MPI-PAE/PTh 66/84
September 1984

Bound State Fermion Mass Formula

for Supersymmetric Constituent Models

W. Lerche

Max-Planck~Institut fiir Physik und Astrophysik
- Werner Heisenmberg Institut fir Physik -
Féhringer Ring 6, D 8000 Miinchen 40
Fed.Rep.Germany

Abstract

We calculate the "electromagnetic" mass shift of composite quasi
Goldstone fermions, under the assumptions that supersymmetry is
explicitly broken by gaugino mass term and that G/H is a symmetric
space. It is shown that the fermion-boson mass splitting is not
large. The result may be relevant for supersymmetric composite

models as well as for supersymmetric technicolor models.



In the context of composite models, there has been growing interest
in N=1 supersymmetric Yang-Mills theories. In the framework of such
theories, the observed quarks and leptons are regarded as nearly mass-
less bound states of preons, subject to confining strong bhypercolor
interactions (scale /\HC). The origin of their masslessness is a super-
symmetric Goldstone mechanism [1]): The fermions (quasi Goldstone fermionms,
"QGF") are interpreted as superpartners of Goldstone bosons, originat-
ing from a spontaneous breakdown of a.global internal group G to some

subgroup H. For a variety of semi-realistic models, see [2].

Now, having achieved massless fermionic and bosonic bound states,
the next step is to give them small (K AHC) masses due to some symmetry
perturbation. Normally, for non-Goldstone type bound states, one is
unable to calculate the effect of a small mass generating perturbation,
for one cannot solve the strong coupling hypercolor theory. However,
the situation is special for Goldstone fields. The reason is that Goldstone
fields have very peculiar dynamical ('"PCAC") properties which do allow,
in fact, the derivation of mass formulas which are valid basically non-
perturbatively. For example using Dashen's formula [3] one can calculate
the pion's electromagnetic mass shift even though one cannot yet solve

the bound state problem in QCD.

Analogously, if we have massless fermionic bound states (QGF 's )
due to some supersymmetric Goldstone mechanism, we can calculate their
mass using a supersymmetric version of Dashen's formula. In supersym-

metric theories, there exist two Dashen type formulae [4-7] [FNI1]:
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The indices i, j run over the broken global charges Qi of G and AL

is the perturbing chiral Lagrangian (D& /_\L=O)
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which is related to the total perturbating Lagrangian
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The decay constants frri are defined by the current field identity [7]
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where J; is the broken current superfield. (1) can be derived using only
QGF poles [4], so the mass on the L.H.S. is the QGF mass. Similar, (2)

can be derived using only Goldstone boson poles, so the L.H.S. corresponds
to the Goldstone boson massz. Of course, as long as supersymmetry is

unbroken, me = m and also the corresponding decay constants are equal.



There are now two ways to generate mass for composite Goldstone
fields. First, one can explicitly break the group G by e.g. introducing
some mass term in the superpotential £LW(¢), leaving supersymmetry un-—
broken. Note that a breaking term ;sK does not generate any mass. This
is due to the fact that the Goldstone spectrum depends only on the pro-
perties of W and not on those of K [6-9], a direct consequence of the
non-renormalization theorem [10]. Of course, leaving supersymmetry unbroken
one cannot achieve a fermion-boson mass splitting as demanded by pheno-
menology. Thus, we prefer a second way of mass generation, that is,
breaking both G and supersymmetry explicitly. This is particularly in-
teresting since one knows that the coupling of a global supersymmetric
theory to supergravity can induce explicit global supersymmetry breaking
terms [ 11]. The general feature of such terms is that they are "soft"
in the sense that they preserve the ultraviolet properties of the super-
symmetric theory and that there is only a.limited variety of such terms

[11].

The most interesting soft breaking terms are mass terms given by
AK = o © e 4’¢ (6)
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Here, #’(W‘) denote generic chiral (gauge spinor) superfields in the
linear Lagrangian. The supersymmetry violation is due to the explicit
f dependence. (6), (7) give mass contributions only to the scalar com-
ponents of ¢ , while (8) represents a mass term for the gaugino. A typ-
ical value for p is the gravitino mass; for our purposes only p </1HC

is physically sensible.

In this paper, we discuss supersymmetry breaking by gaugino mass
term (8). However, at the end of the paper we briefly comment alsc on
(6), (7). To be specific, consider the following scenario: some global
group G 1is spontanebusly broken te a subgroup H, leading to a certain
number of massless chiral Goldstone superfields. For simplicity, we
assume that G/H 1s a symmetric space, i.e., the commutator of two broken
generators gives only unbroken generators. Then the number of Goldstone
superfields is necessarily dim (G/H) and not smaller [12]. That is,
every Goldstone boson is accompanied by an additiomal scalar boson and

one Weyl fermion.

Hence the Goldstone superfields are real with respect to H, thus
allowing for mass generation. It follows also that the decay constants
f"i are equal for the pion multiplet: fﬁi = fp . The second assumption
we make is that some subgroup S € H is gauged. This is in complete
analogy to nonsupersymmetric QCD where chiral G = SU(Z)L X SU(Z)R is
broken to H = SU(Z)V and S = U(])em is gauged. The gauging of U(l)em
breaks G explicitly, thus gives a radiative mass shift to the pions,
which in lowest order is given by [13]
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Saturating the spectral functions ‘FV and _PA by the §f and Al poles,

cne obtains [13]
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We want to repeat this calculatiom in the supersymmetric case, which
nearby obtains also a mass formula for QGF. As stated above, the mass
shift is zero as long as supersymmetry is intact. We shall assume that
supersymmetry is broken explicitly by a mass term (8) for the S gaugino
fields and that this is the only supersymmetry violating term. Because

of this gauging, the kinetic term for the preons ¢7 is modified to
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respectively. Expanding & one gets to O(gz) the interaction of the §

gauge fields with the preonic current superfields:
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Here the indices a,b run over the gauged generators Sa' The lowest order

effective perturbing interaction at the composite level is then given

by
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It depends on the supersymmetry breaking parameter p and is given in

the Feyoman gauge (ot = 1) by [14]:
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Putting (14} into (1) or (2) there appears a term involving [Qi,[Qj,<33]].
Now, there is a theorem [15] which states that if G/H is a symmetric
space, no H singlet appears in {Ti’ Tj} other than Sij. Thus there is

no contribution from J since H is unbroken and we can effectively drop

this term.

Consequently one gets [ FN2]
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Using again that G/H is a symmetric space, the double commutator term

can be simplified [15]
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In this notation, F(IT) denotes any single broken (unbroken) current

(no sum), and Cg(ri)is the quadratic Casimir invariant of § of the re-



presentation T, under which the broken generator Xi transforms.

To proceed, we need the superspace spectral decomposition of the

current correlation functions, involving the longitudinal (PL + §L )

and transverse (PT) projectors:
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-PT is the corresponding spectral function and we used PT =1 - PL - ﬁL
as well as P_ = I/I6l3_152D2. (20a) is determined by the requirement

L

that <JJ> turns into a massive vector propagator if one saturates the
spectrum with a single pole. The axial current correlation function
contains in addition a pole term due to the Goldstone excitation, which

can be derived from (5):
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Performing the superspace integrals it turns out that the {DZ, ]32},

AA and AB terms do not contribute:
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where F(q2) is defined in (10) and
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For the fermions and bosons different 6-components and therefore A's

contribute; in detail one obtains for the fermions
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Hence we finally arrive at
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Clearly, for vanishing supersymmetry breaking p-—» 0 all masses vanish.
For p->» the bosonic formula turns into the non-supersymmetric one
(9), but with a factor 4 is front instead of 3. This is due to the
additonal "D" contribution (weight 1) besides that of the vector boson
(weight 3). However, in the fermionic sector p—» e 1is unphysical:

m - 0. That is, only p < /\HC is sensible since otherwise there is

no reason for QGF states to appear.

The factor A depends on details of the excited spectrum contributing
to the current correlation functions. As an approximation one can saturate

<JJ> by the poles of the analogues of the f and A] vector mesons:
1 t 1 2 T 1 z
JT(.M")z 33 (g(lf""u"g) ) }X(u-‘): 1,& g({“.—w:’) (28)

where 8¢ = gi because of Weinberg's sume rule [16]. Assuming that

2 . . . .
Bp = mefﬁ as in the non-supersymmetric case, we finally obtain, evaluat-

2
ing the momentum integral (e = %f)
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We see that Mg, m - 0 if the mass splitting in the heavy sector goes
to zero: AM = m, - mj, =» (. That is, AM is a measure of chiral sym-
metry breaking in the heavy sector. It is well known that if some chiral
symmetry is unbroken so that AM = 0, m remains zero under radiative
corrections. The interesting point here is that LA M controls also the
bosonic sector (just as in the non-supersymmetric case). This means,
one cannot achieve a large fermion-boson mass splitting by demanding
that the amount of chiral symmetry breaking in the heavy sector is small.
Put in other words, if some chiral symmetry (e.g. U(I)X) is unbroken

so that it protects the QGF to acquire radiative mass, it protects also

the bosons.

For mp , AM,p-= O(AHC) one has typically A =& 0{1). Thus,

the fermion-boson mass ratio is roughly
Y.
2
7, (30)
ry,

i.e. not very large.

Our calculation was based on the assumption that G/H is a symmetric
space. It would be interesting to investigate which of the above-discussed
features apply also to the general case. Of course, the formulas (26)
are not of general use because they contain unknown parameters. Further-

more, in a realistic model also other explicit supersymmetry breaking



terms may occur, e.g. of type (6) or (7). In addition fn and the spectral
functions need not coincide in the fermionic and bosonic sectors if
supersymmetry is explicitly broken. The effect of the interplay of all

these supersymmetry breakings is hard to calculate.

Finally, we comment briefly on the fermion-boson splitting induced
by breaking terms like (6) or (7) [FN3)]. ((6) splits in addition the

two scalar degrees of freedom, while (7) does not). Typically
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Thus, inspite of explicit G and supersymmetry breaking the fermions
remain massless. However, one may expect that the fermions acquire mass
due to higher order radiative corrections. Perhaps this mechanism allows

to construct realistic models with large fermion-boson mass splittings.

Note added: After completing the manuscript, we received the preprint

[17] where also soft supersymmetry breaking terms are discussed.

I thank J. Kubo and R.D. Peccei for discussions and reading of
the manuscript as well as H. Steger for providing the momentum

integral (29).
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Footnotes

[FN1]

[FN2]

[FN3]

Inspite of that (2) involves a F-Term on the R.H.S.,

it is not correct to conclude that mé = 0 if supersymmetry is
unbroken [5].

The real and imaginary scalar components remain degenerate

because the S gauge interactions do not distinguish between

them.

We assume that these terms do not change the pattern of
symmetry breaking. This may easily occur because in super-
symmetric gauge theories the effective potential has
degenerate directions, thus is very sensitive to small

perturbations.
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