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1. Introduction

In a recent paper [1] we have calculated the BTrF2 terms in the effective field theo-
ry of 2n+2 dimensional heterotic strings®. Such terms were expected to be present
since they are needed to cancel part of the local gauge and gravitational anomalies,
and indeed they turned out to appear with precisely the coefficient predicted in [3].
In addition to the BTrF™ terms several other terms involving powers of lower
traces of the gauge field two-form F and the curvature two-form R are expected to
exist?. Although our previous calculation gives us no reason to doubt their existence
there are several reasons for extending our previous calculations to include these
terms.
| First of all, the result of [1] gives litfle insight into how the anomaly cancelling
terms are related to the 2n-form X, which multiplies TrF2-TrR2 in the anomaly.
The structure of this factor can be derived from the character valued partition func-
tion A(q,F,R) of the chiral sector of the theory [4]. (Recently this function has also
appeared in the mathematics literature under the name “elliptic genus” [5] [6]). In
particular, it is the lack of modular invariance of this function which is responsible
for the fact that the anomaly does not cancel completely. The modular invariance

violating terms can be factored out of the character valued partition function, which

then has the form

'For related one-loop calculations in four dimensions see also [2].

*These terms have been considered in a recent paper [7]. None of the modular space integrals was
however calculated, and so the result is inconclusive even with regard to the existence of these terms.
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A(q,F,R) is fully holomorphic and modular covariant (with weight —n), and can be
expressed completely in terms of the Eisenstein functions G4 and Gg (in Appendix
C this is illustrated for the ten-dimensional supersymmetric SO(32) heterotic string
as well as for the O(16)x0O(16) string). As explained in Appendix B, the Eisenstein
functionsl Gy () are modular covariant quantities of weight 2k, except for the ano-
malous function G». It would certainly be satisfactory to find the relation between
string loop diagrams and the “modular anomaly” of (1.1) (closely related to the ho-
lomorphic anomaly), which manifests itself through the appearance of G,.

The second reason for considering the more general case is that it is far less
straightforward, and hence more interesting than the calculation of BTrFI. For the
latter the integrand was independent of the modular parameters, and the r-integral
therefore trivial. In general however one has to calculate a non-trivial n-+1 dimen-
sional complex integral. For an arbitrary loop diagram there would be no hope of
c.'culating such an integral analytically, and indeed in most calculations of loop di-
agrams which have appeared in the literature these integrals are left in the final re-
»ult. The anomaly cancelling terms are among the very few cases were one expects to
be able to calculate a string loop diagram completely?, and get an answer which is

non-trivial and physically meaningful.

! Assuming that there is a generalization of the Adler-Bardeen theorem to string theory, we expect that
they are not even renormalized by higher loop corrections.



There are two kinds of integrals to be done, namely n integrals over the relative
positions of vertex operators on the world-sheet, usually parametrized by integration
variables »;, and a final integral over the modular parameter =. Although the integ-
rand has formally the correct modular transformation and periodicity behavior in all
n+1 variables, it also has singularities which have to be dealt with carefully in order
for the final r integrand to be modular invariant. We have found that the existing
expressions for correlation functions on the torus are ill-suited for this purpose, and
were for;:ed to find a new representation which makes all relevant modular and
periodicity properties manifest. These expressions for the correlation functions are in
fact quite natural, and are discussed in Appendix A.

As a result of the »-integrals we obtain 7-integrands which are weight 12 prod-
ucts of Gy, Gg and Gz= Gy —a/Im7, divided by Dedekind’s n function to the power
24. Therefore, they have modular weight zero. In the absence of factors Gz the in-
tegrand is meromorphic (with poles only at q=0) and thus equal to a linear combi-
nation of the famous absolute modular invariant j (proportional to (G4)3/n24) and a
constant!. For diagrams involving only external gauge bosons, the coefficient of j
has to vanish, so that the integral is simply proportional to the volume of the modu-
lar domain. This is the situation encountered in [1]. Diagrams with only external
gravitons give integrands which depend non-trivially on j, but fortunately these in-
tegrals can also be performed analytically. An integral of this kind was recently dis-
cussed by Moore [8], who evaluated it using Atkin-Lehner symmetry. We will show
that polynomials in j can in fact be integrated in a far more straightforward way,

which then also has a simple extension to non-holomorphic zero weight functions

1See Appendix C for an explicit example.



containing factors of G».

A noteworthy feature of these integrals, already pointed out by Moore, is that
they receive contributions not just from “physical” states, but also from states that
do not satisfy the left-right mass constraint, and which are therefore not part of the
physical particle spectrum. This apparent violation of field theory intuition merely
underscores the fact that string theory can not be regarded as a simple superposition
of an infinite number of point field theories.

We want to stress that the purpose of this paper, as well as previous ones, is not
to demonstrate the absence of anomalies in string theory, but to understand the
cancellation of effective field theory anomalies from the fact that these field theories
originate from stfings. To prove that strings are anomaly free one has to calculate
string loop diagrams with external gauge bosons and gravitons, and check their
gauge invariance. This has been done in [9] [10]. Although certainly of great impor-
tance, these calculations miss the interesting structures that are present in the two
effective field theory contributions which are contained in the loop diagram, namely
the field theory polygon anomaly diagram, and the B‘w exchange diagram involving
1. ~ Green-Schwarz term. We are interested in the structure of these terms not to
prove that the anomaly cancels, but to understand how it cancels. The first part of
. «S understanding is provided by the relation between factorization of the field
theory anomaly and modular invariance of the string theory from which it is derived
[4]. (Because there has been some confusion about this we emphasize that the aim of
[11] was not to prove that the string loop diagram is anomaly free, but to give a

more natural interpretation of the character valued partition function in terms of the



index of the Dirac-Ramond operator). The second part is the calculation of the ano-
maly cancelling term in the field theory limit, and to clarify its relation to the fac-
torized anomaly. This task will be completed in the present paper.

In the next section we calculate the parity violating part of the one loop string
amplitude involving N gauge bosons, M gravitons and a Bp,,. We find that the re-
sult can be expressed as a modular integral over the zero weight part of the elliptic
genus. In section 3 we perform this integral, and obtain as a result all anomaly can-

celling terms.



2. Evaluation of the Anomaly-Cancelling Terms

Let us first consider contributions cancelling purely gravitational anomalies. In
D=2n+2 dimensions, they correspond to one-loop diagrams with one external B.u,,
and n external graviton lines, in the periodic-periodic (PP) sector of right-moving
fermionic boundary conditions. To provide absolute normalization compared to field

theory, we use the conventions given in [1]. The amplitude is then given by
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Here, VBR2 and VgRl are the vertex operators for the emission of B,y and gravi-

tons (in the R2 and R1 pictures, respectively):
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The operators P and T in (2.2) have arguments z=z=1. (—2iFg) is the picture
changing insertion with

Ny
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(In principle, for D <10, F gets also a contribution from TFint, the part of the su-
percurrent due to internal degrees of freedom. However, TFint cannot contribute to

our calculation because it cannot saturate the zero modes of I'* in the PP-sector.)

Performing the loop momentum integration, the lattice sum and the trace over the
ghost modes, as well as the usual variable transformations from the plane to the to-

rus, we can cast (2.1) into the form
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Here, dzfr:?_d(Refr)d(Im'r) (similar for dzv), the fundamental integration domains
are T = {r| lmr >0, |r|>1, —1/2 < Rer < 1/2} and . = {»], 0<Imv<Imr, —1/2
< Rev < 1/2}, while PE(y) = — 1/mdX(v), PLO) = 1/mdX() and q =7,

A(q,0,0) is the light-cone partition function in the PP-sector, which could be
written, for instance, in terms of theta functions. However, according to the covari-

ant lattice approach developed in [12], we represent A(q,0,0) in the following way:
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where T is an even self-dual lorentzian lattice of signature (24 —2n;16 —2n), and
wR(S) =(uR,vr(s)) is a 16 —2n dimensional vector whose n+4 last entries vR(s)
have fixed values of 1/2 (note that all q dependence is cancelled out in A(q,0,0); this
is explained in more detail in [1] [12]). Although for convenience we have written
A(q,0,0) for a specific class of models, the result is valid for any type of heterotic
string construction [13].

As our notation suggests, A(q,0,0) is actually the character valued partition
function for the case of vanishing external gravitational and gauge curvature

two-forms R and F:
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where Goyy(q) are the Eisenstein series described in Appendix B, and s are the skew
eigenvalues of F/2x.

To proceed we remark that in the I'-trace only the zero modes can contribute:
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It is easily checked that because of this e-tensor the only terms which can contrib-

ute are those where BT(vJ and P#(0) are contracted. This contribution is entirely due

to zero modes:
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We thus can recast (2.5) into the form
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with the modular weight zero function
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where asi denote derivatives with respect to the auxiliary variables Si}‘i to be put to

zero at the end of the computation. Using the Koba-Nielsen formula
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involving the torus Green’s function Xji = x(Vj—vi,'r) given in (A.3) and introducing

the notation Aji=ajlnxji, A'ii=(aj)21nxji Wwe can write
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(Note that the sums and products in the last two factors include i =0). Expressions
of this type havelalready been considered by a number of authors [14] [9]. Since we
are interested only in terms leading in the external momenta, we will drop xkikj/ 2
from now on. We will now, in this section, evaluate the »-integrals, and in the next
section the modular integrals.

In (2.13), the effect of the derivatives is equivalent to the following contraction

rules in (2.11):
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In order to deal with the »-integrals in combination with these rules in a systematic

way we introduce the following graphical notation for the world-sheet propagators:
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Then the various terms can be represented by graphs consisting of propagators con-
necting n closed dots and one open dot. The closed dots represent the momentum
operators PAj with indices i=1,...,n. The open dot indicates the B, vertex operator
and differs from the other ones because there is no corresponding integration over
vg=0, nor a derivative with respect to sg.

To saturate the derivatives with respect to s; there must be precisely one solid
line with incoming arrow, or one dashed line per closed dot. Furtherfnore the open
dot cannot have an incoming solid line or a dashed line. In the representation for Aij
and A'ij derived in appendix A, the vj-integrals simply enforce world-sheet momen-
tum conservation at each of the n closed dots. Here “momentum” refers to the two
integers m and k appearing in (A.12). Note that because of the restricted sum in
(A.12) the momentum space propagators vanish at zero momentum. An immediate
consequence is that at least two lines must end on each closed dot. If one such line is
an incoming arrow, the others line(s) can only be outgoing solid lines. Hence we can
follow the solid lines through the diagram along their arrows. Because the line can-
not end on any open or closed dot, it must form a closed loop. If the line were to bi-
furcate, this would apply to all branches separately; however this would inevitably
lead to a graph with more than one incoming line per vertex, which is not allowed.
Therefore the solid lines must form disconnected closed loops. Furthermore there are
no allowed graphs with dashed lines. This is due to formula (A.18) which implies

that a v-integral over a single A'ji vanishes.



To summarize, only graphs involving only closed loops of solid lines (plus the
isolated open dot) can contribute after the r-integrations. As an example, the terms
appearing in the loop expansion for D=10 (n =4) are shown in fig. 1.

Consider first the case where the entire diagram is a single loop with n vertices
(plus the isolated point »g). Their are (n—1)! such diagrams, and the resulting ex-
pressions .differ only in their momentum factors. Denoting as =(j), j=1,...,n a per-

b

mutation of the indices 1,...,n we can, using (A.13), immediately write down the re-

sult for the »-integrals in (2.13):
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where the sum is over all n! permutations (szEGZK for k>1). Since this over-
counts the actual number of graphs by the cyclic permutations, we have included a

correction factor 1/n. It is easy to see that the same result is obtained from

[ e () G
5. S L Zw (mmo 7 | Im W (T

(2.17)

Si=o

where
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If the diagram consists of more than one loop, the result is easily seen to be

generated by acting with s; derivatives on products of the square brackets in (2.17),



multiplied with a factor 1/N! for each loop of a given order which appears N times.

These combinatorical factors can be taken into account by replacing (2.17) by
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Therefore the complete result for the gravitational contribution is
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where we have f‘LlCtOI‘ed out the holomorphic anomaly term of Gz, using (2.7) and
(B.3).

Now let us consider the case of cancelling pure gauge anomalies. For the leading
part (highest trace) the computation has been done already in [1]. It is sufficient to
consider n external gauge bosons with quantum numbers in the Cartan subalgebra.
Then the vertex operators for the gauge bosons are
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where Pl are the internal momentum operators. It is clear that in the previous cal-

culation one can just replace EAPPA by £ pPI. Accordingly one gets from (2.10):
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Here, Tr’ runs over internal momentum zero and non-zero mode excitations, and dg s;
denotes 6/651 Evaluating this trace and disregarding again xkk/2 we write, re-

calling the definition of A(q,F,0) in (2.7)
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Here, HI are charge operators of the Cartan subalgebra. We can easily compute the

v-integrals by using the fact that the integral over A'ji vanishes (see A.18). There-

fore,
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(Tr denotes a trace in the vector representation.) In [1] we calculated the leading
trace contribution; it corresponds to the leading trace part of the zero mode part,

ie., to
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which does not depend on q, as explained in [1]. This means that only massless
states contribute in the string loop. (The trace in (2.28) is over the representation of
the massless states.) However, as it is clear. from the above formula, subleading
traces will in general depend on q (and on Im7). As in the case of gravitational ano-
malies (2.20), these terms receive contributions from an infinite tower of “unphysi-
cal” states (i.e. states which do not satisfy the left-right mass constraint, and are

therefore not part of the spectrum) and will involve nontrivial modular integrations.



Finally, it is now completely trivial to obtain a closed expression for the general
counter term associated with mixed gravitational and gauge anomalies. An ampli-
tude involving N external gauge bosons and M gravitons (M + N =n) is given by
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A(q,F,R) can be regarded as generating functional for all anomaly cancelling terms;
the s;’s may be considered as sources or background fields.
Note that A(q,F,R) is similar to the function
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given in (1.1). Both A(q,F,R) and A(q,F,R) are free of modular anomalies and have
modular weight —n. In A(q,F,R), the modular non-covariant terms due to the ano-
malous Eisenstein series Gy are simply cancelled out. In A(q,F,R), alt Gy’s are re-
placed by Gz’s, which are modular covariant, but not holomorphic, a reflection of

Quillen’s anomaly.

3. r-Integral and Anomaly Cancellation

To calculate the amplitude (2.29) explicitly, one has still to perform the modular in-
tegration. The inltegrand is a sum of certain weight zero combinations of Eisenstein
functions, and we show below how such functions can be integrated. For our prob-
lem it is not necessary to consider separate integrals, since we can solve it generically
for all heterotic string theories in any dimension. In fact, we will show that we can
calculate directly the effective action from the elliptic genus, and prove that it can-
cels all anomalies. We have collected some more explicit results for r-integrals in
Appen.dix B, and give some concrete examples of anomaly cancelling terms in Ap-
pendix C.

Recall that because of modular invariance, the anomaly has always a factorized

form, i.e. [4],
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where X5, is some 2n-form, and
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The anomaly is given by the constant term of the 2n +4-form in the elliptic genus:
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It can be cancelled (up to irrelevant local counter terms) by the following term in the

effective action [3] [1]

N j L% (=g BXu(RR)) (3.4)

(B = B*YdxMAdx?).

Note that the s-derivatives in (2.30) automatically select the part of K(q,FS,RS)
which is a 2n-form, if we replace Fg and Rg by F and R; this part has modular
weight zero. Using the definitions (3.2) one can easily check® that our result (2.29)
describing all possible amplitudes can be expressed in a closed form by the following

effective action:
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This is our main result. Thus, to prove anomaly cancellation all we need is to show

that

'What has to be checked here is that the s-derivatives in (2.30), in combination with the e tensor and
the other factors in (2.29) give the same result as Feynman rules derived from (3.5). The conventions
to be used in the latter derivation are those of [1].
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To calculate the integral we use the following procedure. Consider the integral of a

weight zero modular function F(r) over the fundamental domain
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The factor 1/Imr can be expressed in terms of the difference between the holo-
morphic, but not modular invariant function Go(v) and the modular invariant
non-holomorphic function Gz('r) defined in Appendix B. Using the fact that

/ 32() : EgEt
dl ’ |

If F(r) is holomorphic we can write the complete integrand as a total derivative, and

the integral can be evaluated using Stokes’ theorem

2

JJQL'CJ\IMT. 4 {(x3) = L So{t fr,
s A< L (3.10)

Here f is any complex function, S a compact domain in the complex plane, and L
the boundary of that domain. The line-integral on the right hand side goes clockwise
along the boundary. In the case of interest to us the boundary is the one shown in

fig. 2, in the limit A - oo. The one-form f(r,r)dr = Go(r)F(r)dr is modular invari-



ant, so that the contribution of the edges C; and Cy cancel those of C3 and Cy re-
spectively. In other words, we are integrating over the boundary of modular space
with the topology of a sphere from which a small disk around q=0 has been re-
moved. This domain is obtained by glueing Cy to C3 and Cy to C4. The integral is
over the boundary of this domain, which corresponds to the edge Cs. In the limit
A -+ o« the (Im7) ~1 term in Gz vanishes, and only the constant term survives the

integration over Rer. Therefore we find

(3.11)
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For example if F(r)=1 the definition of G, gives I=2=/3, which is indeed the vol-
ume of a fundamental domain. In principle we could compute all the integrals rele-
vant in our context for every string theory in this way. Since some of these integrals
involving Eisenstein functions might appear in other contexts, we have collected
some of them in Appendix B.

In this section the integrand F(r) in question is

F(oy = A (q,FR)
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Substituting this into (3.9) we obtain (using d/d7 A = 0)
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The integrand is a r-derivative, and can be integrated using (3.10). The result is
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By (3.3), the coefficient of qO and of the 2n +4-form in A(q,F,R) is nothing but the

field theory anomaly. In other words,
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proving that the effective action (3.5) we calculated from the string precisely cancels

all anomalies.

4. Conclusions

There is much to be learned about anomalies in string-theory beyond the simple fact
that they cancel. Previously, a study of the factorization of the field theory anomaly
led to the character valued partition function or elliptic genus. In this paper we have
shown that the same function, apart from a small modification, determines the

terms in the effective action that cancel the anomaly.



The character valued partition function A(q,F,R) can be expressed completely
in terms of the functions G5, G4 and Gg, multiplying traces of F and R. The pres-
ence of Gy leads to anomalous behavior under modular transformations. There are
two possible modifications which restore modular invariance: one can replace G2 by
0 to get A(q,F,R), or replace G, by G to get A(q,F,R). By explicit calculation of
the loop diagram we have shown that the latter function appears as the r-integrand
of this diagram. More precisely, while the anomaly is the coefficient of q© of the
weight two terms of A(q,F,R), the anomaly cancelling terms are the r-integrals of
the weight zero terms of A(q,F,R).

In general there is no known way of calculating r-integrals of modular functions
over the fundamental domain analytically. There are however so far two exceptions:
integrals that vanish due to Atkin-Lehner symmetry [8] and integrals over weight
zero functions in the extended ring of modular functions 62(7), Gy(7) and Gg(n),
divided by n(t) to the appropriate power (the overlap between these two sets is
formed by the holomorphic functions). The second case is the relevant one for ano-
maly cancellation.

Our results are valid for any chiral string theory in any dimension, provided
that a character valued partition function with correct modular behavior can be de-
fined (we expect that to be the case for any consistent string theory). As with the
factorization of the field theory anomaly, the validity of the result extends formally
even to dimensions higher than 10, because no part of the calculation depends criti-
cally on the dimension. Nevertheless we do not expect this extension to make sense

unless one can avoid the conformal anomaly, since otherwise gauge and Lor-



entz-invariance would already be lost at string tree level, making a discussion of

anomalies rather meaningless.
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APPENDIX A

GREEN'S FUNCTIONS ON THE TORUS

In this appendix we consider the following correlation functions

A (v

n

3, L A (v) (A.1)
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Other expressions for these functions are
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(A.d4a) and (A.5a) are manifestly invariant under » - #+1 and » » v+1 (iec.

z -+ zw). Furthermore they have the following modular transformation property



(A.6)
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This transformation property is essential for obtaining a modular invariant
r-integrand, but it is unfortunately not manifest in (A.4a) and (A.5a). On the other
hand, (A.4b) and (A.5b) are manifestly modular covariant, but. clearly not mani-
festly doubly periodic. If the propagators were well-behaved everywhere in the inte-
gration region manifest modular invariance and periodicity would only be conven-
ient, but not essential. But the propagators have singularities at z=1 (i.e. »=0) and
z=w which tend to spoil modular invariance after v-integration unless they are
properly regulated. This can be circumvented by writing the propagators in yet an-
other way, which makes their modular invariance and periodicity manifest.

We can achieve this as follows. Define new variables

Rev - Rer P (A.8)

lwmt

i

X

VYV = v

Both propagators are periodic in x with period 1 and in y with period Imr, and can
be Fourier expanded in both variables. They are in fact already a Fourier series in
X, so that we only have to calculate their Fourier modes in y. Consider first A, Its

Fourier modes are

'u-'t - y
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To calculate these integrals it is convenient to expand the denominators in (A.4a)

and to perform a resummation on the result. We get

& 0 k
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(If one starts from bosonic oscillators this expression is in fact obtained as an inter-

mediate step towards (A.4a); see e.g. [15]) The y integrals are now straightforward

and the result is
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The first term is potentially singular for m =0. This singularity can be traced back
to the aforementioned singularities of (A.4). A natural (and, as we will see, modular
invariant) regularization which suggests itself is to define A( as the limit of the right

hand side for m - 0. This limit is indeed well-defined
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We find then the following expression for A
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where the prime indicates that k=m=0 is not included. The expression (A.14) has
seemingly a2 more complicated dependence on the real and imaginary parts of » and
7 than (A.4a)*, but in return we get explicit double periodicity in », and (almost)
manifest modular properties. Indeed, the transformation of (A.14) under the gener-
ating modular transformations + = 7+1 and r - —1/r is easily verified, but the
proof requires shifts and interchanges on m and k, an operation which is not al-
lowed because the sum is not absolutely convergent. This is a well-known problem
in the case of the function G, and is discussed for example in [16] (see also Appen-
dix B). We can use the same solution here. To obtain a function with correct modu-
lar transformation properties, one can feplace the sum in (A.14) by a {-function

regulated expression
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This function is manifestly modular invariant for s> 1, and we define A by analytic
continuation to s=0.

From (A.14) (or (A.15)) one can derive the corresponding expression for A’ by

differentiation
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from which one easily derives

! Anyway, holomorphicity is no issue here since A, A’ are not holomorphic due to the zero modes.
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This agrees with a result given in [9].

The denominator (kr—m) appearing in (A.14) is of course nothing but the
Fourier transform of the derivative operator on a skewed torus. This allows us in
section 2 to think of a set of contractions of string momentum operators under
v-integrals in terms of two-dimensional Feynman diagrams, with (k,m) playing the
role of momenta, and the »-integrals enforcing momentum conservation at each ver-
tex. Because of the restricted sums there are no zero momentum singularities. An

important consequence of this is that the v-integrals of the propagators vanish
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Fer a closed loop we find the following expression (using d2v =2d(Re»)d(Im»))
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Here, Gy, =Gy for k> 1; because of the modular invariant regularization prescrip-
2k=Y2k

tion (A.15) the function GZ appears rather than G, (see also Appendix B).



APPENDIX B

INTEGRALS OF MODULAR FUNCTIONS

Here we present some results for the integrals of weight zero modular functions over
the fundamental domain. The integrands we consider are constructed out of Eisen-
stein functions. For the reader’s convenience we list here some of their properties

(more details may be found for example in [16] [17] [4] ). Their definition is

=/ ~ 2.4
Gy =) = 2 (wrsu) ) (B.1)
e & Z
For all k> 1 these are modular functions of weight 2k. For k=1 the proof of modu-

lar covariance does not hold because the sum is not absolutely convergent. This im-

plies that G is no modular function, but transforms in an anomalous way:
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However, by means of {-function regularization one can define a function Gz, which

is a modular function of weight two, but is not holomorphic in :
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In order not to deal with irrelevant factors, it is convenient for the discussion of in-

tegrals to define also differently normalized Eisenstein functions Eqp

Gop © = o Epp(2) (B.5)



where the coefficients are given by (Byy are Bernoulli numbers)
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The modular functions Gk, k> 1, can all be written as products of G4 and Gg, so

that there is no need to consider functions with k>3. The first three Eisenstein

functions have the following expansions
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Using the method described in section 3 it is straightforward to calculate the

T-integral of any weight zero function of the form (E2= Ey —3/(zImt) )

2r R
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(B.10)

where Fj is a holomorphic function of weight 21, and m +1= 6p. Using (3.10) we find
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An interesting case is the integral of the absolute modular invariant iLeech
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Here we have chosen the constant term in such a way that j[ eecp is the left-mover
partition function of a two-dimensional heterotic string compactified on the Leech
lattice. Upon multiplication with G, we get a function without a constant term, so
that we conclude that the integral of | sech vanishes. The same conclusion was
reached by Moore [8] using Atkin-Lehner symmetry.

Other integrals, some of which are needed in Appendix C, are listed below. De-

fine

“wm &~
. d't E, B4 E¢
INC ) L) = j (lmt)* ‘1"'-"? (<)
F (B.13)
with m +21; + 315 = 6p. Then
A - 2

0.y © = b= =7
I( | ) J,,UMUI 3’

T (03,0} = H3on

T (002) = -6R7

T Cyrna) = -9¢m

I (2,2,0) = 9e¢m (B.14)
I (3,0,1) = = 9¢m

T (%he) = Zaq

T (6,90) = - 9-}‘17



APPENDIX C

EXAMPLES

To illustrate the discussion of section 3, we give some examples to show how to ob-
tain the anomaly cancelling effective action directly from the elliptic genus by per-
forming modular integrals. Consider first the ten-dimensional supersymmetric heter-
otic string with gauge group SO(32).

The partition function in the left sector associated with the right-moving

PP-sector is

Lf
A(4,90) = I A W (01T)

}

(C.1)

"

where Eg =(E4)2 is an Eisenstein function normalized as in (B.5). The elliptic genus

is then obtained by “gauging” (C.1):

e fRz"‘ : L6
‘1 (T) (C.2)

Here, sj are the skew eigenvalues of Fj/2w in the Cartan subalgebra of SO(32). After
some manipulations one can expand it into Eisenstein series as follows (all traces are

over the vector representation):
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Note that in the bracket the coefficients of certain powers of F have poles. One may
however check that in the complete expression the terms containing only F’s do not
have poles. This is to be expected since the (anyway unphysical) tachyon has no

gauge charge.

The anomaly is given by the 12-form multiplying qo in (C.3):
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On the other hand, the integrand of the anomaly cancelling term is given by the
8-form in A(q,F,R), which is given by (C.3) when G, is replaced by Gz. If we

switch to the differently normalized Eisenstein functions Eqy (B.5), it reads
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Using formulas (B.14) for the integrals involving E4, E¢ and Ez, it is easy to verify

anomaly cancellation, i.e.,

1 _ 3
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J

(C.6)

where Xg is defined above. The effective action is of course given by (3.4).
To obtain the analogous expressions for the O(16)xO(16) string, one must re-
place the square brackets in (C.3) by

G 1 1

BT T () (R (@ R (BT - (8T (8]
(C.7)

+ U(Fb)}

The simplicity of this result in comparison with (C.3) is due to the absence of a
gravitino. A chiral gravitino (which can exist only in 6 and 10 dimensions) leads al-
ways to 1 /q2 pole in the character valued partition function. The presence or ab-
sence of this pole determines all coefficient functions with negative weight complete-
ly, because there is just one modular function for each negative Weigﬁt (this is also
true for functions of weight two). In particular they must vanish if they have no
poles. Because the gravitino is a gauge singlet, terms involving traces of F cannot
have a pole. Therefore the negative weight and weight two coefficient functions of
pure gauge terms, not involving TrFZ, must vanish (hence the absence of TrF® in
(C.3)). This is true for supersymmetric as well as non-supersymmetric theories. For

terms involving TrF2 this argument is not valid, because such terms can come from



the exponential prefactor (yielding G, terms) and the square brackets, as in (C.3). If
both kinds of contributions occur, their poles must cancel. In the absence of a chiral
gravitino there are no Gy terms contributing to negative weight functions, because
there are no other negative weight factors to multiply them with. Therefore in
non-supersymmetric string theories, as well as in all 4 and 8 dimensional strings
there are no negative weight functions at all.

Weight zero terms cannot be ruled out by this argument, because there are two
weight zero modular functions, j and the constant function. The latter is determined
by the massless fermions. The constant term takes its simplest form if one writes the
traces in the actual representation of the massless fermions rather than the vector
répresentation. Because the character valued partition function is essentially a
Chern-character it contains no mixed traces, and one simply gets, in 2n+2 dimen-

sions
"

J i F
= Tv (“ )
f

! n (C.8)
Indeed, (C.7) is simply 1/24 Tr(iF/2r)3, where F = F{+F; and the trace is over the
O(16)xO(16) representation (16,16)—(128,1)—(1,128}). In all non-supersymmetric
theories and all 4 and 8 dimensional ones (C.8) is the only weight zero term that
appears in the square brackets (cf. (C.3)), and thus is also the only factor multiply-

ing TrF2~TrR2 in the anomaly. These cases were already completely covered by

the results of [1].
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Fig 1: Contributions to the »-integrals for the ten dimensional case. Each graph rep-
resents a particular momentum structure. The diagrams a) are proportional to Gy,

while those of b} are proportional to (G5)2.
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Fig 2: The path of integration along the boundary of modular space.



	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

