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Fluxes and D-branes on Calabi-Yau manifolds

Physical motivation:  
reduce SUSY from N=2 to N=1

Flux though p-cycle

CY 3-fold X

D-brane wraps p-cycle and 
extends over space-time

N=1 SUSY on 3+1d world volume

What are the effective superpotential W,
and the effective gauge couplings ?

New feature: open string instantons
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Turning on fluxes

The 10d Type II strings have various 
massless antisymmetric, (p-1)-form tensor 

fields C(p-1), coupling to (p-2)-branes.

Field strengths:   

In a CY compactification, various H’s can be “turned 
on”, ie, the H-flux through a p-cycle is non-zero:

H
(p)
NSNS H

(p)
RR

Type IIA:  p=       3,7                  2,4,6,8

Type IIB:  p=      1,3,7               1,3,5,7,9

We will mainly consider only (quantized) RR-fluxes, 
corresponding to D-branes

10d action:   non-vanishing flux will typically induce 
                     non-zero potentials and SUSY breaking

∫
γ p

H(p) != 0

H(p) = dC(p−1)

S ∼
∫

H(p) ∧ ∗ H(p)
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Type IIB string on three-fold     with 3-form flux

It can be shown that upon turning on H(3)
 flux, N=2

SUSY is broken to N=1 SUSY with superpotential:

Denote 3-cycle dual to flux H(3) by    
and expand in integral symplectic basis of 3-cycles:

H̃(3) ≡ τ H
(3)
NSNS + H

(3)
RR

Type IIB coupling: 

set in the following H
(3)
NSNS → 0

Γ 3

Γ 3 = Naγ 3
a + Nbγ 3

b

WIIB/X̂ =

∫
X̂

Ω (3,0) ∧ H̃(3)

= NaXa + NbFb ≡ NAΠ A(z)

Then

where Π A = (Xa, Fb) are nothing but the period
integrals !

X̂

WIIB/X̂(z) =

∫
Γ 3

Ω (3,0)(z)

τ ≡ C(0) + i e−ϕ

Na ∈ Z
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Type IIA string on three-fold      with fluxes

Thus, the superpotential is completely determined by 
the “bulk” geometry:  spont. broken N=2 SUSY

Rule:  replace period by volume integrals
          ... will be corrected by world-sheet instantons

flux numbers

Note that flux appears as auxiliary field in N=2 eff action

A priori, it would be hard to compute the instanton 
corrections, but mirror symmetry predicts

X

Π A(z(t)) = (Xa, Fb) =
(
1, ti, ∂ iF , 2F − ti∂ iF

)

Φ = t + θ 2H(2) + ...

Thus, if

as above !

then 

= N (6) + N (4)t + N (2)t2 + N (0)t3 + O(e−t)

WIIA/X(t) = WIIB/X̂(z) =
∑

NAΠ A(z(t))

〈H(2)〉 = N (2) #= 0∫
d4θ F(Φ ) → ∫

d2θ N (2) ∂
∂ Φ

F(Φ ) ≡ W

WIIA/X(t) =

∫
X

3∑
k=1

H
(2k)
RR

( ∧ J (1,1)
) 3−k

+ ...
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A first glimpse of Quantum Geometry: monodromy

the dimensions of p-cycles loose their invariant meaning !  

Periods                            :  sections valued in 

Non-trivial loops in the moduli space 
will thus induce monodromy

Π A = (Xa, Fb) Sp(2h2,1+2, Z)

Π A → Π A · R, R ∈ Sp(2h2,1+2, Z)

Consider eg looping around 
in the semi-classical, large volume regime:

z ∼ e2π it → 0

t ∼ 1
2π i

ln z → t + 1

Thus 

Looping generic (non-perturbative) singularities will
typically mix all fluxes which each other:

NA → R · NA

Since

NA =

∫
γ pA

H(pA)

Z = N (6) + N (4)t + ...

→ (N (6) + N (4) + ...) + (N (4) + ...)t + ...

MCS(X̂)
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D-Branes on Calabi-Yau manifolds

The eff space-time physics depends on the
properties of the wrapped internal part of the brane   

induced metric

Various manifestations:

CY 3-folds X

world volume
3+1d  N=1 SUSY “brane world”

p-branes wrapping p-cycles 
appear as particle excitations in 
N=2 eff theory

Σ Σ

We are interested in BPS configurations that break 
1/2 of the SUSY  (N=2 -> N=1)

Condition for “SUSY p-cycles”: 
covariantly constant spinor    , with  η

Γ ≡ 1√
h

ε α 1...α p+1∂ α 1X
m1...∂ α p+1X

mp+1Γ m1...mp+1

(1 − Γ )η = 0

pull-back to 
world-vol

10d Gamma
matrices

Two classes of solutions:

“A-type” branes:  wrap special lagrangian cycles 

“B-type” branes:  wrap holomorphic cycles 

Σ
(p=3)
A

Σ
(p=0,2,4,6)
B
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A-type branes

Wrap “special lagrangian” cycles Σ A

dim(Σ A) = 1/2dim(X) = 3

f ∗ J (1,1) = 0

Pull-back of Kahler form vanishes;   f : Σ A → X

f ∗ (Im eiθ Ω (3,0)) = 0

Pull-back of holom 3-form vanishes   

U(1) gauge field on world-volume must be flat

F = 0

What are the moduli of the brane ?
A priori:   

dimR(MΣ A
) = b1(Σ A)

which can be odd ... 
but we need complex fields for SUSY reasons

Pair up with “Wilson line” moduli of the flat U(1) 
gauge connection to get complexified moduli 
fields:

t̂i, i = 1, ..., dimC(MΣ A
, WL) = b1(Σ A)
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B-type D-branes

Wrap holomorphic submanifolds:       ,   p=0,2,4,6 

Apart from the holomorphic embedding geometry,                        
                      , there is more structure: 
the gauge field configuration, “U(N) bundle V”
(if N branes coincide)

Eg for D6 branes (wrapping all of X), SUSY requires
that the gauge bundle V is holomorphic:

Important correspondence:

(NB: further “stability” requirements)

Gauge field configuration V               brane bound states                            

...due to anomalous world-volume couplings:

f : Σ B → X

Fij̄ = 0

RR tensor fields Dirac genus

C ≡
⊕

k

C(k)

{
Â(R) = 1 + 1/24R2 + ...Type IIA: k=odd

Type IIB: k=even

Σ
(p)
B

SWZ =

∫
Σ

(p)
B ×R

C ∧ Tr[eF ] ∧
√

Â(R)
∣∣∣
p+1form

Chern 
character of V
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so if there is an instanton configuration V such that
then there is an induced coupling

                                   =  source term for n D0-branes !

Example: D4-brane

SWZ =

∫
Σ

(4)
B ×R

1
2 C(1) ∧ F ∧ F + ...

More generally:

n gauge instantons on p-brane

bound state of the p- with 
n (p-4)-D-branes

n

∫
C(1)

Even more generally:

A brane configuration of r D6 branes on CY X
is characterized by the “generalized Mukai” charge 
vector Q:

Q = Tr[eF ] ∧
√

Â(R)

=
(
Tr1, T rF, 1

2(TrF )2 − TrF 2 + 1
24TrR2, ...

)
∫

X

Q =

=
(
r(V ), c1(V ), ch2(V ) + r

24c2(TΣ B
), ch3(V ) + r

24c1(V )c2(TΣ B
)
)

Thus

D-brane RR charges=
(
M (6), M (4), M (2), M (0)

)
This gives direct translation between gauge bundle data
(Chern classes of V) and D-brane charge content   

1
2

∫
F ∧ F = n
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non-linear Sigma 

A-type Model  

non-linear Sigma 

A-type Model  

Mirror symmetry and D-branes

Recap mirror map:

B-branes wrapped over
holom. (0,2,4,6) cycles
of

RR fields:

Type IIA/X ← → Type IIB/X̂

{
C(1), C(3), C(5), ...

} ← → {
C(0), C(2), C(4), ...

}
Dp(=even) branes Dp(=odd) branes

Equivalence of non-perturbative theories implies
equivalence of

A-branes wrapped over
special lagrangian 3-
cycles of 

This is reflected in the 2d string world-sheet boundary 
conditions of the N=(2,2) superconformal currents:

B-type branes A-type branes

JL = JR

TL = TR

JL = −JR

G±
L = ±G±

R G±
L = ∓ G±

R

TL = TR

Mirror symmetry just switches                      !JR ↔ −JR

X X̂
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Tension of wrapped D-branes

(particles in 4d N=2 SUSY)

Recall factorization of CY moduli space:

MX = MKS(t) × MCS(z)

~    ...even        ...odd     cycles

The mass of wrapped B-branes depends only on the 
Kahler moduli t, while the mass of the A-branes 
depends only on the complex structure moduli z.

Recall BPS mass formula: mBPS = |Z|
Central charge Z in N=2 SUSY algebra{
Q+, Q−}

= p · γ + Z

A-branes in Type IIB: 

essentially given by volume of wrapped cycle

B-branes in Type IIA:  

= Q0 +
∫

J (1,1) ∧ Q2 + 1
2

∫
J (1,1) ∧ J (1,1) ∧ Q4 + ...

(instanton corr)

Mirror symmetry:

= M (0) + M (2)t + M (4)∂ tF (t) + M (6)(2F − t∂ tF)(t)

= M (0) + M (2)t + M (4)t2 + M (6)t3 + O(e−t)

ZA/IIB(z) = MA
∫

γ 3
A
Ω (3,0)(z) = MAΠ A(z)

ZB/IIA(t) =
∫

X eJ (1,1) ∧ Q + O(e−t)

ZB/IIA(t) = ZB/IIA(z(t))
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Quantum Volume

Non-trivial identification:

MA
∫

γ 3
A
Ω (3,0)(z) = M (0)+M (2)t+M (4)∂ tF (t)+M (6)F0(t)

3-cycles on
on equal footing

0,2,4,6-cycles on
on equal footing too !

X X̂

Massless state in 4d:

for some AZ = 0 : Π A → 0

Example: 
conifold singularity (strong coupling region)

Type IIB:   3-cycle Type IIA:   
6-cycle quantum volume 

(whole CY) X shrinks to 
nothing! 

However, the “embedded” 
0,2,4 cycles do not have 
vanishing quantum volume:

The classical geometric picture is 
swamped out by instanton corrections

MCS(X̂)

F0(t) → 0γ 3
A → 0

(1, t, ∂ tF (t)) !→ 0
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Again we see that the notion of p-cycles, and gauge 
bundle configurations V on top of them, has no good
meaning away from the semi-classical large radius limit !

Monodromy of RR charges

Recall that when encircling singularities in                ,
monodromies will be induced on the periods:

Π A → Π A · R, R ∈ Sp(2h2,1+2, Z)

Thus, just as before the flux numbers NA, now the D-

brane charges MA will get mixed.

Eg., encircling                           in z ∼ e2π it → 0 MCS(X̂)

induces  t -> t+1, and

Z = M (0) + M (2)t + ....

→ (M (0) + M (2) + ...) + (M (2) + ...)t + ...

ie., the D0 brane number jumps 

roughly: ”tensoring V by a line bundle”: Z∼ ∫
eJ (1,1) ∧ eF

MCS(X̂)

MCS(X̂)
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Central charge and domain walls 

What is the significance ?

We have seen that in type IIB compactifications, 

3-fluxes H(3) induce an N=1 superpotential:

WN=1(z) = NAΠ A(z)

However the same expression gave the central charge
of a wrapped D3 A-type brane:

Replace fully wrapped D3 brane by a D5 brane:

X̂ X̂

Domain wall in 3+1d

Central charge of a 
DW is known to be Z = ∆ WN=1

However, the D5 brane tension is 
still 

Z(z) = MAΠ A(z)

γ 3
A

γ 3
A

Z = MA

∫
γ 3

A

Ω (3,0) = MAΠ A

and it generates MA
 units of H(3) 

flux across the domain wall
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Moduli of D-brane configurations

Consider 1/2 BPS configurations breaking to N=1 SUSY:

Σ

CY moduliX

brane (and bundle) moduli 

4d N=1 SUSY eff action
depends how on moduli ?

t, z

t̂, ẑ

Seff(t, t̂, z, ẑ)

Focus on

complex structure moduli:

z ∼ γ 3
A

ẑ ∼ γ̂ 3
N

sizes of 3-cycles

sizes of 3-chains

Kahler moduli:

t ∼ γ 2
i

t̂ ∼ γ̂ 2
n

sizes of P1's

sizes of disks ending on D-brane

Decoupling theorems (from CFT):

B-branes

A-branes

W (z, ẑ), τ (z, ẑ)

D(t, t∗ , t̂, t̂∗ )

W (t, t̂), τ (t, t̂)
D(z, z∗ , ẑ, ẑ∗ )

holom. potentials

FI D-term potential

holom. potentials

FI D-term potential

{
{
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Preview

Next time:  use mirror symmetry

and set up math framework for systematically 
computing superpotentials for a large class of D-
brane geometries

WA/IIA(t, t̂) = WB/IIB(z(t), ẑ(t, t̂))


