”

@ We will show how to put the computation of N=1
superpotentials on an analogous footing:

[ N=1 Special Geometry ]

(main new ingredient: D-branes)
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[ Motivation: Quantum Geometry of D-branes J

@ Notions of classical geometry (eg., “branes
wrapping p-cycles, with gauge bundles on top”)
make sense only at large radius/weak coupling

Moduli space

instanton corrections wipe out
classical geometry

“Gepner point”: rational CFT description

@ Monodromy:
brane configuration maps into “different” one

involving “other” branes and
fluxes

brane- Y

antibrane pair brane-

brane pair

@ Stability:
brane configuration may become unstable



@ To address such problems, we need to have full
analytical control of F,W, over the full parameter
space ....which is more than just a series expansion
at weak coupling !

@ Note however:
N=2 SUSY: moduli space

N=1 SUSY: W = obstruction to moduli space

STRING THEORY ON CALABI-YAU MANIFOLDS,
By Brian R. Greene, http://arxiv.org/abs/hep-th/9702155

ON THE GEOMETRY BEHIND N=2 SUPERSYMMETRIC EFFECTIVE
ACTIONS IN FOUR-DIMENSIONS.
By A. Klemm, http://arxiv.org/abs/hep-th/9705131



http://arxiv.org/abs/hep-th/9702155
http://arxiv.org/abs/hep-th/9705131

[ Overview :B

@ Part 1

Recap: N=2 special geometry and mirror symmetry

@ Type Il strings on Calabi-Yau manifolds

@ Mirror map
® Topological field theory
@ Hodge variation and DEQ for period integrals

@ Part 2
Fluxes and D-branes on Calabi-Yau manifolds

@ Superpotentials from fluxes
@ Mirror symmetry and D-branes
® Quantum D-geometry
@ Part3
N=1 SUSY and open string mirror symmetry

@ Superpotentials from D-branes
@ Relative conomology and mixed Hodge variations

@ Differential equations for exact superpotentials

6

[ Recap: Type Il Strings on Calabi-Yau 3-folds J

@ For preserving N=2 SUSY in d=4, the compact
6dim manifold X should be Kahler and moreover, a

ci(R) =0
Calabi-Yau manifold Holonomy group SU(3)
global holom 3-form 0 (3:0)

metric g;; = 0;0; K  Kahler potential

Kahler (1,1) form J&V = ig.-dz'dz’

@ The string compactification is described by a 2dim
N=(2,2) superconformal sigma model on X with
c=9, plus a free space-time sector

@ The induced N=2 SUSY effective action in d=4
contains massless fields, including hyper- and
vector supermultiplets

“decoupling™:

Its bosonic sector gives a sigma model with
target space

M= My X Mg

(special Kahler) (quaternionic)



@ These massless scalar fields correspond to
deformation parameters (moduli) of the CY, X.

These are associated with (p,q) differential forms

WP = - dZM AL dZ AdEA L. dE

L1yee0slps19eeesdq

which are closed but not exact, ie., are non-
trivial elements of the cohomology groups

{w(paQ)léw(pv(J) — 0}

p.q ==
Hg (X,C) = {n@a)|nP.q) zép(p,q—l)}

These give zero modes of Laplacian: A; = 89" 4+ 879
(massless fields in 4d)

@ There are two sorts of moduli:
Kahler moduli (size parameters)
t; ~ w i=1,.., k" = dimH"Y
Complex structure moduli (shape parameters)

Zg ~ w(gz’l), a=1,..,h*" = dimH?*!

(hP9 = “Hodge numbers”)

@ How do the moduli map to the fields in the effective
Lagrangian ?

{i Mirror Symmetry of CY threefolds J

@ For “every” Calabi-Yau X, there exists a mirror X
such that the Kahler and complex structure
sectors are exchanged:

H"'(X)
H*'(X)

H2,1(§(\)
Hl,l(x\)

~
~

ie., k(X)) = h3PI(X)

@ The physical meaning is:

Type IlA strings compactified onX are
indistinguishable from Type Il strings
compactified on the mirror of X

ITA/X «— IIB/X

Mpy = Mces(X) = Mgs(X)
Mg s(X) Mcs(X)

£
I

(We will consider here only the vector
supermultiplet moduli space)



Why is mirror symmetry useful ? @ Significance:

The periods are the building blocks of the prepotential.
.. basic idea:

Pick an integral basis of homology 3-cycles with
Type IIA Type IIB
. . . 01 91
intersection metric X = (_1 0> Sp(2h*" + 2, 7)
structure

Thus one can split: {v4} — {7a> 0}

@ and write:
IIa(z) = (Xa, .7-'b> = / QG0 / Qe 0> (z)
Ya ’Y
. 2 . 3
size of 2-cycles™; size of 3-cycles 74 In terms of these “symplectic sections”, one has
governed by Kahler governed by CS for the prepotential:
param t; param z, 1
( F(z) = EXQ}'“(z)J
Important quantities: quantum volumes ("periods”) I14 What remains to do is to insert the mirror map:
ti(z) = —In(za) +... — 24 =qi(1 4+ O(q))
(1,1)\k . — — (3,0) .t
,sz(/\J )+ Ha /73 ‘2 which gives: (g=e™)
- 1 ° n n
~ t"+ O(e™) ~ In(2)* + O(2) []’(t) = SOt > Ny Lig(@™..q,™) }
world sheet instantons no instantons can — —
wrapping 77 wrap ! classical instanton
corrections g
A-model™ B-model™. Integers counting maps Lis(q) = )
corrected exact ! pl_, x — k°
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[i Special Geometry of the N=2 Vector-Moduli space J

(i Topological Sigma-Model on Calabi-Yau Manifold J

The prepotential F can be understood from three 1
inter-related viewpoints: S=—— [ d’2[1/2gn, 0 X™OX"+
4o’ »
A) as 4d N=2 space-time effective +i g N'D. N + i g;;p' Deyp? + Ryggp'p' NN
Lagrangian of vector supermultiplets

_ N=(2,2) supercharges:
gauge couplings T;;(t) = 8;0;F (t)

“Yukawa” couplings c;jr(t) = 0;0;0:F (1) Q. = fggj@bzan Q- = fgﬁwiaX?
Kahler potential K(t,t) = —In[X,F* — X, F° ~ o ~ o
Q- = oNoxXI Q- = fgpnox

Topological twist:

Redefine spins such that two of these supercharges
become scalars to serve as BRST operator with

B) 2d world-sheet topological field theory
F = generating function of TFT correlators

Cijk(t) = <OZOJO]€> = 8zajakf(t)

QprsT° = 0
OPE: [O" 05 = Z cij*(t)Or.  “chiral ring” RJ This condition projects to a finite number of
k physical states in the TFT
chiral, primary chiral fields: @ Idea: the physical spectrum corresponds to the non-
Gf1/20i|0)NS — Gfl/20i|O>N5 =0 trivial cohomology elements on X, via
From N=2 algebra follows: Qprst <« d = 0+0
{G*,,,,G1,}0il0)ns = (2Lo — Jo)Oil0)ns = O Ambiguity in choosing which supercharges

correspond to 9, 8!
There are 2 inequivalent possibilities:

“A-model”: @prst = Q+ + Q_
“B-model”: @Brst = Q4 + Q+

Thus: h(O;) = 1/2|q(O;)| (no polein OPE)

@ However: need consider pairing of left-, right-moving
sectors .... (c,c) and (a,c) rings
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® A-Model: Qsrst = Q. + Q_

Observables: ij”q) — WPD__\i N\ieqpr, qpda

21 lp.?l Jq

correspond to differential forms on X via:
Ao s dzt, Wl s dZI
BRST non-trivial operators Off’q)correspond to
o, * ~Y ,
cohomology classes H_/(APT*) = HEP?(X)
The Kahler moduli correspond to
OS—al) — wf;al)Al¢5 6 Hl,l

and generate the (c,c) chiral ring via the OPE:

R(c©) . 0(1 1) 1(41,31) Z c”k 0(2 ,2)

The 3-point correlators look:
ciju(t) = <0(11)0(11)0 -2, 2)>

:/ WD A
b's
+Ze‘f“*J’/u*w§1’1)/u w(l 1)/u*w,(€1’1)

{u}

(1 1)/\ (1 1) classical
“intersection”

Instanton corrections

{u} = holomorphic rational maps P! — X

14

® B-Model: Qprsr = Q++ Q.
Observables: 077 = (p’q);ll..;” X, P

correspond to differential forms on X via:
Ai = gN > d/dzt, ¢ dF

BRST non-trivial operators 0'%9 correspond to
cohomology classes H ’q(/\pT) = H;"(X)

[ Note: a negative degree can be converted to

a positive via contraction with the holom 3-form:
QGO . ,E=pa) _, ,B-pq)

The complex structure moduli correspond to
01(3—1,1) — w(—l,l)%}\iwﬁ e H 1~ g1
and generate the (a,c) chiral ring via the OPE:
R@): of V.05 = Y euc052?
The 3-point correlators look:

-1,1 -1,1 2,—2
cave(z) = (05 P05 O5 )

_ / (9(3,0)0}2—1,1) /\w,()_l’l) /\wé—l,l)) A QB0
X

This is an exact, classical result !
(constant maps only)
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[Recap: Classical and quantum cohomology rings ]

@ B-Model: (complex structure moduli)

(a,c) chiral ring O( LY ( 1 ) Z Cab© O](B—,cz,z)
is isomorphic to the classical cohomology ring

H*(X)Uu H*'(X) — H“(X)
@ A-Model: (Kahler moduli)

(c,c) chiral ring O( D ijj) = > ¢ O(2 2)
k

is isomorphic to a quantum deformation of the

cohomology ring

H"(X)u H"(X) — H**(X)
because of the instanton corrections

@ Mirror symmetry:

[A model on X is equivalent to the B-model on X ]

REI(X) =2 ROI(X) = H(X)

quantum classical

02,0z, 0z,

corrected (A)(t) _ Z
ot; 0t; Oty

'Lgk

abc (Z(t))
I
0;0;0,F (1)
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C) Viewpoint of variation of Hodge structures

Consider in B-model the variation of the
holomorphic 3-form under deformations of
the complex structure:

QB9 (z) ¢ HBOY (notion of complex
5 Q(s,o)(z) e HGO g HE@D structure changes)
(6.)2QC9(2) ¢ HB3Y ¢ HEZGD ¢ H12)
3()(3,0) (3,0) (2,1) (1,2) (0,3)
(6,)°QY(2) € H & H & H & H

Sequence terminates when H? is exhausted,
so higher derivatives are not independent

Fixing a basis of H3, we can thus write a matrix DEQ:

(true modulo exact pieces) (3,0

w(2 1)
w(l 2)
Q(O 3)

Voo = |0, — Au(2) |0 = 0 =

Recursive elimination of the higher components
gives a set of higher order “Picard-Fuchs” operators”
acting on integrals of the holom 3-form:

Ea-/ QB0 = £.1I4, = 0
74

The solutions are thus nothing but the periods
we were looking for !
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® Flatness of moduli space: [Periods BRRIDEQS for toric Calabiyel manifoldsJ

The matrix first oder operator can be decomposed:
|ldea: describe 2d superconformal non-linear sigma-

models as IR limits of a linear sigma model (A)

Va = 8;, = Au(z) = 0;, —Ta—Cy or Landau-Ginzburg model (B)
* 1 Type llAon X Type IIB on X
r,o— | ** C, — (Ca)be
* kK 1 Linear Sigma Model Landau-Ginzburg
* % % % (LSM) : Model (LG)
mirror
“Gauss-Manin”-connection chiral ring structure
constants
IRv IR '
One can show that [V“’ Vb} =0 non-linear Sigma non-linear Sigma
) ) A-type Model . B-type Model
which means that there are “flat” coordinates, mirror
for which the connection vanishes, I', = 0
These flat coordinates are precisely the Kahler @ A-Model on X:
parameter of the associated A-model, £;(2a)! LSM = 2d U(1) gauge theory with fields ¢n, chargesq’,
For these coordinates one has: D-term potential: V' = D2,
Ma(2(t)) = (Xo, Xis 7, F°) (2(1)) D = S qilpaf—t: = 0

_ (1, ti, OiF, 2F — tjaj]-'> | -
Fayet-lliopoulos parameters = Kahler moduli of X

~ <1, t, t2 + Oe7?), t3 + O(e_t)) (i = 1, ooy BY (X))
_ _ 1 . The charge vectors q are the most basic data of
soindeed: F(t) = §X“‘7: (2(2)) “toric” Calabi-Yau’s X: LSM formulation is canonical
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@ B-Model on X :

Mirror geometry is described by IR limit of a 2d
Landau-Ginzbug (LG) model, which is defined entirely
in terms of the charge vectors g, of the A-model !

LG superpotential: Wige = Zanyn

with constraint: HyntIZ =1
n

The {a_} parametrize the complex structure deformations
of X via
a," = zq4 (a=1,...,h?(X) = h(X))

Zqa ~ e ta4 ... (mirror map)

C ifx compact
® Note: Yn € . e -
C* if Xnon-compact (y,, = e~ ")

We will consider only non-compact CY in the following

. dy,,
@ holomorphic 3-form  QG%(a(z)) = [ 22 e Wiclwa)

n n

satisfies Picard-Fuchs equation:

@ linear sigma model on P2.

@ PF operator: £, =

o 0 \.

£, 030 = { H (a_an>qfi_ H (a_an>qn

n|q2>0 n|q2<0

9(3’0) — 0

All what remains to do is to change variables a -> z(a)

PF equations immediate once the defining toric data
(charge vectors q) of the Calabi-Yau are given !
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[ Example: normal bundle on sz

a, = (1,1,1)
linear sigma model on O(-3)P2: qi =(-3,1,1,1)

add extra non-
compact coo to get CY ¢1 ~~ Z g, =0

@ B-model LG potential:

3

Yo
Wie = aoyo + a1y1 + a2y + as
Y1Y2
have used constraint y1y23y3 =1
Yo

o 0 0 0 \3
da, dasdas (8a0>

a azas

rewriting in terms of z = gives:

a03

Li(z) = 6°+3260(1 + 30)(2 + 30)

...Is of generalized hypergeometric type (6 = z9/0z)

@ Solutions for the periods:

t(z) ~In(z) +3) (—)"(3n — 1)!(n!)~?2"
8;F (z) ~ G33(—211/3) 4+ G33(—=2[12/3) ~ In(2)? + ...
invert t(z) and insert, integrate:

F(t) = —1/18t*+ ) N,Liz(e ™)

indeed integers... counting world-sheet instantons in P2



21

[ Recap: N=2 Special Geometry and Mirror Symmetry:]J

@ Quantity of interest: N=2 prepotential of
type Il compactifications on CY threefolds

1
F(t) = JXuF(2(1))
@ Building blocks: periods

H4(2) = (X F) = / QB0 (2)

74

in practice obtained as solution of PF diff egs;
these are obtained directly from the toric CY data

® (A-model)

82838141?('[2) = Cijk;(t) =

= C(Q])C + Z Npnjn, TN L g™
7 1y TE
’ n; ’ 1-—- Hm qmnm
(classical) (instanton corrections)

~ deformed chiral ring structure constants
RO . O; - Oj = Z Cijk(t)ok
k

@ Mirror symmetry implies

REN(X) =2 ROI(X) = HE(X)



