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[ Fluxes and D-branes on Calabi-Yau manifolds jB

Part 2 W.Lerche, Trieste Spring School 2003

@ Physical motivation:
reduce SUSY from N=2 to N=1

<«— D-brane wraps p-cycle and
Flux though p-cycle extends over space-time

S~

N=1 SUSY on 3+1d world volume

What are the effective superpotential W,
and the effective gauge couplings ?

@ New feature: open string instantons

[ Turning on fluxes J

@ The 10d Type Il strings have various
massless antisymmetric, (p-1)-form tensor
fields C®), coupling to (p-2)-branes.

Field strengths: H® — gCc®-1

H¥ys H)
Type llIA: p= 3,7 2,46,8
Type lIB: p= 1,3,7 1,3,5,7,9

@ In a CY compactification, various H’s can be “turned
on”, ie, the H-flux through a p-cycle is non-zero:

H® £ 0
ryP
We will mainly consider only (quantized) RR-fluxes,
corresponding to D-branes

@ 10d action: non-vanishing flux will typically induce
non-zero potentials and SUSY breaking

S ~ /H(p)/\*H(p)
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[ Type |IB string on three-fold X with 3-form flux J

@ It can be shown that upon turning on H® flux, N=2
SUSY is broken to N=1 SUSY with superpotential:

_ 3,0 (3
Wiinx = /X\Q( ) A FT®

O = Hy+ H

e

Type IIB coupling: 7= C® 4+ e %

set in the following H{) o — 0

@ Denote 3-cycle dual to flux H® by T3

and expand in integral symplectic basis of 3-cycles:

I = N%3 4 Nb3 N®¢e€ Z
Then
WIIB/)?(Z) = /1“3 Q9 (z)
= N°X,+ N,F° = NATI4(2)

where IT4 = (X,, F?) are nothing but the period
integrals !
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[ Type IlA string on three-fold X with fluxes J

@ Rule: replace period by volume integrals
... will be corrected by world-sheet instantons

3
WIIA/X(t) = /ZH}?E)</\J(1’1))3_’€ + ...

X k=1
=NO + Nt 4+ N@2 L NO2 L O(e?)

flux numbers

@ A priori, it would be hard to compute the instanton
corrections, but mirror symmetry predicts

[WIIA/X(t) = WIIB/EE(Z) = ZNAHA(Z(t))J

HA(Z(t)) - (Xaaj:b) — (17152'782'?’ 2.7:—@8,.7:)

@ Thus, the superpotential is completely determined by
the “bulk” geometry: spont. broken N=2 SUSY

Note that flux appears as auxiliary field in N=2 eff action
® = t+60*°H? + ...
Thus, if (H®) = N® +£0

then [d*0F(®) — [d?O0NOLF(®) =W

as above !
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[A first glimpse of Quantum Geometry: monodromyJ [ D-Branes on Calabi-Yau manifolds J

Various manifestations:
Periods IT4 = (X,, F°): sections valued in Sp(2h*'+2, Z)

Non-trivial loops in the moduli space Mcs(f(\)

)\ CY 3-folds X (*
will thus induce monodromy |

N )
NCE

-

\\_2{ 4
p-branes wrapping p-cycles
appear as particle excitations

N=2 eff theory
world volume
Z = NO©® L N@®O¢ 1| 3+1d N=1 SUSY “brane world”

— (NO L N® 4 )+ (N® + )t + ...

-

A

My — IIy-R, R¢E Sp(2h*'+2,2)

@ Consider eg looping around z ~ e*™ — 0
in the semi-classical, large volume regime:

t~Ltlnz — t+1

Thus

@ The eff space-time physics depends on the
properties of the wrapped internal part of the brane
@ Looping generic (non-perturbative) singularities will

typically mix all fluxes which each other: @ We are interested in BPS configurations that break

1/2 of the SUSY (N=2 -> N=1)
Condition for “SUSY p-cycles™:

N4 - R.N4

Since covariantly constant spinor 17, with (1 — T')n = 0
NA = H (P4) 1
'YpA F pr— ﬁeal ap+18a1Xm1 oo oaap+1me+1Fm1.“mp+1
. . - . . induced metric pull-back to 10d Gamma
the dimensions of p-cycles loose their invariant meaning ! world-vol matrices

@ Two classes of solutions:

“ 1] . - - —
A-type” branes: wrap special lagrangian cycles 7=
“B-type” branes: wrap holomorphic cycles % ¢=%%%6)




[ A-type branes J

@ Wrap “special lagrangian” cycles X 4

dim(X,4) = 1/2dim(X) = 3

@ g = 0

Pull-back of Kahler form vanishes; f: X4 — X

® ff(Im ewﬂ(?”o)) =0
Pull-back of holom 3-form vanishes

@F =0
U(1) gauge field on world-volume must be flat

@ \What are the moduli of the brane ?
A priori:
dimp(Msys,) = bi(Xa)

which can be odd ...
but we need complex fields for SUSY reasons

=) Pair up with “Wilson line” moduli of the flat U(1)
gauge connection to get complexified moduli
fields:

A~

ti, ’iZl,...,d’imc(MgA,WL) = bl(EA)

[ B-type D-branes J

@ Wrap holomorphic submanifolds: E(p), p=0,2,4,6

@ Apart from the holomorphic embedding geometry,
f : X p — X, there is more structure:
the gauge field configuration, “U(N) bundle V”
(if N branes coincide)

Eg for D6 branes (wrapping all of X), SUSY requires
that the gauge bundle V is holomorphic:

(NB: further “stability” requirements)

@ Important correspondence:

[Gauge field configuration V. <=> brane bound states:)

...due to anomalous world-volume couplings:
SWZ = / CAN TT[GF] AN \/ A(R)
Eg)XR T \ p+1form

RR tensor fields Dirac genus

Type IIA: k=odd A(R) =1+ 1/24R* + ...

CE@G% o
. Type 1IB: k=even Chern

character of V



@ Example: D4-brane
SWZ:/ LICOAFAF +...
Eg)xR

so if there is an instanton configuration V such that ; /F/\F =n
then there is an induced coupling

n /C(l) = source term for n DO-branes !

@ More generally:

n gauge instantons on p-brane
bound state of the p- with

— n (p-4)-D-branes
@ Even more generally:

A brane configuration of r D6 branes on CY X
is characterized by the “generalized Mukai” charge

vector Q:

Q = Trlef] A/ A(R)

= (Trl, TrF,(TrF)> — TrF> 4+ LTrR?,...)

Thus /XQ _

= (r(V),c1(V), cha(V) + £ic2(Ts,), chs(V) + fe1(V)eax(Ts,))

(MO, MDD, M@ M®) D-brane RR charges

This gives direct translation between gauge bundle data
(Chern classes of V) and D-brane charge content
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[ Mirror symmetry and D-branes J

@ Recap mirror map:

Type ITA/X — Type IIB/X

RR fields:
{cW, c® cB,..} — {c®, c®, cW,...}

Dp(=even) branes Dp(=odd) branes

Equivalence of non-perturbative theories implies
equivalence of

B-branes wrapped over A-branes wrapped over

holom. (0,2,4,6) cycles | <—> | special lagrangian 3-
of X cycles of X

@ This is reflected in the 2d string world-sheet boundary
conditions of the N=(2,2) superconformal currents:

B-type branes A-type branes

Jr = Jgr Jr = —Jgr
G = +G¢ Gi = FGi
T, = Tg T, = Tg

Mirror symmetry just switches Jg < —Jpg !
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[ Tension of wrapped D-branes J

(particles in 4d N=2 SUSY)

@ Recall BPS mass formula: mpps = |Z|
Central charge Z in N=2 SUSY algebra
{QT,Q"} = p-v+2
essentially given by volume of wrapped cycle

@ Recall factorization of CY moduli space:

Mx = Mgs(t) X Mces(z)
~ ..even ...odd cycles

The mass of wrapped B-branes depends only on the
Kahler moduli t, while the mass of the A-branes
depends only on the complex structure moduli z.
@ A-branes in Type IIB:
Zayrp(z) = MA [, QC9(2) = MATI4(2)
@ B-branes in Type llA:
ZB/IIA(t) = fX eJ(l’l) A\ Q + (’)(e_t) (instanton corr)

= QO + f J(lal) N\ Q2 _|_ %f J(lal) A J(lal) A\ Q4 _|_
= MO £ M@ 1 Mr®2 L pp©)g3 o O(e™t)

@ Mirror symmetry: [ZB/HA(t) = ZB/IIA(z(t))]

= MO 4+ Mt + MPo,F(t) + MO (2F — td,F)(t)
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[ Quantum Volume J

@ Non-trivial identification:

MA [ QBO(2) = MO+ Mt MW, F(t)+ M) Fo(t)

0,2,4,6-cycles on X
on equal footing too !

3-cycles on X
on equal footing

@ Massless state in 4d:

Z =0: II4 — O forsome A

Example:
conifold singularity (strong coupling region)

Type IIB: 3-cycle 75 — 0 == Type llA: Fo(t) — 0

6-cycle quantum volume

(whole CY) X shrinks to
nothing!

However, the “embedded”
0,2,4 cycles do not have
vanishing quantum volume:

(1’ ta atF(t)) /L)0

[The classical geometric picture is }
S

swamped out by instanton correction
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[ Monodromy of RR charges J

@ Recall that when encircling singularities in Mcs(X),
monodromies will be induced on the periods:

My — Iy R, RE Sp(2h*'+2,2)

Thus, just as before the flux numbers NA, now the D-
brane charges M” will get mixed.

@ Eg., encircling z ~ 2™ — 0 in Mcs(X)
induces t->t+1, and

Z = MO 4+ Mt ...
— (MO 4+ M® 4 )+ (M + )t + ...
ie., the DO brane number jumps

J@1

roughly: "tensoring V by a line bundle”: Z~ f e A el

Again we see that the notion of p-cycles, and gauge
bundle configurations V on top of them, has no good
meaning away from the semi-classical large radius limit !

[ Central charge and domain walls :B

@ We have seen that in type 1IB compactifications,
3-fluxes H® induce an N=1 superpotential:

Whioi(z) = NATI4(2)

However the same expression gave the central charge
of a wrapped D3 A-type brane:

Z(z) = M?ATI4(2)

What is the significance ?

@ Replace fully wrapped D3 brane by a D5 brane:

Domain wall in 3+1d

Central charge of a
DW is known to be Z = AWn—_1

However, the D5 brane tension is
still

Z =M"[| QB9 = pMATI,

73
and it generaAtes MA units of H®)
flux across the domain wall
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[ Moduli of D-brane configurations :B

@ Consider 1/2 BPS configurations breaking to N=1 SUSY:

CY moduli ¢, z

brane (and bundle) moduli £, 2

~—4d N=1 SUSY eff action Scs¢(t, %, z, 2)
depends how on moduli ?

@ Focus on
complex structure moduli:
z 734 sizes of 3-cycles
2 ~ 43 sizes of 3-chains
Kahler moduli:
t ~~? sizesof P's
t ~ fny sizes of disks ending on D-brane

@ Decoupling theorems (from CFT):

B-branes { W(z,ﬁ)Z z-(z,ﬁ) holom. potential§
D(t,t*, t,t") Fl D-term potential

A-branes { W(t,t), T(t,1t) holom. potentials
D(z, 2% 2,2%) FI D-term potential

{: Preview J

@ Next time: use mirror symmetry

Warra(t,t) = Wgis(z(t), 2(t, 1))

and set up math framework for systematically
computing superpotentials for a large class of D-
brane geometries
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