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ABSTRACT

Having emphasized the role of N =2 superconformal invariance in various string theo-
ries, we compute the 'index’ Tr(—1)¥ for the N =2 supercharge on orbifold and manifold
backgrounds. Resolving a quantization ambiguity in the appropriate way, we show that it
generalizes the Dolbeault index indd. It has however, in general, no well-defined modu-
lar properties. The lack of modular invariance can be expressed in terms of the integral

characteristic class %cl, that is also related to the condition for space-time supersymmetry.
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1. Introduction

There exists now a variety of constructions of lower dimenstonal heterotic string theories.
One type of constructions deals with compactification of higher dimensions [1], another type
works directly in lower dimensions [2]. The overlap between these two approaches appears

to be essentially the symmetric orbifold construction.

Many properties of a compactified theory can be interpreted in terms of topological
properties of the compact space. It is certainly important to investigate whether some of
these topological concepts can be translated or generalized to more general conformal field

theories that cannot even be regarded as limiting cases of manifold compactifications.

We will consider here mainly a certain class of (abelian) orbifolds and the theories
described by the covariant lattice approach [3]. The overlap between the latter theories
and orbifolds is given by at least the set of asymmetric orbifolds with inner automorphism
twists and with rank 22 gauge groups. A particular property of all of these theories is a
global V=2 right-moving superconformal symmetry, extending the local N=1 world-sheet
supersynunetry. In fact, most of all known theories exhibit this symmetry. For example, it
was shown [4-9] that N=1 space-time supersymmetry implies V=2 sheet supersymmetry.
We want to stress however that in the above-mentioned class of models the occurrence of

N=2 supersymmetry is independent of any space-time supersymmetry.

It is thus interesting to study this N=2 superconformal invariance in more detail. In par-
ticular, we are interested in the index Tr(—1)¥ that one can define for the two supercharges.
We will first compute this quantity for asymmetric orbifold and covariant lattice theories.
In general such theories cannot be interpreted as compactifications of higher dimensional
theories on manifolds, and the supercharges have no representation in terms of differential
operators. However, when such an interpretation is possible, we show that Tr(——l)F gen-
eralizes the Dolbeault index indd. We also find that even though Tr(—1)¥ can have this
interpretation as an index, it is not a well-defined function in loop space in that it has no
good modular properties, unless a certain cohomological condition is met. This condition is
equivalent to presence of space-time supersymmetry, and if it is satisfied, Tr( —1)¥ becomes

identical to TrT',, the index of the Dirac-Ramond operator.
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2. The N=2 Superconformal algebra

In conformal field theory, the N =2 superconformal algebra [10,11] can be represented

in the operator product form:

1e 2T (w) N T (w)

T(z)-T(w) ~ Gowp  (Gew)?  (z_w)’

2a¥(w)  OGE(w)

(—w)  (z-w)

T(z)-GF(w) ~

J(w) N aJ (w)

T~ i ¥ omw) )
1. (10
I Iw) ~ I(:)G¥ ) ~ £

e J(w)  T(w)+31dJ(w)
G owr  Gow?l ' (zow)

GH(2)-G (w) ~

GE(2)-GFw) ~ 0.

err—

Here, T(z) represents the stress energy tensor, G*(z) the supercharges and J(z) an U(1)
Kac-Moody current; c is the central charge. All these operator products have well-known
representations in terms of (anti-)commutation relations of their mode components. These
components are defined by T(z) = 3272 "L,, G=(z) = S 2732 nFegd and J(2) =

S 273 "J,, where n € Z and a is arbitrary. One such commutation relation is
(Gliwr G} = Lngm + 30— m +20)Jnim + (3e(n+ @)’ = 556)0n4m . (2)

This, together with the other corresponding (anti-)commutation relations it defines an N=2
superconformal algebra, A, for any given value of a {7]{11] [12]. As the algebras 4, and
Aqy1 are isomorphic [7][11], the parameter, a, is restricted to the range 0 < a < 1. We will

however concentrate on the algebra Ag.

In the representation theory of this N=2 superconformal algebra [5], the highest weight
states are states |h,q) annihilated by L., GE,J, for n > 0, and have definite eigenvalues
under a maximal set of commuting generators: Lqlh,q) = h|h,q), Jo|h,q) = q|h,q}. The
complete highest weight representation is then obtained by applying the corresponding cre-

ation operators (n < 0). The NS-sector is defined by a = %, and the R-sector by a = 0. In
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the R-sector, the representation space splits further into two sectors P+ @& P, characterized

by the action of the two supercharges
Gg:|h,g:F%>izO, |h,qZF%>i€Pi. (3)

Furthermore, G : P* — P~, Gy = (G§)' : P~ — P* and {(—1)J",G3:} = [LO,G(j}:] = 0.
It follows that except for states annihilated by G{f or Gy, all other states come in pairs with
same mass and with U(1) charges differing by one unit. The states which are not paired are
massless, i.e., have h = 5. Thus one is tempted to define as "index’ for an arbitrary N=2
superconformal theory indGg = Tr{—1)". This however can only represent a meaningful
quantity if we can regulate the trace such that the regulator commutes with Jp and the
mass operator. For closed string theories with a right-moving (2,0) supersymmetry, the

 appropriate object to consider is
oL £ fo_C
deb" — Tr (_1)JOQ{G(T+(G(‘:')1}ZQL0724:| = Tr [("I)JUQL(Jﬁ24qL(l_24:|’ (4)

where the trace runs over the R-sector, Lg is the hamiltonian for the left-moving sector,
and ¢ = ¢*™" I'm7 > 0. As only states with Ly = 55 contribute, {4} is a function of ¢ only.
A priori, the value of the trace is not guaranteed to be integral as Jo need not take integer
eigenvalues on all states. This is however only a sufficient, but not necessary condition:
for example, in orbifold theories, integrality of (4) need only occur after summing over all
twisted sectors. If (—1)7° = 41, then one can indeed identify the right-hand side of (4) with

the usual notion of index: inng“ =dim _kerGa'*dz'm ker(G(')")T.

We like to point out that one can also consider the one-parameter family of indices
indG} = Tr[(—l)J”QL“(G)#;Tqﬁ“—fE], with Lg(a) = Lo + aJo + %az and where the trace
runs over states created from a shifted Dirac sea [0} (’spectral flow’ [7]). This allows in
particular to define also index theorems in the NS-sector (a = %) Naively, as @ moves ovér
one period (e.g., from zero to one), one expects that indG} returns to its original value. It
turns out, however, that this is in general not true; rather, there occurs a global anomaly
if the first Chern class ¢; (as defined below) does not vanish. Similarly, indG{ = indGy
if %cl = 0; this is relevant in supersymmetric theories. In the following, we wzill however

confine ourselves to ¢ = 0 and compute (4) for several classes of string theories.
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3. N=2 Superconformal Symmetry in Specific String Theories

We need to explain some details of the N=2 superconformal symmetry arising in various
orbifold and lattice string theories. Consider first an untwisted theory, that is, a ten dimen-

stonal heterotic string compactified on some 2d dimensional torus 7. The local right-moving

N =1 symmetry is generated by Tr(Z) = —%T,b‘“gX (zZ) ,p = 1,..10. Adopting a complex
basis, this can trivially be rewritten T (z) = “0X.(2) — 28X, (2) = G (2) + G (3),
and together with J(z) =: ¥*¢% : () we immed1ately can extend the N=1 algebra to an

N=2 algebra with ¢ = 15" . The zero mode of J can thus be identified with the fermion

number operator F.
Consider now Zy twists g (¢°* = 1) acting on some of the compactified right-moving
coordinates, and choose a complex basis that diagonalizes these twists:
g
g X(3) o HRINXA(E) g e(z) kN
g: Xa(::f) — €~27rik,,,/NXci(§) , (2) 72‘.'I"L.k,,_/N¢ﬁ,(2) .

&1

(5)

Obviously, Tr and J defined above are preserved under these twists, and the resulting theory

based on the (not necessarily symmetric) orbifold & ~ 7 /Zx is N=2 invariant.

Thus, merely defining complex coordinates allows to extend the symmetry. This is
quite general: it applies to any theory with complex fermions. In particular, one can
easily show that any conformal field theory based on a covariant lattice A (consisting of
the momenta of the bosonized fermions, superghost ¢ and the ’compactified’ bosons) has
N =2 supersymmetry: one can always cut Tp into two pieces with charges +1 under the

zero mode of

J(2) = iv-@H(Z), (6)

by choosing an appropriate vector ¥ satisfying v? = § = 5 (note that v does not lie on the
lattice). The bosons denoted by H can be defined to be subset of compact bosons which

describes the NSR fermionsT

# Omne can combine this algebra with the N=2 algebra of the superconformal ghost system {13] to obtain
a V=2 symumetry acting on the complete right-moving sector with ¢ = 0.

i In general, given a lattice, there is a priori no distinction between ’compactified’ bosons and fermions.
There can exist several (inequivalent) choices for #, and accordingly several ways of realizing N =2
superconformal symmetry. In theories based on D,-lattices, i.e., in theories with only periodic and
antiperiodic fermionic boundary conditions, @ is a five dimensional vector with components +1.



For our purposes, we can put orbifold and covariant lattice theories on equal footing, by
bosonizing the fermions +%,4* above. In the fermionic sector, the orbifold twist operation
(5) is then equivalent to a certain shift operation on the lattice describing the NSR fermions.
Likewise, any (odd self-dual) covariant lattice A can be obtained from any other one, and in
particular from a lattice A7 describing a torus-compactified supersymmetric heterotic string,
by shift operations and appropriate projections [14,15]. More precisely, the untwisted sector
corresponds to the lattice A%— of vectors of AT with integer inner product with the shift
vector &, while the twisted sectors correspond to the conjugacy classes [m] = [A"g + mg],
m=1,... N -1 {with Né e AT possibly having non-zero components also in the space-time
and ¢-ghost lattice sectors). The new covariant lattice A is a sublattice of the dual of AL
with the above conjugacy classes.

Define a vector V = (¥, +1), where +1 denotes the ¢-ghost charge. The vector (—17)
is then associated with a vertex operator e *# ¢ * in the canonical ghost picture. It is
the lattice analogue (p = 5) of the constant antibolomorphic p-form ez, .. a, g" . .¢g", which
exists on any 2p-dimensional Kahler manifold with vanishing first Chern class [16][5](6]. The
vector, I?, belongs to the lattice A of the new theory precisely if it has integral (lorentzian)
inner product with all other lattice vectors; as V € A7, this is the case if (V-6) € Z. We
take this* as the condition for vanishing of a generalized first Chern class, defined also for
theories not admitting a compactification interpretation. Indeed, for orbifold twists of the
form (5), it becomes the same as the condition for vanishing torsion first Chern class in

orbifold theories, 3 &k, = 0 mod N, and we can write
K=Y kad = N(V-8) i (7)

where # is the generator of a torsion subgroup of H?(0,Z) with N-2 = 0 [17,18]i . This
generalizes ¢/ = L TrR = Z%JabRba € H*(M,R) of complex manifolds M. Thus, V
and & play the role of complex structure J9 and curvature 2-form R%, respectively. More
precisely, the zero mode of the current J = iv-dH generates precisely the same U(1) rotations
S = 1p*, 8% = —13p? as the complex structure J%. Note that the definition of ¢; above
involves only the shift vector components in the fermionic (possibly also ¢-ghost) sector of

the theory, which is defined by V.

+ More generally, the existence of an operator with (%, ¢) = (5, §) in the matter sector.
t We implicitly assuimne an appropriate equivariant definition of O.
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The vector V plays an interesting role for space-time supersymmetry: (-%V) is the lat-
tice representation of (a particular component of) the supersymmetry charge. The foregoing
integrality condition is however not sufficient for the presence of this vector on the lattice A;
rather, only if there exists some choice of complex structure v such that (V-6) = 0 mod 2,
space-time supersymmetry arises (this is related to the ’charge integrality condition’ [12]),
That is, invariance of the constant (0,p) form under a discrete holonomy group does not

imply the invariance of the supercharge. One can express this by

L =Mv.6)y2=0, (8)
which, in integral cohomology, is a stronger statement than ¢’ = 0. This generalizes
the familiar condition for supersymmetry in manifold-compactified theories, ¢{™ = 0.

The integral class 1 sc)'" is well-defined if we assume the vanishing of the second Stiefel-

Whitney class wy € H%(O, Z3), which is the mod 2 reduction of ¢;. Indeed, wy = 0 iff
N(V-§) = 0 mod 2; this is one of the level-matching conditions [19].

4. Computation of Tr(—1)F

Following the discussion of [20], we recall some facts about spinors and holomorphic p-
forms on Kahler manifolds. On a 2d dimensional Kahler manifold M one can always find a
complex basis for the gamma matrices such that {+*,7%} = §%,a,b = 1..d. This then allows
one to interpret these as creation and annihilation operators. Define now a (spinorial} Fock
vacuwm by v° |1} = 0 Va. Then the other spinor states are obtained by acting with products
y*~8% 4% on it. A general spinor field on M can therefore be expanded as

V(aa,22) = (D VW20, 2a) = EB a0, (e zay™ - A 1) (9)

P

If ¢; =0, ®5,.4, are equivalent to antiholomorphic p-forms. Thus there is a one-to-one
correspondence between spinors and (0, p)-forms on M. Since the application of ¥* switches
chirality, the eigenvalue of +, acting on ¥(P) is (—1)P. Moreover, the action of the Dirac
operator on ¥ is equivalent to the action of the Dolbeault operator on antiholomorphic

p-forms, & : (0,p) — (0,p + 1). The Dirac index on M is therefore the same as the
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Dolbeault index indd, which counts the difference between the numbers of even and odd

antiholomorphic harmonic forms, respectively:

d
indD = Trve = 3 (-1 dimHP(M,R) = indd . (10)

p=0

If however ¢; # 0, @al,_,ﬁr(:ca,:ca) is not equivalent to a (0,p)-form since it has wrong
transformation behavior under the U(1) part of the holonomy group, and the foregoing

identifications, in particular the relation of (—1)? with chirality, do not hold.

Analogously, in orbifold string theory, as soon as we can define a complex basis (i.e,
an N = 2 supersymmetry), we can introduce creation and annihilation operators using
{42,,92} = 6. In the standard (untwisted) Fock vacuum, we can take P&, ¢®, and
%, (n > 0) as creation and ¥, %% and 2 as annihilation operators. A spinor field in the
untwisted sector can be expanded as in (9), with additional higher mode contributions. In
the twisted sectors, creation and annihilation operators have to be appropriately redefined.
It is easier to employ the bosonic formulation here; a generic spinor on @ in the shifted

sector [m] (m = 0,... N — 1) can then be expanded as (modulo derivatives)

v,) = @|¥n) = X ena: I 0)10) (11)
A

/

Here, ) are vectors with arbitrary integer components, and the exponentiated shift vector

§ represents the twist field in the fermionic sector of the theory.

" in the 2d dimensional internal sector (we denote internal

We now compute indG
and space-time sectors by (int) and (st), respectively; & has non-zero components only in
(int)). The trace in (4) runs only over those states on which G*+**(z) has an integral mode
expansion. Since GF(z) = GT09(z) + GT(z) is well-defined on all states, the states are
precisely those on which also G1"9(z) has an integral mode expansion. Thus,

£

; it L 7o
indGg""" = Trgeo (—1)F( ‘g gl (12)

R indicates summing only over states whose space-time part is in the Ramond-sector. To
evaluate the trace, we need to know the action of (—I)F(m” on the states (11). In principle,

there occurs an ambiguity in defining the action of (—1)F "™ on the twisted orbifold ground
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states (this corresponds to the ambiguity in defining different regularization procedures in
the o-model calculation below). For the index of the N =2 supercharge, however, the
natural choice is to identify F"" = Ji™" and thus to determine the action of (—1)F“m
on a ground state by its U(1) charge’ . Denoting by T'"" the chirality operator on the

fermionic excitations of the internal space, we have, therefore

()7 W) = (1T () (13)

Thus, for arbitrary first Chern class, (—I)F " ceases to have eigenvalues +1 and to rep-
resent the chirality operator of the internal sector. This is the phenomenon of charge frac-

tionalization. 1t follows

N-1
ind(}'g'“"“ = % Z(_l)m(V-vS) ind[m]G(Osm) ’ (14)

m=0

where ind[m]G(&"” is the index Tr T'{"" of the Dirac-Ramond operator G = G;“"‘”+ Ggt
in the shift sector [m]. For (V' -8} =0 mod 2, i.e., %cl = 0, the above-mentioned ambiguity

disappears and indGJ“"” becomnes the same as the index of the Dirac-Ramond operator,
3 = i - . 2]
indGg" = Trgoo |DyUgh 24¢2 21| = indGH™ . (15)

It is interesting to note that the expression (15) is precisely the chiral partition function {21]
of the theory, as TV = T\ (see, e.g. [20]); it is algebraically defined even for conformal field
theories not admitting a compactification interpretation. Of course, for theories admitting
such a interpretation, indG| is the loop space generalization of the index of the Dirac

operator indl} on M [22].

In the same spirit we can regard indj as an elliptic generalization of the Dolbeault
index ind@, which can be defined for a differential operator on some Kihler manifold. It is
obvious that (15) is a generalization of (10), which applies if ¢{'"*’ = —23; Tr R = 0. However,
(15) holds only for %—c‘l"”" = 0 (the condition for space-time supersymmetry) which is a

stronger condition than the vanishing of the integral class ¢|"" as defined in (7).

x If ¢4 = 0 mod 2, i.e., wy = 0, one can also choose (—I)FHFm in such a way that it takes only eigenvalues
+1 on all states, and thus can be identified with the chirality operator acting on spinors. With such a
choice, the calulation would lead to the index of the Dirac-Ramond operator.
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In order to see this in a different manner and to really show that indGy generalizes
ind@, we evaluate indGy = Tr(—1)¥ via the path integral for a (2,0) o-model on some

2d-dimensional Kahler target space M:
Sp = & [ @0 qulX)0X*BX —gu(X) (80 + T(X)OX) ¥t . (16)
Separating out and rescaling the zero modes, the (in the small Im7 limit) leading part reads
Sp = 5= / d20 X850 + Rap) X° — Sapp® 0" | (17)

where X and ¢ are now the quantum fluctuations around the classical zero modes z$, zd,
Y& Y8, and Ry = %—R&bgd(mg,mg )i,bgv,bg’ is the curvature two-form. The index of the N=2
supercharge Gy = [doy ¢° (—LD-%-— + ga,;(X)%‘g—:) is then obtained from

det'(a(S&b)
det'(962;)det’ (86 + Rap)

indGy = lim / dXdp e 5E = f dxlduf dipd dipd (18)
M

Imr—0

with periodic-periodic boundary conditions on the fermions. The computation of the re-
maining determinant is similar to the index calculation of the Dirac-Ramond operator [22],
except that one has to regulate carefully using complex coordinates since R takes now values

in the holonomy group U({d) instead of SO(2d). Let us first consider

det' (8 + v) ' v
tog [ det'(9) } B Z log (1 * mT + n)

m,n

N o DA
= ilﬂ% Z Z ko (mr + n)kte
k=1 mn
oo (19)
( 1 k+1 h
=l o (L) Gt

k=1

wlere T is the modular parame‘fer of a skewed torus, and where

le Z Z m7 +n)” +Zn N

m=1n=—o0

(—2mi)’ i
= T(s) (( 2wy +2“ )
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Being careful about the contribution of the pole of the (-function for k =1, (19) becomes

- o 2k
tgv lim (s Fapr(T)) - Y %sz("')
k=1
- (20)
= iy — ; ﬁ*ng( )

where G;(7) are the Eisenstein series (transforming with modular weight 2k for k > 1).
Therefore, using the identities %‘ﬁﬂ% = exp[— > %ng(r)], #,(0|7) = 2n°*(7) and denoting

the skew eigenvalues of @%Rab by wq, we get

d
= = 1
indGy = / dxddzsdviavg [ [ezwa ﬂl]
M

a=1 "91(&11—)

(21)
-1

d
1,
g [ daddnsayiavg [ |e2¢ ‘”(1‘ 2)
q /;\A zodrgdipgdipy 11 € smh "\'-Ua H € gesr

n=1

Integrating over the fermionic zero modes results in substituting R by R = Rggdz® A dz?,

and rewriting the two products yields

indGy = ¢~ 4/1? f td( R)Ch(q, R) : (22)
M top form
Here td{R) is the Todd genus, which is related as follows to the Dirac genus A(R) [23]:
d L, lwa Loy
- Tl || = i, (23)
ol smh( wa,)

iR
with ¢y = ¢/, The series Ch{q, R) = >.77 4 ¢"Tr[y)e2r represents the Chern character

for every string level. As the Todd genus is precisely the index density of the Dolbeault

complex, the level n = 0 part of (22) is g~ %1% times

indézf td(R
M

It follows that {22) is the string generalization of indd. For ¢; = 0, it becomes equal to

the index of the Dirac-Ramond operator ind(#y = ¢~4/12 | A(R)Ch(q, R); this is the elliptic

(24)

top form .

generalization of (10).
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1
The factor €2 ! above arises from the (-function regularization (20) of the determinants,
and is in a sense an artefact of this regularization. However, as the same divergence as in
(20) arises already in the field theory computation of indd, we can appeal to the usual field

theory reasoning (23] to resolve the regulator ambiguity as above.

The index of G, has well-defined transformation properties under the modular group,
as long as the first Pontryagin class p1 = — g5 Tr R? € HY M, R) vanishes [21][22] (this is
because Tr R? is multiplied by the anomalous modular function Ga(7); cf. (20)). Similarly,
since there exists no compensating modular weight one function Gi(7) to multiply ¢; =
i Tr R with in (20)-(22), it follows that modular covariance of ind Gy is spoiled if ¢; 5 0. In
other words, ¢|""*" # 0 and p{"™" # 0 are obstructions to generalizing the Dolbeault index to
Joop space. Both obstructions arise due to particular choices of regularization schemes that
violate modular invariance: for the Dirac-Ramond operator, one chooses a regularization
prescription which manifestly ensures holomorphicity; for the N=2 supercharge on chooses

a prescription which (in addition) is adapted to complex coordinates.

This feature is also reflected in the formula (14) for indGy on orbifolds. For arbitrary
first Chern class, the phases in the sum over twisted sectors destroys modular covariance.
The phases disappear only for i 5¢,”" = 0. This is similar to the role played by the integral
class A\ = 1pi'" € HYO,Z) for the Dirac-Ramond operator on orbifolds [19] {24-26]. The
relevance of c”’”’ instead of ¢{"" is already suggested by (23). More specifically, consider
the character valued index associated with a group action g asin {5). According to the fixed

point theorem, in the twisted sectors ind@ = [¢d(R) is replaced by the Lefschetz number

of the Dolbeault complex [23]:

Lpor = Tr (QH(—U’W")) ~ Tr (gH.(O"’dd))

§
B Z H 1—e it Z ﬁe_%'ga 7 (25)
o 22— 2cos(6.) = 2sin(i6,) |

protanta peinta

with 8, = %k,. The expression in the brackets is the index ’density’ for the twisted Dirac
operator [23] [27], as it appears in the expression for the Dirac-Ramond index indGj, on

orbifolds [28]. The phase corresponds to that in (14), and vanishes if 3k, = 0 mod 2N,

le., ;c‘f = 0.
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