Mirror Symmetry and N=1 Supersymmetry

Part 1
W.Lerche, Trieste Spring School 2003

OExactly computable quantities are typically "BPS": holomorphic objects protected by SUSY
$\mathrm{N}=2:$ prepotential $\mathcal{F} \quad\left(+\right.$ infin sequence $\left.\mathcal{F}_{g}\right)$

ORecent progress:
$\mathrm{N}=1$: superpotential \mathcal{W}, gauge coupling $\boldsymbol{\tau}$

$$
\left(+ \text { infin sequence } \mathcal{F}_{g, h}\right)
$$

Non-pert. exact results for string and YM theories !
(matrix theory, Chern-Simons, mirror symmetry....)

Reminds of the well-known computation of F for $\mathrm{N}=2$ SUSY: "special geometry", "TFT", "geometric engineering"

OWe will show how to put the computation of $N=1$ superpotentials on an analogous footing:

> N=1 Special Geometry

Motivation: Quantum Geometry of D-branes

O Notions of classical geometry (eg., "branes wrapping p-cycles, with gauge bundles on top") make sense only at large radius/weak coupling

instanton corrections wipe out classical geometry
"Gepner point": rational CFT description

O Monodromy: brane configuration maps into "different" one involving "other" branes and fluxes

O Stability:

brane configuration may become unstable

O To address such problems, we need to have full analytical control of F, W, over the full parameter spacewhich is more than just a series expansion at weak coupling !

STRING THEORY ON CALABI-YAU MANIFOLDS,
By Brian R. Greene, http://arxiv.org/abs/hep-th/9702155

ON THE GEOMETRY BEHIND N=2 SUPERSYMMETRIC EFFECTIVE ACTIONS IN FOUR-DIMENSIONS.
By A. Klemm, http://arxiv.org/abs/hep-th/9705131

O Note however:
N=2 SUSY: moduli space
N=1 SUSY: $\quad W=$ obstruction to moduli space

O Part 1

Recap: $\mathrm{N}=2$ special geometry and mirror symmetry
O Type II strings on Calabi-Yau manifolds

- Mirror map

O Topological field theory
O Hodge variation and DEQ for period integrals

- Part 2

Fluxes and D-branes on Calabi-Yau manifolds

- Superpotentials from fluxes
- Mirror symmetry and D-branes

O Quantum D-geometry

- Part 3
$\mathrm{N}=1$ SUSY and open string mirror symmetry
O Superpotentials from D-branes
O Relative cohomology and mixed Hodge variations
O Differential equations for exact superpotentials

O For preserving $\mathrm{N}=2$ SUSY in d=4, the compact 6dim manifold X should be Kahler and moreover, a

Calabi-Yau manifold $\left\{\begin{array}{l}c_{1}(\boldsymbol{R})=0 \\ \text { Holonomy group } \operatorname{SU}(3) \\ \text { global holom 3-form } \Omega^{(3,0)}\end{array}\right.$
metric $g_{i \bar{j}}=\partial_{i} \bar{\partial}_{j} K \quad$ Kahler potential
Kahler $(1,1)$ form $J^{(1,1)}=i g_{i \bar{j}} d z^{i} d \bar{z}^{\bar{j}}$

O The string compactification is described by a 2dim $N=(2,2)$ superconformal sigma model on X with $\mathrm{c}=9$, plus a free space-time sector

O The induced $\mathrm{N}=2$ SUSY effective action in $\mathrm{d}=4$ contains massless fields, including hyper- and vector supermultiplets
"decoupling":
Its bosonic sector gives a sigma model with target space
$\mathcal{M}=\mathcal{M}_{V} \times \mathcal{M}_{H}$
(special Kahler) (quaternionic)

O These massless scalar fields correspond to deformation parameters (moduli) of the CY, X.

These are associated with (p, q) differential forms
$\omega^{(p, q)} \equiv \omega_{i_{1}, \ldots, i_{p}, \bar{j}_{1}, \ldots, \bar{j}_{q}} d z^{i_{1}} \wedge \ldots d z^{i_{p}} \wedge d \bar{z}^{\bar{j}_{1}} \wedge \ldots d \bar{z}^{\bar{j}_{q}}$
which are closed but not exact, ie., are nontrivial elements of the cohomology groups

$$
H_{\bar{\partial}}^{p, q}(X, C) \equiv \frac{\left\{\omega^{(p, q)} \mid \bar{\partial} \omega^{(p, q)}=0\right\}}{\left\{\eta^{(p, q)} \mid \eta^{(p, q)}=\bar{\partial} \rho^{(p, q-1)}\right\}}
$$

These give zero modes of Laplacian: $\Delta_{\bar{\partial}}=\bar{\partial} \bar{\partial}^{\dagger}+\bar{\partial}^{\dagger} \bar{\partial}$ (massless fields in 4d)

O There are two sorts of moduli:
Kahler moduli (size parameters)

$$
t_{i} \sim \omega_{i}^{(1,1)}, \quad i=1, \ldots, h^{1,1} \equiv \operatorname{dim} H^{1,1}
$$

Complex structure moduli (shape parameters)

$$
z_{a} \sim \omega_{a}^{(2,1)}, \quad a=1, \ldots, h^{2,1} \equiv \operatorname{dim} H^{2,1}
$$

($\mathrm{h}^{\mathrm{p}, \mathrm{q}}=$ "Hodge numbers")

O How do the moduli map to the fields in the effective Lagrangian?

Mirror Symmetry of CY threefolds

- For "every" Calabi-Yau \boldsymbol{X}, there exists a mirror $\widehat{\boldsymbol{X}}$ such that the Kahler and complex structure sectors are exchanged:

$$
\begin{aligned}
& H^{1,1}(X) \cong H^{2,1}(\widehat{\boldsymbol{X}}) \\
& H^{2,1}(X) \cong H^{1,1}(\widehat{\boldsymbol{X}}) \\
& \text { i.e., } h^{p, q}(X)=h^{3-p, q}(\widehat{\boldsymbol{X}})
\end{aligned}
$$

O The physical meaning is:

> Type IIA strings compactified on \boldsymbol{X} are indistinguishable from Type II strings compactified on the mirror of \boldsymbol{X}

$$
\begin{aligned}
& \underline{I I A / X} \longleftrightarrow \boldsymbol{I I B} / \widehat{\boldsymbol{X}} \\
& \mathcal{M}_{H}^{(\text {(-dilaton) })}=\mathcal{M}_{C S}(X)=\mathcal{M}_{K S}(\widehat{\boldsymbol{X}}) \\
& \mathcal{M}_{V}=\mathcal{M}_{K S}(\boldsymbol{X})=\mathcal{M}_{C S}(\widehat{\boldsymbol{X}})
\end{aligned}
$$

(We will consider here only the vector supermultiplet moduli space)

Why is mirror symmetry useful?
... basic idea:

Type IIA

Type IIB

size of 2-cycles γ_{i}^{2} governed by Kahler param $\boldsymbol{t}_{\boldsymbol{i}}$

size of 3-cycles γ_{A}^{3} governed by CS param z_{a}

Important quantities: quantum volumes ("periods") Π_{A}

$$
\begin{array}{ll}
\int_{\gamma^{2 k}}\left(\wedge J^{(1,1)}\right)^{k}+\ldots=\Pi_{A}=\int_{\gamma^{3}} \Omega^{(3,0)} \\
\sim t^{k}+\mathcal{O}\left(e^{-t}\right) & \sim \ln (z)^{k}+\mathcal{O}(z)
\end{array}
$$

world sheet instantons wrapping γ_{i}^{2}
no instantons can wrap!

```
"B-model":
    exact!
```

O Significance:
The periods are the building blocks of the prepotential.

Pick an integral basis of homology 3-cycles with
intersection metric $\Sigma=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right) \begin{aligned} & \text { Structure }\end{aligned}$
Thus one can split: $\left\{\gamma_{A}\right\} \rightarrow\left\{\gamma_{a}, \gamma_{b}\right\}$ and write:

$$
\Pi_{A}(z)=\left(X_{a}, \mathcal{F}^{b}\right) \equiv\left(\int_{\gamma_{a}^{3}} \Omega^{(3,0)}, \int_{\gamma_{b}^{3}} \Omega^{(3,0)}\right)(z)
$$

In terms of these "symplectic sections", one has for the prepotential:

$$
\mathcal{F}(z)=\frac{1}{2} X_{a} \mathcal{F}^{a}(z)
$$

What remains to do is to insert the mirror map:

$$
t_{i}(z)=-\ln \left(z_{a}\right)+\ldots \rightarrow z_{a}=q_{i}(1+\mathcal{O}(q))
$$

which gives:

$$
\left(q \equiv e^{-t}\right)
$$

Special Geometry of the $\mathrm{N}=2$ Vector-Moduli space

The prepotential F can be understood from three inter-related viewpoints:
A) as 4 d N=2 space-time effective Lagrangian of vector supermultiplets

$$
\begin{array}{lrl}
\text { gauge couplings } & \tau_{i j}(t) & =\partial_{i} \partial_{j} \mathcal{F}(t) \\
& \text { "Yukawa" couplings } & c_{i j k}(t)
\end{array}=\partial_{i} \partial_{j} \partial_{k} \mathcal{F}(t) .
$$

B) 2d world-sheet topological field theory
$\mathrm{F}=$ generating function of TFT correlators
$c_{i j k}(t) \equiv\left\langle O_{i} O_{j} O_{k}\right\rangle=\partial_{i} \partial_{j} \partial_{k} \mathcal{F}(t)$

OPE: | $O_{i} \cdot O_{j}=\sum_{k} c_{i j}{ }^{k}(t) O_{k} \quad$ "chiral ring" \mathcal{R} |
| ---: | :--- | chiral, primary chiral fields:

$G_{-1 / 2}^{+} O_{i}|0\rangle_{N S}=G_{+1 / 2}^{ \pm} O_{i}|0\rangle_{N S}=0$
From $\mathrm{N}=2$ algebra follows:
$\left\{G_{-1 / 2}^{+}, G_{1 / 2}^{-}\right\} O_{i}|0\rangle_{N S}=\left(2 L_{0}-J_{0}\right) O_{i}|0\rangle_{N S}=0$
Thus: $h\left(O_{i}\right)=1 / 2\left|q\left(O_{i}\right)\right| \quad$ (no pole in OPE)

O However: need consider pairing of left-, right-moving sectors (c, c) and (a, c) rings

Topological Sigma-Model on Calabi-Yau Manifold

$$
\begin{aligned}
& S=\frac{1}{4 \pi \alpha^{\prime}} \int_{\Sigma} d^{2} z\left[1 / 2 g_{m n} \partial X^{m} \bar{\partial} X^{n}+\right. \\
& \quad+i g_{\bar{i} j} \lambda^{i} D_{z} \lambda^{j}+i g_{\bar{i} j} \psi^{\bar{i}} D_{\bar{z}} \psi^{j}+R_{i \bar{i} \bar{j}} \psi^{i} \psi^{\bar{i}} \lambda^{j} \lambda^{\bar{j}}
\end{aligned}
$$

$\mathrm{N}=(2,2)$ supercharges:

$$
\begin{array}{rlrl}
Q_{+} & =\oint g_{\bar{i} j} \psi^{\bar{i}} \partial X^{j} & Q_{-} & =\oint g_{i \bar{j}} \psi^{i} \partial X^{\bar{j}} \\
\bar{Q}_{+} & =\oint g_{\bar{i} j} \lambda^{\bar{i}} \bar{\partial} X^{j} & \bar{Q}_{-}=\oint g_{i \bar{j}} \lambda^{i} \bar{\partial} X^{\bar{j}}
\end{array}
$$

Topological twist:

Redefine spins such that two of these supercharges become scalars to serve as BRST operator with

$$
Q_{B R S T}{ }^{2}=0
$$

This condition projects to a finite number of physical states in the TFT

O Idea: the physical spectrum corresponds to the nontrivial cohomology elements on X, via

$$
Q_{B R S T} \leftrightarrow d=\partial+\bar{\partial}
$$

Ambiguity in choosing which supercharges correspond to $\partial, \bar{\partial}$!
There are 2 inequivalent possibilities:

$$
\begin{aligned}
& \text { "A-model": } Q_{B R S T}=Q_{+}+\bar{Q}_{-} \\
& \text {"B-model": } Q_{B R S T}=Q_{+}+\bar{Q}_{+}
\end{aligned}
$$

OA-Model: $Q_{B R S T}=Q_{+}+\bar{Q}_{-}$
Observables: $O_{A}^{(p, q)}=\omega_{i_{1} \ldots i_{p} \bar{j}_{1} \ldots \bar{j}_{q}}^{(p, q)} \lambda^{i_{1}} \ldots \lambda^{i_{p}} \psi^{\bar{j}_{1}} \ldots \psi^{\bar{j}_{q}}$ correspond to differential forms on X via:

$$
\lambda^{i} \leftrightarrow d z^{i}, \quad \psi^{\bar{j}} \leftrightarrow d \bar{z}^{\bar{j}}
$$

BRST non-trivial operators $O_{A}^{(p, q)}$ correspond to cohomology classes $\boldsymbol{H}_{\bar{\partial}}^{0, q}\left(\wedge^{p} \boldsymbol{T}^{*}\right) \cong \boldsymbol{H}_{\bar{\partial}}^{p, q}(\boldsymbol{X})$

The Kahler moduli correspond to

$$
O_{A}^{(1,1)}=\omega_{i \bar{j}}^{(1,1)} \lambda^{i} \psi^{\bar{j}} \in H^{1,1}
$$

and generate the (c, c) chiral ring via the OPE:

$$
\mathcal{R}^{(c, c)}: O_{A, i}^{(1,1)} \cdot O_{A, j}^{(1,1)}=\sum_{k} c_{i j}^{k} O_{A, k}^{(2,2)}
$$

The 3-point correlators look:

$$
\begin{aligned}
c_{i j k}(t) & =\left\langle O_{A, i}^{(1,1)} O_{A, j}^{(1,1)} O_{A, k}^{(-2,-2)}\right\rangle \\
& =\int_{X} \omega_{i}^{(1,1)} \wedge \omega_{j}^{(1,1)} \wedge \omega_{k}^{(1,1)} \begin{array}{c}
\text { classical } \\
\text { "intersection" }
\end{array} \\
& +\sum_{\{u\}} e^{-\int u^{*} J} \int u^{*} \omega_{i}^{(1,1)} \int u^{*} \omega_{j}^{(1,1)} \int u^{*} \omega_{k}^{(1,1)}
\end{aligned}
$$

Instanton corrections
$\{u\}=$ holomorphic rational maps $P^{1} \rightarrow X$

○ B-Model: $\quad Q_{B R S T}=Q_{+}+\bar{Q}_{+}$
Observables: $O_{B}^{(p, q)}=\omega^{(p, q)}{ }_{\bar{j}_{1} \ldots i_{1} \ldots i_{p}}^{i_{q}} \boldsymbol{\lambda}_{i_{1}} \ldots \boldsymbol{\lambda}_{i_{p}} \psi^{\bar{j}_{1}} \ldots \psi^{\bar{j}_{q}}$ correspond to differential forms on X via:

$$
\lambda_{i} \equiv g_{i \bar{j}} \lambda^{\bar{j}} \leftrightarrow d / d z^{i}, \quad \psi^{\bar{j}} \leftrightarrow d \bar{z}^{\bar{j}}
$$

BRST non-trivial operators $O_{B}^{(p, q)}$ correspond to cohomology classes $\boldsymbol{H}_{\bar{\partial}}^{0, q}\left(\wedge^{p} \boldsymbol{T}\right) \cong \boldsymbol{H}_{\bar{\partial}}^{-p, q}(\boldsymbol{X})$

Note: a negative degree can be converted to a positive via contraction with the holom 3-form:

$$
\Omega^{(3,0)}: \omega^{(-p, q)} \rightarrow \omega^{(3-p, q)}
$$

The complex structure moduli correspond to

$$
O_{B}^{(-1,1)}=\omega^{(-1,1) i}{ }_{\bar{j}} \lambda_{i} \psi^{\bar{j}} \in \boldsymbol{H}^{-1,1} \cong \boldsymbol{H}^{2,1}
$$

and generate the (a, c) chiral ring via the OPE:

$$
\mathcal{R}^{(a, c)}: O_{B, a}^{(-1,1)} \cdot O_{B, b}^{(-1,1)}=\sum_{c} c_{a b}^{c} O_{B, c}^{(-2,2)}
$$

The 3-point correlators look:

$$
\begin{aligned}
c_{a b c}(z) & =\left\langle O_{B, a}^{(-1,1)} O_{B, b}^{(-1,1)} O_{B, c}^{(2,-2)}\right\rangle \\
& =\int_{X}\left(\Omega^{(3,0)} \omega_{a}^{(-1,1)} \wedge \omega_{b}^{(-1,1)} \wedge \omega_{c}^{(-1,1)}\right) \wedge \Omega^{(3,0)}
\end{aligned}
$$

This is an exact, classical result ! (constant maps only)

O B-Model: (complex structure moduli)
(a,c) chiral ring $O_{B, a}^{(-1,1)} \cdot O_{B, b}^{(-1,1)}=\sum_{c} c_{a b}{ }^{c} O_{B, c}^{(-2,2)}$ is isomorphic to the classical cohomology ring

$$
H^{2,1}(X) \cup H^{2,1}(X) \rightarrow H^{1,2}(X)
$$

O A-Model: (Kahler moduli)
(c, c) chiral ring $O_{A, i}^{(1,1)} \cdot O_{A, j}^{(1,1)}=\sum_{k} c_{i j}{ }^{k} O_{A, k}^{(2,2)}$
is isomorphic to a quantum deformation of the cohomology ring

$$
H^{1,1}(X) \cup H^{1,1}(X) \rightarrow H^{2,2}(X)
$$

because of the instanton corrections
O Mirror symmetry:
A model on \boldsymbol{X} is equivalent to the B-model on $\widehat{\boldsymbol{X}}$

$$
\mathcal{R}^{(c, c)}(X) \cong \mathcal{R}^{(a, c)}(\widehat{X}) \cong H_{\partial}^{3}(\widehat{X})
$$

quantum corrected

$$
\underset{\quad{ }_{i j k}^{(A)}(t)}{ }=\sum \frac{\partial z_{a}}{\partial t_{i}} \frac{\partial z_{b}}{\partial t_{j}} \frac{\partial z_{c}}{\partial t_{k}} c_{a b c}^{(B)}(z(t))
$$

$$
\partial_{i} \partial_{j} \partial_{k} \mathcal{F}(t)
$$

C) Viewpoint of variation of Hodge structures

Consider in B-model the variation of the holomorphic 3 -form under deformations of the complex structure:

$$
\begin{aligned}
\Omega^{(3,0)}(z) & \in \boldsymbol{H}^{(3,0)} \quad \text { (notion of complex } \\
\delta_{z} \Omega^{(3,0)}(z) & \in \boldsymbol{H}^{(3,0)} \oplus \boldsymbol{H}^{(2,1)} \quad \text { structure changes) } \\
\left(\delta_{z}\right)^{2} \Omega^{(3,0)}(z) & \in \boldsymbol{H}^{(3,0)} \oplus \boldsymbol{H}^{(2,1)} \oplus \boldsymbol{H}^{(1,2)} \\
\left(\delta_{z}\right)^{3} \Omega^{(3,0)}(z) & \in \boldsymbol{H}^{(3,0)} \oplus \boldsymbol{H}^{(2,1)} \oplus \boldsymbol{H}^{(1,2)} \oplus \boldsymbol{H}^{(0,3)}
\end{aligned}
$$

Sequence terminates when H^{3} is exhausted, so higher derivatives are not independent

Fixing a basis of H^{3}, we can thus write a matrix DEQ:
(true modulo exact pieces)
$\nabla_{a} \varpi \equiv\left[\partial_{z_{a}}-A_{a}(z)\right] \cdot \varpi=0 \quad \varpi \equiv\left(\begin{array}{c}\Omega^{(3,0)} \\ \omega_{a}^{(2,1)} \\ \omega_{a}^{(1,2)} \\ \Omega^{(0,3)}\end{array}\right)$
Recursive elimination of the higher components gives a set of higher order "Picard-Fuchs" operators" acting on integrals of the holom 3-form:

$$
\mathcal{L}_{a} \cdot \int_{\gamma_{A}^{3}} \Omega^{(3,0)} \equiv \mathcal{L}_{a} \Pi_{A}=0
$$

The solutions are thus nothing but the periods we were looking for!

O Flatness of moduli space:
The matrix first oder operator can be decomposed:

$$
\nabla_{a} \equiv \partial_{z_{a}}-A_{a}(z)=\partial_{z_{a}}-\Gamma_{a}-C_{a}
$$

$$
\Gamma_{a}=\left(\begin{array}{l}
* \\
* * \\
* * * \\
* * * *
\end{array}\right) \quad C_{a}=\left(\begin{array}{ll}
1 & \\
& \left(c_{a}\right)_{b c} \\
& \\
& \\
&
\end{array}\right)
$$

"Gauss-Manin"-connection chiral ring structure constants

One can show that $\left[\nabla_{a}, \nabla_{b}\right]=0$
which means that there are "flat" coordinates, for which the connection vanishes, $\Gamma_{a}=0$

These flat coordinates are precisely the Kahler parameter of the associated A-model, $t_{i}\left(z_{a}\right)$!

For these coordinates one has:

$$
\begin{aligned}
\Pi_{A}(z(t)) & =\left(\boldsymbol{X}_{0}, \boldsymbol{X}_{i}, \mathcal{F}^{i}, \mathcal{F}^{0}\right)(z(t)) \\
& =\left(1, t_{i}, \partial_{i} \mathcal{F}, 2 \mathcal{F}-t^{j} \partial_{j} \mathcal{F}\right) \\
& \sim\left(1, t, t^{2}+\mathcal{O}\left(e^{-t}\right), t^{3}+\mathcal{O}\left(e^{-t}\right)\right)
\end{aligned}
$$

so indeed: $\quad \mathcal{F}(t)=\frac{1}{2} X_{a} \mathcal{F}^{a}(z(t))$

Periods and DEQs for toric Calabi-Yau manifolds

Idea: describe 2d superconformal non-linear sigmamodels as IR limits of a linear sigma model (A) or Landau-Ginzburg model (B)

O A-Model on \boldsymbol{X} :
LSM $=2 \mathrm{~d} \mathrm{U}(1)$ gauge theory with fields ϕ_{n}, charges q_{n}^{i}
D-term potential: $V=D^{2}$,

$$
D=\sum_{n} q_{n}^{i}\left|\phi_{n}\right|^{2}-t_{i}=0
$$

Fayet-lliopoulos parameters $=$ Kahler moduli of X

$$
\left(i=1, \ldots, h^{1,1}(X)\right)
$$

The charge vectors q are the most basic data of "toric" Calabi-Yau's X: LSM formulation is canonical

Mirror geometry is described by IR limit of a 2d

Landau-Ginzbug (LG) model, which is defined entirely in terms of the charge vectors \boldsymbol{q}_{n}^{i} of the A-model!

$$
\begin{aligned}
& \text { LG superpotential: } \quad W_{L G}=\sum_{n} a_{n} y_{n} \\
& \text { with constraint: } \quad \prod_{n} y_{n} q_{n}^{a}=1
\end{aligned}
$$

The $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ parametrize the complex structure deformations of $\widehat{\boldsymbol{X}}$ via

$$
\begin{gathered}
\prod_{n} a_{n}{ }^{q_{n}^{a}}=z_{a} \quad\left(a=1, \ldots, h^{2,1}(\widehat{X}) \equiv h^{1,1}(X)\right) \\
z_{a} \sim e^{-t_{a}}+\ldots \quad(\text { mirror map })
\end{gathered}
$$

O Note: $y_{n} \in \begin{cases}C & \text { if } \widehat{X} \text { compact } \\ C^{*} & \text { if } \widehat{X} \text { non-compact }\left(y_{n}=e^{-\varphi_{n}}\right)\end{cases}$
We will consider only non-compact CY in the following
O holomorphic 3-form $\Omega^{(3,0)}(a(z))=\prod_{n} \frac{d y_{n}}{y_{n}} e^{-W_{L G}(y, a)}$
satisfies Picard-Fuchs equation:

$$
\mathcal{L}_{a} \Omega^{(3,0)} \equiv\left[\prod_{n \mid q_{n}^{a}>0}\left(\frac{\partial}{\partial a_{n}}\right)^{q_{n}^{a}}-\prod_{n \mid q_{n}^{a}<0}\left(\frac{\partial}{\partial a_{n}}\right)^{q_{n}^{a}}\right] \Omega^{(3,0)}=0
$$

All what remains to do is to change variables a -> $z(a)$
PF equations immediate once the defining toric data (charge vectors q) of the Calabi-Yau are given!

Example: normal bundle on P^{2}

O linear sigma model on $\mathrm{P}^{2}: \quad q_{n}^{1}=(1,1,1)$
linear sigma model on $\mathrm{O}(-3) \mathrm{P}^{2}: \quad q_{n}^{1}=(-3,1,1,1)$
add extra non-
compact coo to get $\mathrm{CY} \boldsymbol{c}_{1} \sim \sum \boldsymbol{q}_{n}=0$
O B-model LG potential:

$$
\begin{aligned}
& \qquad W_{L G}=a_{0} y_{0}+a_{1} y_{1}+a_{2} y_{2}+a_{3} \frac{y_{0}{ }^{3}}{y_{1} y_{2}} \\
& \text { have used constraint } \frac{y_{1} y_{2} y_{3}}{y_{0}{ }^{3}}=1
\end{aligned}
$$

- PF operator: $\mathcal{L}_{1}=\frac{\partial}{\partial a_{1}} \frac{\partial}{\partial a_{2}} \frac{\partial}{\partial a_{2}}-\left(\frac{\partial}{\partial a_{0}}\right)^{3}$ rewriting in terms of $z=\frac{a_{1} a_{2} a_{3}}{a_{0}{ }^{3}}$ gives:

$$
\mathcal{L}_{1}(z)=\theta^{3}+3 z \theta(1+3 \theta)(2+3 \theta)
$$

...is of generalized hypergeometric type $(\theta \equiv z \partial / \partial z)$
O Solutions for the periods:

$$
t(z) \sim \ln (z)+3 \sum(-)^{n}(3 n-1)!(n!)^{-3} z^{n}
$$

$$
\partial_{t} F(z) \sim G_{3,3}^{3,1}(-z \| 1 / 3)+G_{3,3}^{3,1}(-z \| 2 / 3) \sim \ln (z)^{2}+\ldots
$$

invert $\mathrm{t}(\mathrm{z})$ and insert, integrate:

$$
\mathcal{F}(t)=-1 / 18 t^{3}+\sum_{n} N_{n} L i_{3}\left(e^{-n t}\right)
$$

indeed integers... counting world-sheet instantons in P^{2}

Recap: N=2 Special Geometry and Mirror Symmetry

O Quantity of interest: $\mathrm{N}=2$ prepotential of type II compactifications on CY threefolds

$$
\mathcal{F}(t)=\frac{1}{2} X_{a} \mathcal{F}^{a}(z(t))
$$

O Building blocks: periods

$$
\Pi_{A}(z) \equiv\left(\boldsymbol{X}_{a}, \mathcal{F}^{b}\right)=\int_{\gamma_{A}^{3}} \Omega^{(3,0)}(z)
$$

in practice obtained as solution of PF diff eqs; these are obtained directly from the toric CY data

- (A-model)

$$
\begin{aligned}
\partial_{i} \partial_{j} \partial_{k} \mathcal{F}(t) & =c_{i j k}(t)= \\
& =c_{i j k}^{(0)}+\sum_{n_{l}} N_{n_{i} n_{j} n_{k}} n_{i} n_{j} n_{k} \frac{\prod_{m} q_{m}^{n_{m}}}{1-\prod_{m} q_{m}^{n_{m}}} \\
& \text { (classical) } \quad \text { (instanton corrections) }
\end{aligned}
$$

~ deformed chiral ring structure constants

$$
\mathcal{R}^{(c, c)}: \quad O_{i} \cdot O_{j}=\sum_{k} c_{i j}^{k}(t) O_{k}
$$

O Mirror symmetry implies

$$
\mathcal{R}^{(c, c)}(X) \cong \mathcal{R}^{(a, c)}(\widehat{X}) \cong \boldsymbol{H}_{\bar{\partial}}^{3}(\widehat{X})
$$

