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1. Introduction

In 1984 Green and Schwarz [1] madt;, the remarkable discovery that the hexagon
anomaly thought to be plaguing the ten-dimensional type I superstring can be can-
celled by virtue of a new mechanism. The crucial features of this new mechanism
are factorization [2] of the anomaly, that occurs only if the gauge group is SO(32),
and the presumed existence in the effective field theory of a term BTr(F4), together
with its gravitational analogues. Here, B is an antisymmetric tensor field that is re-
quired to transform non-trivially under gauge transformations {3]. It was quickly
realized that the field theory mechanism works also for the gauge group EgxEg [1]
{4]. This led to the construction of the heterotic string [5] which realizes both the
above gauge groups.

The direct verification of the absence of gauge and gravitational anomalies in
string theory at the one-loop level has been done in [6] for the type I string and in
[7] for the ten-dimenéional supersymmetric heterotic strings. Furthermore, it has
been shown that the factorization of the anomaly for heterotic strings in any dimen-
sion is a direct consequence of one-loop modular invariance [8]. Still lacking in the
understanding of the Green-Schwarz mechanism is how exactly the string provides
the anomaly cancelling terms like BTr(F4). The purpose of this paper is to calculate
these terms from string theory.

The question becomes even more interesting in the light of the recent construc-

tion of a large number of heterotic string theories in dimensions less than ten, in



particular in four dimensions [9] [10] [11]. These are also expected to be anomaly
free by means of the Green-Schwarz mechanism. The anomaly cancelling term in
D =2n +2 dimensions is of the form BTr(FY). In four dimensions this term becomes
BTr(F), which has the additional interesting property that it gives a mass to an
“anomalous” U(1) gauge boson.

In this paper we will mainly concentrate on this case, because for a two-point
function the analysis is quite easy and instructive. With the insight gained from this
calculation, it is then straightforward to compute also the BTr(F®)-term in 2n+2
dimensions. In 6, 8 and 10 dimensions there are additional terms like
BTr(I—T?-)Tr(I-?Il “2), BTr(RD) etc., which are slightly harder to obtain. For the pur-
pose of this paper, namely to establish the presence of the counter term with the
right coefficient, we do not need to consider these terms. However, it remains an in-
teresting problem, to which we hope to come back, to find the relation to the struc-
ture of the anomaly as obtained from the character valued partition function [8].

Our calculation provides perhaps the first case where a physically meaningful
quantity (ie., the mass of a U(1) gauge boson) is obtained from a one-loop diagram
in string theory. It is worth noting that the corresponding field theory diagram, that
is a fermion loop with external Bm' and Ap legs, is linearly divergent. In string theo-
Iy, on the other hand, this diagram is finite even though only the same massless fer-
mions and no massive States contribute in the loop. It is proportional to the finite
volume of the fundamental domain in modular space (and to o’ — 1/2, providing the
correct dimension?), giving a factor 27/3 which will turn out to be exactly what is

needed to cancel the anomaly.

'We will usually set o’ =1/2.



Another reason for our interest in this problem is to demonstrate that for the
theories proposed in [11] one can do calculations directly in four dimensions. In this
context we like to emphasize that the four dimensional field theory limits are not in
general compactifications of field theory limits of ten dimensional strings. (This is
true even though the four dimensional strings might be considered, in some general-
ized sense [12], as compactifications of ten dimensional strings.) Consequently one
cannot in general derive the four dimensional BTr(F)-term from the BTr(F4)-term
in ten dimensions by compactification.

In section 2 we review the Green-Schwarz mechanism in field theory with a bit
more emphasis on the normalization than has previously been the case. This nor-
malization is of course crucial for the comparison with the string calculation pre-
sented in section 3. Although the construction of [11] is based on conformal field
theory, it turns out that the NSR formalism is more convenient for this calculation.
In particular, we will use the so-called R2-formalism, which has “Feynman rules”
closely resembling field theory Feynman rules. This allows us to relate field and
string theory normalizations in a straightforward way, as explained in the appendic-

€s.

In section 4, we discuss the generalization to 6, 8 and 10 d'unensibns; the final

section contains some concluding remarks.



2. The Green-Schwarz Mechanism

It is well-known that the anomaly in 2n +2 dimensions due to chiral fermions can be
derived from the integrand of the Atiyah-Singer index theorem in 2n +4 dimensions
(see, for instance, [13] [14]). By construction, the theories we are considering can
have the following massless fermions [11]:

— — Weyl fermions in some (not necessarily irreducible) representation of the gauge
group G and

— — N gravitini plus N Weyl fermions of chirality opposite to that of the gravitini.
The second group of fermions arises as a tensor product of a left-moving bosonic
oscillator excitation ai(_ 1)|0 > with a right-moving Ramond spinor ground state. In

chiral theories N is of course 0 or 1.

The expression generating the anomaly is

JRF) = AR)[CACEr) + WCRLR V)] @.1)

where A(R) is the Dirac genus:
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Here, By are the Bernoulli numbers and
By = & Huaps @ a o 2.3)

is the curvature two-form in the vector representation of the transverse Lorentz

group SO(2n). The Chern character is defined as

s
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where
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(2.5)

and A3(r) is the representation matrix of the gauge group G in the representation r.
We follow here the conventions of [14], except for the fact that we have expressed
F in terms of hermitian generators A2. The use of the transverse group SO(2n)
rather than SO(2n +2) in (2.1) automatically incorporates the ghosts. By r in (2.4)
we mean the sum of all irreducible representations of left-handed fermions minus
the corresponding sum for right-handed ones.

The anomaly is obtained by applying the descent method to the 2n +4-forms in

.1
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with §A, =4d,v. The quantity Qpp, 47 defined this way is proportional to the ano-

maly. More precisely, if we define (in Minkowski space)
exp i[R) = Jdpdf exo ¢ S(Y 7, 4 (28)

then the Feynman diagram shown in Fig. 1 is given by
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where AiEAp‘ (%,) (see Appendix A for conventions). This can be expressed in terms
[4

of the gauge variation of I'(A), which can we written in terms of Qyp 4 2:
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The factor —2# is determined by requiring that (2.10) produce the
(bose-symmetrized) anomaly calculated with the Feynman rules given in Appendix
A.

The gauge and Lorentz transformations of A, « and B are (cf. Appendix A):

§A = a/’5’ (2.12)
fw = o
(2.13)
B = Lfb vl —bydw/
‘// 4 (2.14)

Because of modular invariance [8], all theories we consider have a factorized ano-

maly, ie.,

ar I (R F) = b REFD K, (2.15)

Therefore, as in [2], we find that the anomaly is given by
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L, = - &y oA (2.18)

and X12n—2 is obtained by the descend method from Xop- « and B are arbitrary
parameters with a +8=1 [15]. The anomaly in (2.15) can be cancelled by the gauge

variation of
S = _//ﬂ/“)u - “)3/ /A/.m-/ - 407 5)(,,_. / (2.19)

In other words,

4
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Note that the BX,, term does not depend on « or B. This is to be expected since it
describes a physical quantity.

In the rest of the paper we will be mainly interested in the Tr(F%)-terms in Xon
which can be read off from (2.1) by observing that there is only one possible source

fora tr(RZ)Tr(Fn)-term. By expanding the Dirac genus one gets

’ ¢ / ~
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Using the conventions of Appendix A we obtain the following momentum space ex-

pression for the BTr(FM)-term:
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In order to cancel the anomaly we need to reproduce (2.22) from the string loop cal-

culation. This is demonstrated explicitly in the next two sections.

3. String Loop Calculation in Four Dimensions

The string loop to be calculated is depicted in Fig.2. With the conventions given in
Appendix B, this graph can be represented (in the R2-formalism) by the following

expression:
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(1/2)T, serves to project onto the periodic-periodic (PP-) sector of fermionic bound-
ary conditions, which is the only sector that describes parity-violating amplitudes
proportional to the e-tensor. The sign in (3.1) stems from the fact that we are con-
sidering a fermion loop. As explained in Appendix B, F, T, and I'” belong to the
right-, while P* and pl belong to the left-moving sector. In our case it is sufficient to
consider the Cartan-subalgebra generators PL.

The calculation is greatly simplified by observing that one can only get a
non-vanishing contribution by extracting four y-matrices from the two F’s and the
two I'"s. This automatically restricts the two momentum operators to their zero

modes. Performing the y-trace we find then
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where Tt includes left- and right-moving osciilators, space-time and lattice momen-
ta. Is is easy to see that also P¥ can be restricted to its zero mode because the oscil-
lator part will give rise to terms proportional to ko”gw, =(), It is not hard to see that
also P! contributes only via its zero mode.

Substituting the expressions for the propagators in {B.8) we get
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where, of course, L is the Virasoro operator in the Ramond-sector. The fermionic

trace is easily evaluated and yields a factor (with « =2z2y)

TT (4 - &) (3.4)

where the power 4 comes from the Ramond-oscillators and —2 is from the super -

ghosts. For the bosonic oscillator contribution we find

S A L -6 r .f/ /¢
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The powers are due to 4 right-moving space-time oscillators, 9 internal oscillators

[11], 26 left-moving oscillators and 2 left- and 2 right-moving reparametrization



ghosts. The function x is a Green’s function on the torus as defined by Schwarz
[16]. Since we will only be interested in the limit where the (external) gauge boson is
on-shell (ie., kyk| = —k12 ={), we can put xk(ikl/z =1.

We now turn to the space-time momentum integral in (3.3). It contributes a
factor

7 Sst)? (3.6)

2 /’
where the factor of i comes from the continuation to Euclidean space. Since this ex-

pression appears in (3.3) contracted with an e-tensor it reduces to

é
v
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by use of symmetric integration.

Finally we discuss the sum over the internal momentum zero modes. For this we
switch to the bosonic lattice formulation of the sheet-fermionic degrees of freedom.
In the even self-dual lattice formulation of heterotic strings developed in refs. [17]
[11] space-time spinors are described by lattice vectors (w ,wR(s)) which belong to
an even self-dual lorentzian lattice I'y).14 in the four-dimensional case®. The last
five components vR(s) of wgr(s) are spinor weights of the “space-time” lattice Ds:
wR(s)=(uRr,vR($)); the nine dimensional vector ug describes internal quantum
numbers. The physical massless spinors of given chirality (s) are characterized by

wp 2=wR(s)2=2, with vR(s)=(1/2,1/2,1/2,1/2,1/2). (Note that according to the

'In 2n + 2 dimensions, the relevant lattice is T34 — 2n.16— 2n-



prescription of [11] the last four entries have‘ﬁxed values).

We now exploit certain specific properties of the PP-sector, which will allow us
to evaluate the sum over the internal momentum zero modes without specifying the
spectrum explicitly. This is important since we want to cover a large class of theo-
ries, which do not even have a direct product structure of left- and right-moving
sectors like the well-known supersymmetric ten-dimensional theories.

The PP-sector of the right-moving spinning string has a chiral spinor as its
ground state. As was shown in [8], this sector has, by construction [11], the property
that the partition function corresponding to the right-movers is a constant with re-
spect to «. This is a consequence of the requirement that all massive excitations of
the chiral ground state come in chiral pairs, so that they cancel off in the PP-sector
(where spinors and anti-spinors are counted with opposite signs). In other words, the
lattice sum cancels the oscillator contributions, that is, the w-dependence of (3.4)
and (3.5) so that the integrand in (3.3) is holomorphic in @ (apart from measure

factors).

Putting ail this together, we find
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The primed sum means a sum over all lattice vectors (WL,WR(S))Er22;14 with
WR(S)2=2. (Note that this is not the same as summing over the left-moving part of
the lattice I'y5.14. One would then be neglecting degeneracies due to the components
ur of wr which are not in Ds). Now we make the standard change of variables

[16]

V= . s s = Tard (3.9)

N

Then, after performing the »-integral, (3.8) becomes (q=,/« =¢l”T, and n(q2) is the

Dedekind function)

2
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where the trace is over all lattice vectors obeying WL2'=2II‘1, wR(s)2 =2, Let us now
use the fact that the theory was constructed from a self-dual lattice [11] and prop-
erties of character valued partition functions [8]. More specifically, the character
valued partition function A(q,F,R=0) in question is obtained by “gauging” the lat-

tice function (vI 1s the skew eigenvalue of the field-strength FI) [8]:

Ry o
0 F) = pied) 2 9*° e
A 7z 4 (3.11)

It has an expansion in terms of mixed traces in certain basic representations, for

which one can take the vector and spinor representations of SO(N). Except for



terms proportional to tr(sz), the coefficient ck(qz) of a term of order kin F is a
modular function of weight k—n (in 2n+2 dimensions) [8] [11]. In four dimensions
we are interested in an expression proportional to TrF, which can be non-vanishing
only for a U(1)~SO(2) factor. In the theories of [11] this arises from a D factor of
the lattice. Choosing as the basic trace Trg, ie., the trace over the Dy “spinor” repre-

sentation, it follows that the integrand is proportional to a function cl(qz)

~2y 2 .er O 2
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which is thus a modular function of weight zero. This is, of course, exactly what is
needed to ensure modular invariance of T'. Furthermore, since Tro(p1)=0 (the ta-
chyon has no lattice charge), ¢; and hence the integrand is an entire
(=non-singular) weight zero modular function and therefore a constant (see, eg.,
[18]). Accordingly only the massless level can contribute to the integral. (Notice that
even if the integrand were not a constant, but a modular function with poles, the
r-integral would have led to the same result). Hence, the integral over modular
space gives just the volume of the fundamental domain £ ={rl l7)21,

—1/,<Rer<!/,, Imr >0}

7 _
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(3.13)

and we find
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which is in agreement with the result (2.22) of section 2 since Trl(pI) is just the

trace over the U(1)-charges of the massless fermion states.

4. Generalization to Higher Dimensions

Having already explained the details of the four dimensional calculation, we can
here restrict ourselves to a discussion of new aspects appearing in higher dimensions.

The generalization of (3.1) is

%

7
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As before, the F,’s and I's get restricted to their zero modes. For P*(0) the argu-
ment is slightly more subtle than in four dimensions. As in four dimensions, the os-
cillator contribution from P#(0) will give a linear combination of external momenta.
Although 5#,, contracted with such a linear combination does no longer vanish, it is
easy to see that there is no way to saturate the indices on the e-tensor, so that this

contribution still vanishes.



In the case of the P! operators the oscillator contribution does not vanish but
gi\}es rise to two-point correlations leading to subtraces of Tr(FT). We will not con-
sider these terms here. As before, the zero modes of P#(0) will generate Tr(F™), and
by analogous arguments one can show that again only the massless fermions con-

tribute.
The generalization of (3.5) in 2n +2 dimensions is

] -2y Jl’{:‘-’é‘
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(For the definition of Xij see [16]). In this case the exponents of Xij are not zero for
on-shell external momenta, but we will only consider the leading term in the expan-
sion in external momenta. That is, we keep only terms of the same order in 1 /Mpl as
in the field theory anomaly. (Terms of higher order in 1 /Mpl are presumably can-
celled by higher order terms in the field theory effective action.) The rest of the cal-

culation is straightforward and vields
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which again is in agreement with section 2.



5. Discussion

We have shown that the coefficient of the BTr(F®)-term can be calculated from a
one-loop string diagram. The result is finite, and agrees with the coefficient expected
from anomaly cancellation. This conclusion is expected to hold beyond the already
large class of string theories [11] we have explicitly considered, because of the mod-
ular properties of the chiral character valued partition function (which plays an im-
portant role in our argument) are valid in general.

We want to emphasize that the BTr(F)-term is neither a “Wess-Zumino term”
nor a "local counter term”. There is perhaps some justification for considering it as a
Wess-Zumino term, since just as a Wess-Zumino term it is constructed out of addi-
tional bosonic fields and cancels an anomaly. But the similarity stops there; the
BTr(FD)-term has a different structure, and therefore it would be incorrect to call it
a Wess-Zumino term. Far more important is a possible confusion with “local counter
term”. Although BTr(FD) is certainly local and arguably a counter term, by “local
counter term” one usually means in this context a term constructed entirely out of
gauge fields, which changes different forms of the anomaly into each other. Such a
term has no physical meaning, since it depends on how the anomaly was defined in
the first place. The terms w3y Xop 1 and w3yXo, 1 in (2.19) are such local
counter terms, and indeed their coefficients depend on the parameters a and B ap-
pearing in the expression for the anomaly (in diagrammatic language, « and B dis-
tribute the total anomaly over the two kinds of gauge bosons that couple to the fer-
mion loop). By choosing 8=0 we can in fact make the local counter terms vanish
completely. The coefficient of the BTr(F™)-term on the other hand does not depend

on « or B; it is an unambiguous, physical quantity.



A related, potentially confusing issue is the gauge invariance of BTr(F™). Al-
though in the usual discussion of Green-Schwarz anomaly cancellation one deals
with a non-trivial transformation behavior of B‘uIJ (as in (2.14)) as well as of A, the
former is only needed to guarantee off-shell gauge invariance of the BAZ vertex ob-
tained from the Chern-Simons terms. Indeed, it is easy to show that the BAZ vertex

(A.15) satisfies the following Ward identity:

¢ o i}
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This vanishes for external legs which are on-shell and have transverse polarizations.
Using the Bm-propagator one can construct an A% tree graph, which is not gauge
invariant; its gauge-variation is cancelled by Ad-terms in H‘u,,le'“’P. At the
tree-level all the usual Ward-identities are thus satisfied on-shell.

At order # one encounters the BTr(F®)-term, which by itself satisfies all
Ward-identities for the external A‘u*ﬁelds (ie., it vanishes upon replacement of £p(k)
by kp) as well as the Ward-identity for the By, gauge transformations,
pr+B#,,+a[pA,,]. Thus the BTr(F®)-term itself causes no problems for gauge in-
variance of the S-matrix. However, the tree graph constructed out of this vertex and
the BAZ2 vertex does not satisfy the Ward-identity because of the off-shell terms in
(5.1), and it is this gauge variation that cancels the polygon-anomaly (up to local
counter terms). The local counter terms on the other hand do not satisfy the
Ward-identities, which once more illustrates that they (as opposed to BTr(F™)) do

not have direct physical significance.



The authors of [19] have arrived at different conclusions regarding the
BTr(FM)-term. Their main interest was however in the four dimensional oFF term
which arises from the ten-dimensional BTr(F0)-term after field-theory compactifica-
tion (¢ is an axion, a component of B#p in the compactified dimensions). Although
we have clearly established the existence of the BTr(FD)-term, the existence of a
oFF-term depends on the value of an integral over the compactified dimensions,
about which we have nothing new to say. Anyway, in most four-dimensional string
theories [11] there is no ten-dimensional Bw, field to begin with, and one cannot
even define the field ¢. Nevertheless, some of these theories may have massless
gauge-singlet scalars, and for any of them one could calculate the coupling to FF
directly in four dimensions.

Finally, the physical relevance of the BTr(F™)-term becomes most obvious in
four dimensions (n=1), where Bw, is equivalent to a scalar, which is eaten by the
anomalous photon as in the Higgs-mechanism?.

Measuring the mass of this photon would in fact be rather interesting, since it
would amount to a direct measurement of the volume of modular space. Unfortu-
nately such a striking confirmation of string theory is beyond current experimental

dreams.

There has been some discussion of B, — A, mixing in another context, namely the open bosonic
string (20} [21]. In particular, [21] concludes that this mixing is absent. This is not in disagreement
with our results, since we only get such a mixing term in theories with chiral fermions having U(])
charges with a non-vanishing trace,.
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Fig. 1: The polygon anomaly in 2n +2 dimensions.
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Fig. 2: The BTr(F)-string diagram in four dimensions.
The dashed line represents the B#v field and the wavy

line represents the anomalous photon A,



APPENDIX A

FIELD THEORY CONVENTIONS

We set up our conventions for field theory, on which the conventions for string
theory given in Appendix B will be based. The metric is nppzdiag(— +...+). The

y-matrices satisfy
/%; ﬁ/ = ZZ?”, (A.1)

In 2n + 2 dimensions we define a hermitian matrix

L F

v o
Vv =y y (A2)
which satisfies (wf,,)2 =1. The e-tensor is defined by eOlhn2n+1 =1 5o that

f‘"'/‘n
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Gauge fields are written in terms of components or as one-forms. They are related
as follows:
. & 4% &

B = -~z A4 A = A oo (A4)

5

where g, is the gauge coupling constant in 2n +2 dimensions and A2 is a hermitian

generator of the gauge group:

<
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The field strength is
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For the antisymmetric tensor field B, we define a two-form
B = B okadx” (A7)

With similar definitions for the gravitational fields we get the following expression
for its field strength:

lé’: /'/?.VJ%/{AG/,V"AOG"’

X s oo
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Here, « is the gravitational coupling constant, and “tr” indicates a trace over the

vector representation of an SO(N) algebra. The bosonic part of the action is given

by

s - S AL
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where we have ignored dilaton terms. For Weyl-fermions we get
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The generating functionals for disconnected and for connected graphs are given by

2REL

W) = exoé 2(7) = JDF exo /i SUp) ¢ < ) aa) pix) olx ] At



where ¢ stand generically for all fields. Vertices in momentum space are defined as

follows:

L rn) (o)
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S [(Zp)
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= ./77_/0/)(,- zem/!,b,..,r‘./ [2/1‘_/]/;'5’/ (A.12)
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Here p; is the ingoing momentum on the it Jine. (This implies that 6# becomes ip#

in momentum space.)
With our conventions we get for example the following Feynman rules:
— — three gauge boson vertex:
2505 ) F ) G (7 G g Vg )5 700

— — gauge boson-fermion vertex:

AN M NN, (A.14)
— — BAA-vertex:
4 é - e v Padd
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The propagators are —i/p2 (times a projection operator) for bosons and —p-y/p2 for
fermions. Then we obtain the following expression for the anomaly diagram in

2n + 2 dimensions:
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This is the result of the contraction of ky " with the first external line of the diagram
shown in Fig.1, with bose symxhetrization; (A.16) is the same expression as the one
defined in (2.9). The trace is to be summed over all (n+ 1)! permutations of the gen-

erators between curly brackets.



APPENDIX B
STRING THEORY CONVENTIONS
We will first consider the closed bosonic string. The two dimensional action is

4 & v
S = = St d Vg f 7N % X (B.1)

with 0<o <. The field X* has the following mode expansion:

. / o (7 A"‘V/N w2 -/
Xz glr 2wl s ;1'/4«’0{ 7% L4 e /) (B2)
2

where a refers to right-movers. We define the following operators

Lo = For’s tn-2
/: = .é—/a/k ‘e 1/\7"2 (B.3)
where /Vszt_f, it:f. Then
W o= o far [0 X) e QX)) = Losl (B4)

From now on we will set a’=1/2.

It is well-known that string amplitudes are related to correlation functions of
vertex operators on the world-sheet. It is crucial for our calculation to make this re-
lation precise. We find that the following correspondence gives the right answer

for tree graphs

G(z-4)

)} /"ojg... o ) .. (B.5)

j L d

# other C-ordbrings



where p;=t; —t; — 1. The operators ‘O(pi,ti) are vertex operators for the emission of
certain physical states. The left hand side is the connected, amputed Green’s func-
tion for the same physical states. It consists of the field theoretic contribution gener-
ated from iZ(J) plus all string corrections. As explained for example in [5], one can

convert this expression to

B /VE ,00) Ay o Dg V(B,00) /5> (B:6)
where
"o
- o
V/k, ) = ;/;7 Vire £/ (B.7)
- ﬂ/."Z il _ ;"’/Z:'
As = /2—;- /Z/' = =z (B.8)
and = = e""?"':""' J C = (./ J Q/ZZ = ZJ/@szmz

If only one t-ordering is taken into account, the z integration is over the unit diéc
|z|<1. The factors 1/2 in (B.5) have to be added to ensure that Ap is —i/(p2+m2)
in that case. To include all t-orderings one must then extend the integration region
over the whole complex plane.

To verify this, one can consider three- and four-point tachyon amplitudes. One

can describe the tachyon interactions by
L OB s EP P FAPT
= - g (O * T 7> & ¢ (Bg)

The three tachyon vertex is then i\, which is reproduced by a vertex operator
inelkX  if inserted between two states normalized to one. For the four tachyon am-

plitude we find then



t"(;.X/f?)

. . :)é'./Y/O/
<K JCide JAgede ) /&> (B.10)
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This expression behaves like

‘A
s-&

near the tachyon pole s =8, and this reproduces the s-channel Feynman diagram.
We will now apply the same procedure to fermionic strings. Consider first the
Ramond sector. In the literature (see eg. [22]) two formalisms are used. For our
purposes the so-called R2-formalism is most convenient, because it has the closest
resemblance to field theory. We will simply normalize the vertices and propagators
so that the zero modes have the same Feynman rules as fermions in field theory (cf.
Appendix A). For this purpose we define the operators T'* and I, (in the

right-moving sector of the heterotic string) as

SYE) = p e VT e 2 a2

2 o
/*_’ . . - (B.11)

where F is the fermion number operator. Then the operator F is defined as
;.: = _@_/z; /_7??/ /?:/5/ (B.12)

i3
where P(z) =%+ 2 & “Z ™ . The propagator in this formalism is given by
Afo

A" o ek A, (B.13)



where Ag is given by (B.8), with L, and f:o substituted by the corresponding oper-
ators of the 2n +2 dimensional heterotic string, with Ramond oscillators in I:O.

To define the B, and gauge boson emission vertices used in section 3 and 4 we
need the compactified and uncompactified momentum operators in the left-moving

sector [5]:

PYz) = For &z

##ho
Pe) e ofs T 2" (B.14)
s
The vertex operators for BPLIJ and Cartan subalgebra gauge bosons are
lékz/»f:v;?) Y L)) e X
X (B.15)

gﬂ/é,am:y 5P [ e *

The coefficients are chosen so that these operators produce the vertices of the Chap-

line-Manton action, provided one uses the heterotic string relations

%
S NELY
ke dgieo (B.16)

% = 7 Ve

One may check that with these rules one produces precisely the same expression for
a string of fermion propagators and boson emissions as in field theory, if one makes
the restriction to zero modes. Note that the conventional string rules correspond to

incoming momenta in field theory.

The vertex operators in the R1 formalism can be defined as

v “ [ ks, v (B.17)



Using this “picture changing” relation we can convert a string of vertices and propa-

gators in the R2 formalism to the R1 formalism:

o i) Dy VESri ) A VT

A2 2
A. .
AX "//e//"-?(./‘;/ A,f / 2.--» -— raes Aﬂe V /‘Z(EJA'? V (B.IS)

Using the identity F,2=T, we can write
)2 IV e AL Ade-s

(~2cE) Dgp = =7z - z (B.19)
The integrand is a total derivative, which vanishes if the integrand is sufficiently
well behaved at the boundary (this is the closed string version of the “cancelled pro-
pagator argument”). Repeating this procedure one can replace all R2-vertices except
one by Rl-vertices. Furthermore, in the one-loop graph one F, remains. Although
the R2-formalism is most convenient for our purpose, the R1 vertex operators have
the advantage of having a straightforward relation to the Neveu-Schwarz sector.

The R1 vertex operators are

o Vo / v £ ;‘é_/f
G ko) = s 5., Pl) /B72) - 477 02) /7 02) e (.20

-, . . AN
U= 19 5 PT)/Bz)- 4 7721 T e @ay

This implies the Neveu-Schwarz vertex operators are given by

™ ) e
§ "erz) = vy s, PC2) /P (Z)-F 4y (2)f 12/ e (B.22)

~ v y Lyl Fr= l‘é'x
lg”‘r»{:”}?‘/-': y:j J‘:IP‘Z?)//O/‘?/'Z’é%/‘?)%/Zj./f (B.23)



where we have simply replaced the Ramond field (1/,/2)I'*(0) by the corresponding
Neveu-Schwarz field ¥#(0).

Using (B.22) and (B.23) one can calculate the BAA and the AAA couplings,
and compare these with those of the field theory given in Appendix A. Gauge in-
variance relates the AAA coupling to the fermion-gauge boson coupling, and this
relation should be exactly reproduced in string theory. This provides a non-trivial
check on the relation between string theory and field theory conventions.

Since we are dealing only with bosonic emissions, ghosts play a quite simple role
in our calculation. One simply adds to I:o the ghost number operators; their effect is

only to modify the partition function to the light-cone form.
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