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Overview in german:
Die Stringtheorie hat in den letzten Jahren einen großen Aufschwung genommen. Sie

ist ein Gebiet der theoretischen Physik, welches sich die Vereinheitlichung aller Naturkräfte
zum Ziel genommen hat. Diese sind bekanntlich durch den Elektomagnetismus, die starke
und die schwache Wechselwirkung sowie durch die Gravitation gegeben.

In der Stringtheorie wird angenommen, daß die tiefste zugrundeliegende Struktur aller
Elementarteilchen und ihrer Wechselwirkungen durch ultrakleine ”strings” oder Fädchen
gegeben ist. Die verschiedenen in der experimentellen Beschleunigerphysik beobachtbaren
Teilchen werden als Anregungen (besser Nullmoden) dieser Strings interpretiert. Diese
Vorstellung ist keineswegs ad hoc vom Himmel gefallen, sondern gründet sich auf die
Einsichten und Schwierigkeiten, auf die man mit Versuchen der Quantisierung der Grav-
itation gestoßen ist. Man fand, daß sich in der Stringtheorie alle Inkonsistenzen wie
durch ein Wunder in Nichts auflösen, und entdeckt immer weitere frappierende Eigen-
schaften, welche die Theorie auszeichnen. Daher wird allgemein geglaubt, daß die Prob-
leme der Quantengravitation nur in der Stringtheorie umgangen werden, und als “Neben-
produkt” findet man automatisch eine vollkommene Vereinheitlichung der restlichen drei
Naturkräfte.

Allerdings sind diese Überlegungen bisher rein theoretischer, und vor allem eher math-
ematischer Natur. Daß dies wohl auch in der näheren Zukunft so bleiben wird, liegt an
den riesigen Energieskalen, die involviert sind – ein “praktisches” Problem, mit welchem
jede Theorie einer Vereinheitlichung der Naturkräfte zu kämpfen hat. Daher sucht man
vor allem nach theoretischen Konsistenz- und Eindeutigkeitsbeweisen. In der letzten Zeit
wurden hier große Fortschritte gemacht, die auch auf konventionelle Quantenfeldtheorien,
wie Eichtheorien, ausstrahlen. Das Stichwort heißt “Dualität”, welches eine exakte, nicht-
perturbative Äquivalenz a priori verschiedener Quantentheorien bedeuted. Erheblichen
spinoff gibt es auch in die Richtung der reinen Mathematik (zB. algebraischen Geometrie),
so daß man fast sagen könnte: die Stringtheorie ist so reichthaltig, daß sie im Grunde
nicht nur alle bekannte Physik umfaßt, sondern auch einen großen Teil der bekannten
Mathematik.
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Figure 1: Superstrings form the bridge between particle physics and gravity. Our knowledge from exper-
iments ends somewhere at 10−18m, and from there it’s still a long way to go until we could possibly meet
superstrings.

1 Introduction

1.1 The Standard Model of Particle Physics, and its Deficiencies

String theory1 is an approach to describe the constituents of all matter and their interac-
tions, at the most fundamental and deepest level. It is thus an extension of elementary
particle physics, and in fact most likely the only possible extension that is consistent with
both quantum mechanics and general relativity. To get a quick idea about the relevant
distance scales we will talk about, see Fig.1.

Conventional particle physics deals with the properties of the building blocks of matter,
namely quarks and leptons –of which the most prominent example is the electron–, and
their (non-gravitational) interactions. There are three such interaction forces, namely the
well-known electromagnetic force, plus the “weak” and the “strong” interactions. The
latter two play a rôle only in subatomic physics, and manifest themselves macroscopically
in an indirect manner, like via radioactive decay. According to quantum field theory,
all such forces are mediated by certain force carrier fields, nowadays called gauge fields.
The most prominent gauge field is the photon, the quantum of light, which gives rise to
the electromagnetic interaction. Analogously, for the other interactions there are “W -
bosons”and “gluons”, respectively.

1For a recent account intended for general audience, see [1], and for more technical reviews, see for example [2].
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Figure 2: The standard model of particle physics comprises the three observed families of quarks and
leptons, together with certain interactions that are mediated by gauge fields. (ν denotes the various
kinds of neutrinos, and e the electron). The fourth known interaction force of nature, which is gravity, is
traditionally not viewed as belonging to particle physics.

The observed elementary particles and their interactions are described by what is called
the “Standard Model” of particle physics. This is a certain framework of formulas and
field theoretic rules, developed over the past 50 years, by which we can describe many
subatomic phenomena with stunning accuracy. We have depicted the most important
ingredients of the Standard Model in Fig.2.

However, even though this theoretical framework is very successful (in fact it is the
most precise and accurate theory in all of natural sciences), there is quite a number of
partly technically, and partly conceptually unsatisfying deficiencies.

One of the first questions that comes to mind is the very structure of the standard
model, which seems to be quite ad hoc. For example, one may ask why do we have just
three, and not four, of quark-lepton families, as depicted in Fig.2 ? Why is the structure
of their gauge interactions just as we see it, and not something else ? Moreover, there are
circa 20 free parameters in the Standard Model, like the electron mass, whose observed
numerical values are unexplained per se, and so must by fitted against the experimental
data. So, what is the reason –if there is any at all– for these parameters to take exactly
the numerical values we observe ?

What physicists are hoping for is that there should be some structure underlying the
Standard Model, which would explain some or all of these and other features. Indeed,
numerous extensions of the Standard Model have been contemplated upon in the past, like
the “Grand Unification” of the gauge interactions, or “supersymmetry”. Supersymmetry
by itself does actually not solve the above-mentioned conceptual problems, but provides
an attractive escape route to avoid certain technical problems (among other features, it
softens self-energy corrections to particle masses, thereby providing a mechanism for the
stability of small mass values). It is a symmetry between bosonic (integer spin, like that
of photons) and fermionic degrees (half-integer spin, like that of electrons) of freedom -
see Fig.3.

Unfortunately the energy range and accuracy of the present-day accelerator experi-
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Figure 3: In supersymmetric field theories, the fermionic spectrum matches the bosonic one. Since
fermionic and bosonic contributions to self-energies have opposite signs, they tend to cancel out to the
effect that the theory less is divergent as compared to a non-supersymmetric theory.
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Figure 4: Graviton scattering processes, like this self-interaction, cannot be made sense of in conventional
quantum field theory because of incurable divergences.

ments did not yet allow us to “see” any territory beyond the Standard Model (and this
despite of the fact that the involved machinery is among the largest and most sophis-
ticated that ever has been made). However, it is guaranteed that the next generation
of particle accelerators and detectors, like the LHC currently being built at CERN, will
shed light on some of this uncharted area, most notably on the question of supersymmetry
(near the question mark in Fig.1).

1.2 Quantum gravity and String Theory

The most dramatic extension of the Standard Model of particle physics that has been
proposed so far is string theory. However, as we will discuss in more detail below, string
theory too does not provide very concrete answers to the questions posed above. But
what string theory does is to provide a resolution of conceptual problems that are on a
far deeper level than these “practical” problems. One of the most important problems in
modern theoretical physics is the apparent mutual incompatibility of quantum mechan-
ics and general relativity (the theory of gravity) – one theory describing well the world
at very short, the other at long distances. Certainly a truly satisfying unified theory
should incorporate the gravitational interaction as well, even though traditionally it is
not considered as belonging to particle physics.

Over the last decades, countless attempts had failed in trying to formulate a theory
of gravity at the quantum level. For example, if we try to apply the quantum field
theoretical methods that were so successful in particle physics, we get answers that make
no sense, even for simple interaction processes. More specifically, from the point of view
of quantum field theory, the gravitational force is mediated by gravitons which are the
quanta of the gravitational field. However, scattering processes involving such gravitons,
like the one depicted in Fig.4, always lead to infinite answers (due to “non-renormalizable”
divergences).

This failure is just a reflection of a more deeply rooted problem, namely an actual
inconsistency between standard quantum field theory and gravity, which shows up in
many disguises. It has been clear for some while, therefore, that in order to bypass
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Figure 5: Some vibrational excitation modes of a tiny closed string.
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Figure 6: The energy level spacing of the string vibration modes is very large, so that what we usually
call “high energy physics” is really at very low energies from the string point of view. The characteristic
scale of the string excitations, given by the “Planck mass” mPlanck ∼ 1019 GeV, is set by the strength
(rather: weakness) of the gravitational interaction at low energies.

these obstacles, entirely new concepts at a most fundamental level are needed. It is in
string theory, where indeed –as far as we can see– all these inconsistencies miraculously
disappear, and it is widely believed that it is in fact the only possible framework in which
a marriage between quantum mechanics and general relativity can be achieved.

Just this fact by itself could be taken as a revolutionary breakthrough in theoretical
physics, but in addition string theory brings with it –in some sense as a by-product–
the generic features of the Standard Model as well. More precisely, it carries generically
also the types of degrees of freedom that we actually see in Nature, like quarks, gauge
and Higgs fields etc. However, apart from this generic structure, the details, like particle
masses, precise form of gauge groups etc, cannot (at least as of yet) predicted in any
concrete way. As will be explained below, these details do not seem to be encoded in
the string theory at a fundamental level, but are governed by the specific vacuum ground
state of the theory. At the moment it thus seems very hard to go beyond this point and
derive the numerical details of the standard model from first principles. Perhaps it will
never be possible, because there might simply be no such first principles, the numerical
details being nothing but frozen historical accidents.

Heuristically one may introduce string theory by imagining tiny, oscillating loops
sweeping through space-time. The vibrational excitation modes, of which there are in-
finitely many, then would correspond to “elementary particles”. The characteristic length
must however be extremely small; correspondingly, the level spacing of the excitation
spectrum must be huge, and in fact of the order of 1019 proton masses – see Figs.5 and
6. This is simply because this mass scale is ultimately determined by the value of the
gravitational coupling constant, and this must match because we do want to describe
gravity correctly.

That strings are so difficult to observe and verify experimentally, thus stems from the
fact that the gravitational coupling is so small. Were we able to access this mass scale,
there would be infinitely many testable predictions that were specific to string theory; it
is not at the fault of string theory that we cannot access them with today’s technology.
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In fact, the experimental verification any grand unified theory, especially if it includes
gravity, tends to suffer from this fact, so that this problem is not string-specific. Still, it
is not so that string theory would not make any predictions at low-energies; as we will
see, the theories are very finely tuned and internal consistency still dramatically reduces
the number of possible low energy spectra and independent couplings, as compared to
ordinary field theory.

Moreover, if we are lucky we might find out that the situation is not that bad; indeed,
certain string inspired models have been conceived recently [3], in which the string scale
(and the scale of extra dimensions) lies within the range of the next-generation accelerator
experiments (or even at the millimeter scale). However, there seems to be no particularly
convincing reason why Nature should have chosen a string model that by accident happens
to be just about verifiable by present-day experiments.

2 Perturbative String Theory

2.1 Two-Dimensional World-Sheets

Being one-dimensional extended objects immersed in some D-dimensional2 space-time,
strings trace out two-dimensional “world-sheets” Σ that may be viewed as thickened
Feynman diagrams, for example:

+ +    ...

Σ0

Analogously, a self-interaction process is described by a two-dimensional surface with
a hole:

Σ1

For a long time, the only known way to think about strings was in terms of such
two dimensional Riemann surfaces, somewhat neglecting that this represents only an
approximation scheme, whose validity requires surfaces with more and more holes to give
less and less strong contributions to a given scattering process. In the recent “second string
revolution” this perturbative scheme based on Riemann surfaces has been overcome, which
now allows highly non-trivial and important insights into the exact, non-perturbative
properties of string theories – this will be the topic of subsequent sections.

In the perturbative formulation that we consider momentarily, a definition of string
theory can relatively simply be given in terms of two-dimensional field theories living on
the Riemann surfaces. Suitable two-dimensional field theories can be made out of a great
variety of building blocks, the simplest possibilities being given by free two-dimensional
bosons and fermions, eg., Xi(z), ψi(z).

By combining the two-dimensional building blocks according to certain rules, an infinite
variety of operators that describe space-time fields can be constructed. These correspond
to the zero modes and massive excitations of the string, cf. Fig.6). Typically, the more
complex the operators become that one builds, the more massive the associated space-
time fields become. In total one obtains a finite number of massless fields, plus an infinite

2We prefer to leave the space-time dimension at this point arbitrary, aiming at D = 4 at a later time.
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tower of string excitations with arbitrary high masses and spins. Schematically, among
the most generic massless operators are:

Dilaton scalar φ ηµν ∂̄Xµ∂Xν (µ, ν = 1, ..., D)
Graviton gµν ∂̄Xµ∂Xν

Gauge field Aa
µ ∂̄Xµ∂X

a

Higgs field Φab ∂̄Xa∂Xb

(1)

We see here how simple combinatorics provide an intrinsic and profound unification of
particles and their interactions: from the two-dimensional point of view, a gauge field
operator is very similar to a graviton operator, whereas the D-dimensional space-time
properties of these operators are drastically different. An important point is that gravitons
necessarily appear, which means that this kind of string theories imply gravity. This fact
has been one of the main motivations for studying string theory.

Fermions (thought as “quarks” and “leptons”) are obtained by suitably choosing the
boundary conditions of the two dimensional fermions ψ on Σ. These can be anti-periodic
or periodic (the fields change sign or not when transported around Σ), giving rise to
fermionic or bosonic fields in space-time, respectively. It turns out that whenever the
theory contains space-time fermions, it must have two dimensional supersymmetry, and
this is why such string theories are called superstrings.

It is however not so that the D-dimensional space-time theory must be supersymmetric,
although practically all models studied so far do have supersymmetry to some degree. But
this is to simplify matters and keep perturbation theory under better control, much like
the study of supersymmetric Yang-Mills theory (discussed below) makes the analysis much
easier as compared to non-supersymmetric gauge theories. Thus, string theory does not
intrinsically predict space-time supersymmetry (in a similar spirit in which Yang-Mills
theory does not predict it), though, quite misleadingly, it is often claimed so.3

That very simple, even non-interacting two dimensional field theories generate highly
non-trivial effective dynamics in D-dimensional space-time, can be exhibited by looking
to the perturbative effective action:

2d action

 general relativity,
 gauge theory etc

small string corrections

‘‘loop expansion’’ =  sum over 2d topologies

+                          +                                      +     ........

ψ
S

(D)
eff (gµν , Aµ, ..) =

∑
Σγ

e φχ(Σγ)
∫
M(Σγ)

∫
dψdX.. e

∫
d2zL2d( ,X, .., gµν, Aµ, ..)

=
∫
dDx
√
ge 2φ

[
R+ TrFµνFµν + . . .]︸ ︷︷ ︸+O(mplanck

1)

Σ0 Σ1 Σ2

3An often-cited argument for low-energy supersymmetry is that perturbation theory of non-supersymmetric strings
tends to be unstable due to vacuum tadpoles. However, even when starting with a supersymmetric theory, this problem will
eventually appear, namely when supersymmetry is (e.g., at the weak scale) spontaneously broken. We therefore have, at
any rate, to find mechanisms to stabilize the perturbation series, which means that vacuum tadpoles are no strong reason
for beginning with a supersymmetric theory in the first place. See especially refs.[4, 5] for a vision how strings could be
more clever than what ordinary quantum field theory intuition would makes us believe, and avoid supersymmetry (similar
ideas may apply to the “hierarchy problem” as well); for a different line of thoughts, see ref.[6].

7



Here, gµν , Aµ, ... are space-time fields that provide the background in which the strings
move, and L2d(ψ,X, .., gµν, Aµ, ..) is the lagrangian containing the two-dimensional fields,
as well as the background fields which are simply coupling constants from the two di-
mensional point of view. The 2d fields are integrated out, and one also sums over all
the possible two-dimensional world-sheets Σγ (as well as over the boundary conditions
of the ψ(z)). This corresponds to the well-known loop expansion of particle QFT. Note,
however, that there is only one “diagram” at any given order in string perturbation theory.

The topological sum is weighted by e−φχ(Σγ ), where φ is the dilaton field and where the
Euler number χ(Σγ) ≡ 2−2γ is the analog of the loop-counting parameter. The coupling
constant for the perturbation series thus is

g = e〈φ〉,

which must be small in order for the perturbation series to make sense. We see here that
a coupling constant is given by an a priori undetermined vacuum expectation value of
some field, and this reflects a general principle of string theory.

In addition, the topological sum is augmented by integrals over the inequivalent shapes
that the Riemann surfaces can have, and this corresponds to the momentum integrations
in ordinary QFT. There may be divergences arising from degenerate shapes, but these
divergences can always be interpreted as IR divergences in the space-time sense. In
particular, the well-known logarithmic running of gauge couplings in four dimensional
string theories arises from such IR divergences.

The absence of genuine UV divergences was another early motivation of string theory,
and especially makes consistent graviton scattering possible: remember that ordinary
gravity is not renormalizable and one cannot easily make sense out of graviton loop
diagrams. A very important point is the origin of this well-behavedness of the string
diagrams. It rests on discrete reparametrizations of the string-world sheets Σγ (“modular
invariance”), which have no analog in particle theory. The string “Feynman rules” are very
different, and cannot even be approximated by particle QFT. String theory is therefore
more than simply combining infinitely many particle fields, and it is this what makes a
crucial difference. The whole construction is very tightly constrained: modular invariance
determines the whole massive spectrum, and taking any single state away from the infinite
tower of states would immediately ruin the consistency of the theory. In this sense, string
theory makes infinitely many predictions.

So far, we described the ingredients that go into computing the perturbative effective
action in D-dimensional space-time. Now we focus on the outcome. As indicated in
(2), the effective action typically contains (besides matter fields) general relativity and
non-abelian gauge theory, plus stringy corrections thereof. These corrections are very
strongly suppressed by inverse powers of the Planck mass, mPlanck ∼ 1019GeV, which is
the characteristic scale in the theory.

That the lagrangian of general relativity, with all its complexity, just pops out from
the air (arising from eg., a non-interacting two dimensional field theory), may sound like
a miracle. Of course this does not happen by accident, but is bound to come out. The
important point is here that there is a special property that the relevant two dimensional
theories must have for consistency, and this is conformal invariance. This is a quite
powerful symmetry principle, which guarantees, via Ward identities, general coordinate
and gauge invariance in space-time – however, only so if and only if formally D = 10.

As we will see momentarily, this does not imply that superstrings must live exclu-
sively in ten dimensions, but it means that superstrings are most simply and naturally

8



formulated in ten dimensions.

2.2 10d Superstrings and their compactifications

Two-dimensional field theories can have two logically independent, namely holomorphic
and anti-holomorphic pieces. For obtaining D = 10 string theories, each of these pieces
can either be of type superstring “S” or of type bosonic string “B” (with extra E8 × E8

or SO(32) gauge symmetry). By combining these building blocks in various ways,4 plus
including an additional “open” string variant, one obtains the following exhaustive list of
supersymmetric strings in D = 10:

Composition Name Gauge Group Supersymmetry
S ⊗ S̄† Type IIA U(1) non-chiral N = 2
S ⊗ S̄ Type IIB - chiral N = 2
S ⊗ B̄ Heterotic E8 × E8 chiral N = 1
S ⊗ B̄ ′ Heterotic’ SO(32) chiral N = 1

(S ⊗ S̄)/Z2 Type I (open) SO(32) chiral N = 1

Since these theories are defined in terms of 2d world-sheet degrees of freedom, which
is intrinsically a perturbative concept in terms of 10d space-time physics, all we can
really say is that there are five theories in ten dimensions that are different in perturba-
tion theory. Their perturbative spectra are indeed completely different, their number of
supersymmetries varies, and also the gauge symmetries are mostly quite different.

Now, we would be more than glad if strings would remain in lower dimensions as simple
as they are in D = 10. However, especially string theories in D = 4 turn out to be much
more complicated. Specifically, the simplest way to get down to four dimensions is to
assume/postulate that the space-time manifold is not simply IR10, but IR4×X6, where X6

is some compact six-dimensional manifold. If it is small enough, then the theory looks at
low energies, ie., at distances much larger than the size of X6, effectively four-dimensional.
This is like looking at a garden hose from a distance, where it looks one-dimensional, while
upon closer inspection it turns out to be a three dimensional object.

The important good feature is that such kind of “compactified” theories are at low
energies exactly of the type as the standard model of particle physics (or some supersym-
metric variant thereof). That is, generically such theories will involve non-abelian gauge
fields, chiral fermions and Higgs fields besides gravitation, and all of this coupled together
in a (presumably) consistent and truly unified manner ! That theories that are able to
do this have been found at all, is certainly reason for excitement.

But apart from this rather generic statement, more detailed predictions, like the precise
gauge groups or the low-mass matter spectrum, cannot be made at present – this is the
dark side of the story. The reason is that the compactification mechanism makes the
theories enormously more complicated and rich than they originally were in D = 10. This
is intrinsically tied to properties of the possible compactification manifolds X6:
i) There is a large number of choices for the compactification manifold. If we want to have
N = 1 supersymmetry in D = 4 from e.g. a heterotic string, then X6 must be a “Calabi-
Yau” space [7], and the number of such spaces is perhaps 104. On top of that, one has
to specify certain instanton configurations, which multiplies this number by a very large
factor. A priori, each of these spaces (together with a choice of instanton configuration)
leads to a different perturbative matter and gauge spectrum in four dimensions, and thus
gives rise to a different four dimensional string theory.

4There are further, but non-supersymmetric theories in D = 10, which however do not seem to have stable ground states.
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Figure 7: The parameter space of the low energy effective field theory of a string compactification is
essentially given by the moduli space (deformation space) of the compactification manifold. This leads to
a geometric interpretation of almost all of the parameters and couplings. Shown is that with each point
in the moduli space MX , one associates a compactification manifold X of specific shape; the shape in
turn determines particle masses, Yukawa couplings etc. The picture will be refined below.

ii) Each of these manifolds by itself has typically a large number of parameters; for
a given Calabi-Yau space, the number of parameters can easily approach the order of
several hundred.

These parameters, or “moduli” determine the shape of X6, and correspond physically
to vacuum expectation values of scalar (“Higgs”) fields, similar to the string coupling g
discussed above. Changing these VEVs changes physical observables at low energies, like
mass parameters, Yukawa couplings and so on. They enter in the effective lagrangian as
free parameters, and are not determined by any fundamental principles, at least as far
is known in perturbation theory. Their values are determined by the choice of vacuum,
much like the spontaneously chosen direction of the magnetization vector in a ferromag-
net (which is not determined by any fundamental law either). The hope is that after
breaking supersymmetry, the continuous vacuum degeneracy would be lifted by quantum
corrections (which is typical for non-supersymmetric theories), so that ultimately there
would be much fewer accessible vacua.

The situation is actually worse than described so far, because we have on top of points
i) and ii):

iii) There are five theories in D = 10 and not just one, and a priori each one yields
a different theory in four dimensions for a given compactification manifold X6. If one of
them would be the fundamental theory, what is then the rôle of the others ?

iv) There is no known reason why a ten dimensional theory wants at all to compactify
down to D = 4; many choices of space-time background vacua of the form IR10−n × Xn

appear to be on equal footing.
All these points together form what is called the vacuum degeneracy problem of string

theory – indeed a very formidable problem, known since a decade or so. It arises because
most of the physics that is observable at low energies seems to be governed by the vacuum
(zero mode) structure and not by the microscopic theory, at least as far as we can see
today.

The recent progress in non-perturbative string theory does not solve the problem of the
choice of vacuum state either. The progress is rather conceptual and opens up completely
new perspectives on the very nature of string theory.
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3 Duality and non-perturbative equivalences

Duality is the main new concept that has been stimulating the recent advances in super-
symmetric particle [8] and string theory. Roughly speaking, duality is a map between
solitonic (non-perturbative, non-local, “magnetic”) degrees of freedom, and elementary
(perturbative, local, “electric”) degrees of freedom. Typically, duality transformations
exchange weak and strong-coupling physics and act on coupling constants like g → 1/g.
They are thus intrinsically of quantum nature.

Duality symmetries are most manifest in supersymmetric theories, because in such
theories perturbative loop corrections tend to be suppressed, due to cancellations between
bosonic and fermionic degrees of freedom. Otherwise, observable quantities get so much
polluted by radiative corrections, that the more interesting non-perturbative features
cannot be easily made out.

More precisely, certain quantities (eg., Yukawa couplings) in a supersymmetric low en-
ergy effective action are protected by non-renormalization theorems, and those quantities
are typically holomorphic functions of the massless fields. As a consequence, this allows to
apply methods of complex analysis, and ultimately of algebraic geometry [9], to analyze
the physical theory. Such methods (where they can be applied) turn out to be much more
powerful then traditional techniques of quantum field theory, and this was the technical
key to the recent developments.

A typical consequence of the holomorphic structure is a continuous vacuum degeneracy,
arising from flat directions in the effective potential. The non-renormalization properties
then guarantee that this vacuum degeneracy is not lifted by quantum corrections, so that
supersymmetric theories often have continuous quantum moduli spaces M of vacua. In
string theory, as mentioned above, these parameter spaces can be understood geometri-
cally as moduli spaces of compactification manifolds.

3.1 A gauge theory example

One of the milestones in the past few years was the solution of the (low energy limit of)
N = 2 supersymmetric gauge theory in four dimensions [10, 11]. Important insights that
go beyond conventional particle field theory have been gained by studying this model, and
this is why we briefly touch it here. In fact, even though this model is an ordinary gauge
theory, the techniques stem from string theory, which demonstrates that string ideas can
be useful also for ordinary field theory.

Without going too much into the details, simply note that N = 2 supersymmetric
gauge theory (here for gauge group G = SU(2)) has a moduli space M that is spanned
by roughly the vacuum expectation value of a complex Higgs field φ. The relevant holo-
morphic quantity is the effective, field dependent gauge coupling g(φ) (made complex by
including the theta-angle in its definition). Each point in the moduli space corresponds to
a particular choice of the vacuum state. Moving around inM will change many properties
of the theory, like the value of the effective gauge coupling g(φ) or the mass spectrum of
the physical states. An important aspect is that there are special regions in the moduli
space, where the effective theory behaves specially, ie., becomes singular. This is depicted
in Fig.8.

More precisely, there are two different types of such singular regions. Near 〈φ〉 → ∞,
the gauge theory is weakly coupled since the effective gauge coupling becomes arbitrarily
small: g(φ) → 0. In this semi-classical region, non-perturbative effects are strongly
suppressed and the perturbative definition of the theory is arbitrarily good. That is, the
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Figure 8: The exact quantum moduli space of N = 2 supersymmetric SU(2) Yang-Mills theory has one
singularity at weak coupling and two singularities in the strong coupling region. The latter are caused
by magnetic monopoles becoming massless for the corresponding vacuum values of the Higgs field. One
can go between the various regions by analytic continuation, ie., by resumming the non-perturbative
instanton corrections in terms of suitable variables.

instanton correction sum to the left in Fig.8 gives a negligible contribution as compared
to the logarithmic one-loop correction (further higher loop corrections are forbidden by
the N = 2 supersymmetry). Furthermore, the solitonic magnetic monopoles that exist in
the theory become very heavy and effectively decouple.

However, when we now start moving in the moduli space M away from the weak
coupling region, the non-perturbative instanton sum to the left in Fig.8 will less and less
well converge, and the original perturbative definition of the theory will become worse and
worse. When we are finally close to one of the other two singularities in Fig.8, the original
perturbative definition is blurred out and does not make sense any more. The problem is
thus how to suitably analytically continue the complex gauge coupling outside the region
of convergence of the instanton series. The way to do this is to resum the instanton series
in terms of another variable, φD, to yield another expression for the gauge coupling that
is well defined near 1/g → 0. That is, there is a “dual” Higgs field, φD, in terms of
which the dual gauge coupling, gD(φD), makes sense in the strong coupling region of the
parameter space M. Indeed, φD becomes small in this region, so that the infinite series
for the dual coupling gD to the right in Fig.8 converges very well.

The important point to note here is that the perturbative physics in the strong coupling
region is completely different as compared to the perturbative physics in the weak coupling
region that we started with ! At weak coupling, we had a non-abelian SU(2) gauge
theory, while at strong coupling we have now an abelian U(1) gauge theory plus some
extra massless matter fields (“electrons”). But the latter only manifest themselves as
elementary fields if we express the theory in terms of the appropriate dual variables; in
the original variables, these “electrons” that become light at strong coupling, are nothing
but some of the solitonic magnetic monopoles that were originally very massive in the
weak coupling region.

All this said, we still do not know how to actually solve the theory and determine all the
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Figure 9: The moduli space of a generic supersymmetric theory is covered by coordinate patches, at
the center of each of which the theory is weakly coupled when choosing suitable local variables. A local
effective lagrangian exists in each patch, representing a particular perturbative approximation. None of
such lagrangians is more fundamental than the other ones.

unknown non-perturbative instanton coefficients c`, c
D
` in Fig.8. A direct computation

would be beyond what is currently possible with ordinary field theory methods. The
insight of Seiberg and Witten [10] was to realize that the patching together of the known
perturbative data in a globally consistent way is so restrictive that it fixes the theory, and
ultimately gives explicit numbers for the instanton coefficients c` and cD` . This shows
that sometimes much can be gained by not only looking to a theory at some given fixed
background parameters, but rather by looking to a whole family of vacua, i.e., to global
properties of the moduli space.

3.2 The message we can abstract from the field theory example

The lesson is that one and the same physical theory can have many perturbative descrip-
tions. These may look completely different, and can involve different gauge groups and
matter fields. There is in general no absolute notion of what would be weak or strong
coupling; rather what we call weak coupling or strong coupling, or an elementary or a
solitonic field, depends to some extent on the specific description that we use. Which
description is most suitable, and which physical degrees of freedom will be light or weakly
coupled (if any at all), depends on the region of the parameter space we are looking at.

More mathematically speaking, an effective lagrangian description makes sense only
in local coordinate patches covering the parameter space M – see Fig.9. These describe
different perturbative approximations of the same theory in terms of different weakly
coupled physical local degrees of freedom (eg, electrons or monopoles). No particular
effective lagrangian is more fundamental than any other one. In the same way that a
topologically non-trivial manifold cannot be covered by just one set of coordinates, there
is in general no globally valid description of a family of physical theories in terms of a
single lagrangian.

It is these ideas that carry over, in a refined manner, to string theory and thus to grand
unification; in particular, they have us rethink concepts like “distinguished fundamental
degrees of freedom”. String moduli spaces will however be much more complex than those
of field theories, due to the larger variety of possible non-perturbative states.

3.3 P -branes and non-perturbative states in string theory

String compactifications on manifolds X are not only complex because of the large moduli
spaces they generically have, but also because the spectrum of physical states becomes
vastly more complicated. In fact, when going down in the dimension by compactification,
there is a dramatic proliferation of non-perturbative states.
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Figure 10: Non-perturbative particle-like states arise from wrapping of p-branes around p-dimensional
cycles γp of the compactification manifoldX. These are generically very massive, but can become massless
in regions of the moduli space where the p-cycles shrink to zero size. The singularities in the moduli
space are the analogs of the monopole singularities in Fig.8.

The reason is that string theory is not simply a theory of strings: there exist also higher
dimensional extended objects, so called “p-branes”, which have p space and one time
dimensions (in this language, strings are 1-branes, membranes 2-branes etc; generically,
p = 0, 1, ..., 9). Besides historical reasons, string theory is only called so because strings
are typically the lightest of such extended objects. In the light of duality, as discussed in
the previous sections, we know that there is no absolute distinction between elementary or
solitonic objects. We thus expect p-branes to play a more important rôle than originally
thought, and not necessarily to just represent very heavy objects that decouple at low
energies.

More specifically, such (p + 1) dimensional objects can wrap around p-dimensional
cycles γp of a compactification manifold, to effectively become particle-like excitations
in the lower dimensional (say, four dimensional) theory. These extra solitonic states are
analogs of the magnetic monopoles that had played an important rôle in the N = 2
supersymmetric Yang-Mills theory. Since such monopoles can be light and even be the
dominant degrees of freedom for certain parameter values, we expect something similar for
the wrapped p-branes in string compactifications. In fact, the volumina of p-dimensional
cycles γp of Xn depend on the deformation parameters, and there are singular regions in
the moduli space where such cycles shrink to zero size (“vanishing cycles”) – see Fig.10.
Concretely, if a p-dimensional cycle γp collapses, then a p-brane wrapped around γp will
give a massless state in D = 10−n dimensional space-time [12]. This is because the mass
formula for the wrapped brane involves an integration over γp:

mp−brane
2 = |

∫
γp

Ω |2 −→ 0 if γp → 0 .

The larger the dimension of the compactification manifold Xn is (and the lower the
space-time dimension D = 10− n), the more complicated the topology of it will be, ie.,
the larger the number of “holes” around which the branes can wrap. For a six dimensional
Calabi-Yau space X6, there will be generically an abundance of extra non-perturbative
states that are not seen in traditional string perturbation theory. These can show up in
D = 4 as ordinary gauge or matter fields. It is the presence of such non-perturbative,
potentially massless states what is the basis for many non-trivial dual equivalences of
string theories.
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Figure 11: Different geometries can parametrize one and the same physical situation. Shown here are
three dual ways to represent an SU(2) gauge field and the associated Higgs mechanism.

When going back to ten dimensions by making the compactification manifold very large
(“decompactification”), these states become arbitrarily heavy and eventually decouple.
In this sense, a string model has after compactification many more states that were
not present in ten dimensions before. In the compactified model, the non-perturbative
spectrum is very finely tuned: in an analogous way that removing a perturbative string
state from the spectrum would destroy modular invariance (which is a global property
of the 2d world-sheet) and thus would ruin perturbative consistency, taking out a non-
perturbative state would destroy duality symmetries (which are a global property of the
compactification manifolds): it would make the global behavior of the theory over the
moduli space inconsistent.

3.4 Stringy geometry

We have seen in section 2.1 that N = 2 supersymmetric Yang-Mills theory is sometimes
better described in terms of dual “magnetic” variables, namely when we are in a region of
the moduli space where certain magnetic monopoles are light. In this dual formulation,
the originally solitonic monopoles look like ordinary elementary, perturbative degrees of
freedom (“electrons”). Analogously, dual formulations exist also for string theories, in
which non-perturbative solitons are described in terms of weakly coupled “elementary”
degrees of freedom. It was one of the breakthroughs when it was realized how this exactly
works: the relevant objects dual to certain solitonic states are special kinds of (p-)branes,
so-called “D(p-)branes” [13]. Due to the many types of p-branes on the one hand, and
the large variety of possible singular geometries of the manifolds X on the other, the
general situation is however very complicated. It is easiest to describe it in terms of
typical examples.

For instance, massless or almost massless non-abelian gauge bosons W± belonging to
SU(2) can be equivalently described in a number of dual ways (see Fig.11):
i) In the heterotic string compactified on some higher dimensional torus, a massless gauge
boson is represented by a fundamental heterotic string wrapped around part of the torus,
with a certain radius (say R = 1 in some units; changing the orientation of the string maps
W+ ↔ W−).This is a perturbative description, since it involves an elementary string. If
the radius deviates from R = 1, the gauge field gets a mass, providing a geometrical
realization of the Higgs mechanism.
ii) In the compactified type IIA string, the gauge boson arises from wrapping a 2-brane
around a collapsed 2-cycle γ2 of X. This is a non-perturbative formulation in terms of
string theory. If γ2 does not quite vanish, the gauge field retains some non-zero mass,
thereby realizing the Higgs mechanism in a different manner.
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iii) In the type I string model, an SU(2) gauge boson is realized by an open string
stretched between two flat D-branes. This is another perturbative formulation of the
Higgs mechanism. The mass of the gauge boson is proportional to the length of the open
string, and thus vanishes if the two D-branes move on top of each other.

We thus see that very different mathematical geometries can represent the identical
physical theory, here the SU(2) Higgs model – these geometries really should be identi-
fied in string theory, since there is no possible measurement one could possibly make to
distinguish them ! This provides a special example of a more general concept, which is
about getting better and better understood: “stringy geometry”. In stringy geometry,
certain mathematically different geometries are regarded as equivalent, and just seen as
different choices of coordinates, or parametrizations of one and the same abstract space
of string theories. The underlying physical idea is that while in ordinary geometry point
particles are used to measure properties of space-time, in stringy geometry one augments
this by string and other p-brane probes. It is the wrappings and stretchings that these
extra objects are able to do that can wash out the difference between topologically and
geometrically distinct manifolds.

In effect, a string theory of some type “A” when compactified on some manifold XA,
can be dual, ie., quantum equivalent, to another string theory “B” on some manifold XB

– and this even if A, B and/or XA and XB are profoundly different (a prime example is
given by the type IIA string compactified on a “K3 manifold”5, which is indistinguishable
from the heterotic string compactified on the four-dimensional torus, T4 [14]). Again, all
what matters is that the full non-perturbative theories coincide, while there is no need
for the perturbative approximations to be even remotely similar.

4 The Grand Picture

4.1 Dualities of higher dimensional string theories

We are now prepared to go back to ten dimensions and revisit the five perturbatively
defined string models of section 1.2. In view of the remarks of the preceding sections
concerning the irrelevance of perturbative concepts, we will now find it perhaps not too
surprising to note that these five theories are really nothing but different approximations of
just one theory. In complete analogy to what we said about N = 2 supersymmetric gauge
theory in section 2.1, they simply correspond to certain choices of preferred “coordinates”
that are adapted to specific parameter regions.

Although these facts can be stated in such simple terms, they are so non-trivial that it
took more than a decade to discover them. It can now be explicitly shown that by com-
pactifying any one of the five theories on a suitable manifold, and then un-compactifying
it in another manner, one can reach any other of the five theories in a continuous way.

It was a great surprise when the strong-coupling limit of the type IIA string was
investigated [15]: it turned out that in this limit, certain non-perturbative “D0-branes”
form a continuous spectrum and effectively generate an extra 11th dimension. That is, at
ultra strong coupling the ten-dimensional type IIA string theory miraculously gains 11-
dimensional Lorentz invariance, and the low-energy theory turns intoD = 11 supergravity.
This was especially stunning because eleven dimensional supergravity is not a low energy
limit of a string theory, but rather seems to be related to supermembranes. In other
words, non-perturbative dualities take us beyond string theory !

5K3 denotes the (unique) four-dimensional analog of a Calabi-Yau space.
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Figure 12: Moduli space in ten and eleven dimensions. Its singular asymptotic regions correspond to the
five well-known supersymmetric string theories in D = 10, plus an eleven dimensional M -theory. The
vertical direction roughly reflects the space-time dimension.

So what we have are not five but six 10- or 11-dimensional approximations, or local
coordinate patches on some moduli space – see Fig.12. But to what entity are these theo-
ries approximations ? Do we have here the moduli space of some underlying microscopic
theory ? Indeed there is a candidate for such a theory, dubbed “M-theory” [16, 17]. Its
low energy limit does give D = 11 supergravity, and simple compactifications of it give all
of the five string theories in D = 10. It may well be that M-theory, currently under in-
tense investigation, holds the key for a detailed understanding of non-perturbative string
theory. However, we will not discuss any further details here, we will rather return to the
lower dimensional theories.

4.2 Quantum moduli space of four-dimensional strings

Fig.12 shows only a small piece of a much more extended moduli space, namely only the
piece that describes higher dimensional theories. These are relatively simple and there is
only a small number of them. As discussed above, the lower dimensional theories obtained
by compactification are much more intricate.

Among the best-investigated string theories in four dimensions are the ones with N = 2
supersymmetry – these are the closest analogs of the N = 2 gauge theory that is so well
understood. They can be obtained by compactifications of type IIA/B strings on Calabi-
Yau manifolds X6, or dually, by compactifications of heterotic strings on K3× T2. Since
there are roughly 104 of such Calabi-Yau manifolds X6 known, the complete D = 4
string moduli space will have roughly 104 components, each with typical dimension 100
(keeping in mind that there can be non-trivial identifications between parts of this moduli
space)– see Fig.13. We see that the moduli space is drastically more complicated as it
is either for the high-dimensional theories, or for the N = 2 gauge theory. Each of the
104 components typically has several ten or eleven dimensional decompactification limits,
so that one should imagine very many connections between the upper and lower parts of
Fig.13 (indicated by dashed lines).

An interesting fact is that (practically6) all of the known 104 families of perturbative
D = 4 string vacua are connected by non-perturbative extremal transitions. To under-
stand what we mean by that, we simply follow a path in the moduli space as indicated in
Fig.13, starting somewhere in the interior of a blob. The massive spectrum will continu-
ously change, and when we hit singularities, extra massless states appear and perturbation
theory breaks down.

It can in particular happen that a non-perturbative massless Higgs field appears, to
which we can subsequently give a vacuum expectation value to deform the theory in a

6Strictly speaking, there seem some further, disconnected components to exist.
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Figure 13: Rough sketch of the space of N = 2 supersymmetric string theories in four dimensions. In
general, a given region in the 4d moduli space can be reached in several dual ways via compactification
of the higher dimensional theories. Each of the perhaps 104 components corresponds typically to a 100
dimensional family of perturbative string vacua, and represents the moduli space of a single Calabi-Yau
manifold (like the one shown in Fig.7). Non-perturbatively, these vacua turn out to be connected by
extremal transitions and thus form a continuous web.

direction that was not visible before. In this way, we can leave the moduli space of a single
perturbative string compactification, and enter the moduli space of another one. Thus,
non-perturbative extra states can glue together different perturbative families of vacua in
a physically smooth way [12]. It can be proven that one can connect in this manner all
of the roughly 104 known components that were previously attributed to different four
dimensional string theories. In other words, the full non-perturbative quantum moduli
space of N = 2 supersymmetric strings seems to form one single entity.

This is not much of a practical help for solving the vacuum degeneracy problem, but it
is conceptually satisfying: instead having to choose between many four dimensional string
theories, each one equipped with its own moduli space, we really have just one theory
with however very many facets.

This as far as N = 2 supersymmetric strings in four dimensions are concerned – the
situation is still more complicated for the phenomenologically important N = 1 super-
symmetric string theories, about which much less is known. The main novel features that
can be addressed in these theories are fermion chirality, and supersymmetry breaking. It
seems that certain aspects of these theories are best described by choosing still another
dual formulation, called “F -theory” [18]. This is a construction formally living in twelve
dimensions, and whether it is simply a trick to describe certain features in an elegant
fashion, or whether it is a honest novel theory in its own, remains to be seen.

5 “Theoretical experiments”

How can we convince ourselves that the considerations of the previous sections really
make sense ? Clearly, all what we can do for the foreseeable future to test these ideas are
consistency checks. Such checks can be highly non-trivial, from a formal as well as from
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Figure 14: Counting spheres in a Calabi-Yau space X in type IIA string theory, leads ultimately to the
same expressions for certain low energy couplings as a standard one-loop computation in the heterotic
string.

a physical point of view. So far, numerous qualitative and quantitative tests have been
performed, and not a single test on the dualities has ever failed !
To give some flavor, let us recapitulate a few characteristic checks:

i) Complicated perturbative corrections can be computed and compared for string models
that are dual to each other. In all cases, the results perfectly agree. Consider for example
certain 3-point couplings κ in N = 2 supersymmetric string compactifications. As men-
tioned before, such theories can be obtained either from type II strings on Calabi-Yau
manifolds X6, or dually from heterotic string compactifications on K3×T2. In the type II
formulation, these couplings can be computed (via “mirror symmetry” [19]) by counting
world-sheet instantons (embedded spheres) inside the Calabi-Yau space. Concretely, in a
specific model the result takes the following explicit form:

κ =
i

2π

E4(T )E4(U)E6(U)(E4(T )3 − E6(T )2)

E4(U)3E6(T )2 −E4(T )3E6(U)2
,

in terms of certain modular functions E4, E6 depending on moduli fields T, U . The
very same expression can be obtained also in a completely different manner, namely
by performing a standard one-loop computation in the dual heterotic string model – in
precise agreement with the postulated string duality; see Fig.14. Many similar tests, also
involving higher loops and gravitational couplings, have been shown to work out as well.

ii) State count in black holes. This is a highly non-trivial physics test. The issue is
to compute the Bekenstein-Hawking entropy SBH (=area of horizon) of an extremal (or
near-extremal) black hole. Strominger and Vafa [20] considered the particular case of an
extremal N = 4 supersymmetric black hole in D = 5, where one knows that

SBH = 2π

√
qfqh

2
,

where qf , qh are the electric and axionic charges of the black hole. The idea is to use
string duality to represent a large semi-classical black hole in terms of a type IIB string
compactification on K3 × S1. This eventually boils down to a 2d sigma model on the
moduli space of a gas of D0-branes on K3. Counting states in this model indeed exactly
reproduces the above entropy formula for large charges.

This test (and many refinements of it) does not only add credibility to the string duality
claims from a new perspective, but also tells that string theory seems to be complete, in
that there are no missing degrees of freedom that we might have been overlooking – any
other conceivable theory of quantum gravity better comes up with the same count of
relevant microscopic states (and so is likely to be equivalent to the string theory anyway).
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Figure 15: Counting black hole microstates, by mapping the problem to a gas of D-branes on a K3
manifold.
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Figure 16: Recovering Seiberg-Witten theory from string duality. In the field theory limit, one sends the
Planck mass to infinity in order to decouple gravity and other effects that are not important. A remnant
of the string duality survives, which is a duality between the standard formulation of the gauge theory,
and a novel one that was not known before. It gives a physical interpretation of the geometry underlying
the non-perturbative solution of the N = 2 gauge theory.

ii) Recovering exact non-perturbative field theory results. One can derive the exact solution
of the N = 2 supersymmetric gauge theory described in section 2.1 as a consequence of
string duality. The point is that duality often maps classical into quantum effects and vice
versa. This makes it for example possible [21] to obtain with a classical computation in the
compactified type II string, certain non-perturbative quantum results for the compactified
heterotic string. In particular, counting world-sheet instantons similarly as in point i)
above, and suitably decoupling gravity (see Fig.16), allows to exactly reproduce [22] the
non-perturbative effective gauge coupling function g(φ) of Fig.8.

This is very satisfying, as it gives support to both the underlying string duality and
the solution of the N = 2 gauge theory.7 Indeed, while the basic heterotic-type II string
duality [14] and the Seiberg-Witten theory [10] have been found independently from each
other around the same time, their mutual compatibility was shown only later.

6 Outlook

In principle, it might have been that, for example, the string-derived non-perturbative
results on the gauge theory were different as compared to the results obtained by Seiberg
and Witten, and this would have obviously been quite a disaster. But no, it did come
out right, as it did in all the many other instances were dualities were checked. It is
this clearly visible, convergent evolution of a priori separate physical concepts, besides
overwhelming “experimental” evidence, what gives the string theorists confidence in the

7The techniques for obtaining exact non-perturbative results for ordinary field theories from string duality are not limited
to only reproducing results that one already knows – in fact, they have opened the door for deriving new results for a whole
variety of novel quantum theories in various dimensions.
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validity of their ideas.
Indeed every time a new mosaic stone is found, it happens to fit perfectly to the other

mosaic stones ! That this process seems to continue all the time and a clearer and clearer
picture emerges, is so non-trivial that there cannot be any doubt that the whole building
of physical ideas and concepts is completely self-consistent and makes sense as a physical
model. In view of the many non-trivial consistency constraints that are fulfilled, it is most
likely that there is simply no room for a “different” consistent theory; in other words, it
is likely that what we have found is the complete space of all possible consistent quantum
theories that include gravity, and string theory may perhaps be viewed as one way of
efficiently parametrizing it (in certain regions of its parameter space). Whether this self-
consistent model, or rather one particular point in its huge parameter space, does actually
describe our world, is another question, a question that we may not be able to decide for
a long time. At any rate, for the moment there seems to be no other option than trying
to improve our understanding of the structure that we see emerging.
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